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Abstract

Einstein’s theory of gravity is known to be perturbatively unrenormalisable in the co-

variant formulation. However, it was proposed that such a theory may be governed

by a non-Gaussian fixed point in theory space in the UV limit, rendering it asymp-

totically safe. In this dissertation, the perturbative unrenormalisability of Einstein

gravity is illustrated using the simple example of the one-loop scalar corrections to

the graviton propagator. Then, the Wilsonian renormalisation group is briefly intro-

duced, and some methods used in the asymptotic safety programme are elaborated.

Recent progress in the field is described, and major open problems are identified,

with a focus on issues concerning the violation of unitarity and causality, and the

effectiveness of running couplings in finite truncations of theory space.
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1 INTRODUCTION

1 Introduction

Einstein’s theory of general relativity is our best theory of gravitation. It describes

gravitational interactions as emergent from objects moving along geodesics in a

curved spacetime manifold, whose curvature is induced by the presence of mass

and energy. However, advances in theory and experiment since the beginning of the

twentieth century seem to indicate that physical processes are quantum in nature.

All known matter and their interactions, with the exception of gravity, are well de-

scribed by the standard model of particle physics, which is a quantum field theory.

As a result, the right-hand side of Einstein’s field equations

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν (1)

is a fundamentally quantum object. Thus, it is most natural to attempt to rewrite

the left-hand side that describes the curvature of spacetime into a quantum theory

as well. In addition, Einstein’s theory notably produces singularities at the centre of

a black hole and at the Big Bang, which is considered a nuisance by many.

Unfortunately, the reconciliation of quantum mechanics with Einstein’s theory of

general relativity is one of the long-standing open problems in physics. When one

attempts to quantise gravity in the same manner as one does the other interactions,

difficulties arise in the form of perturbative unrenormalisability. Absorption of diver-

gences in loop expansions of Einstein gravity requires the introduction of countert-

erms with higher momentum dependencies, which is equivalent to adding higher-

derivative terms to the action. As more loops are calculated, more higher-derivative

terms are required, and each such term contains a finite part in its coupling constant

that needs to be determined through experiment. As a result, general relativity,

when quantised in the usual way, requires an infinite number of experiments to fix

the coupling constants of its counterterms, and has no predictive power. Thus, gen-

eral relativity is widely regarded to be a low-energy (infrared, IR) effective theory
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1 INTRODUCTION

valid up to the Planck scale, at which it will have to be ”completed” by a fundamen-

tal high-energy (ultraviolet, UV) quantum theory of gravity. A candidate of such a

theory is string theory.

However, in 1976, Weinberg proposed [7] a generalised renormalisability condition

based on Wilson’s renormalisation group (RG) formulation [8]. He claimed that a

theory can be considered UV complete if it lies on a finite-dimensional UV critical

surface of a nontrivial fixed point for the RG flow, and the perturbative unrenor-

malisability of the theory only means that it does not lie in the UV critical surface

of the Gaussian fixed point at the origin, and does not completely rule out its UV

completeness. If a theory satisfies these criteria, it can be considered asymptotically

safe, in analogy to the asymptotically freedom of QCD which lies in the UV critical

surface of the fixed point at the origin.

For the renormalisation group procedures to be well defined, the theory must be

formulated with all possible interaction terms allowed by its symmetries considered.

It would be unrealistic to consider the infinite number of allowed couplings, so in

practice finite truncations are used to probe the RG behaviour of gravitational theo-

ries, in the hope that as the number of terms added to the truncations increases, the

obtained fixed point and its UV critical dimension converge to some finite values. A

large number of such truncations have been investigated [9] using various methods,

and fixed points in agreement with Weinberg’s criteria have been identified in all

of them. For instance, the asymptotic freedom of one of the couplings in quadratic

gravity has been exploited so that a UV fixed point in the quadratic truncation is

located using perturbation theory [10]. Moreover, non-perturbative methods such

as the functional renormalisation group equation have been used to investigate the

RG flow of various other truncations [9]. However, the convergence of the locations,

and more importantly, the dimensions of the UV critical surfaces of the fixed points

remain an open problem.

There are also open foundational problems that form obstacles in the formulation of
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1 INTRODUCTION

asymptotically safe gravity. For example, any truncation longer than the Einstein-

Hilbert action would inevitably contain higher derivative terms, which are well

known to give rise to unphysical propagating ghost states. There are various pro-

posed resolutions of this problem, but none of them appear to be entirely convincing.

The effectiveness and universality of running coupling constants in finite truncations

is also uncertain.

Hence, the asymptotic safety scenario in gravity is still an active ongoing area of

research, with significant progress in the past few decades, but also with many open

problems to answer. This dissertation aims to provide an elementary introduction

to the subject, including motivations, key methods used, recent progress and open

problems.
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2 COVARIANT QUANTISATION OF GRAVITY

2 Covariant quantisation of gravity

Through a covariant treatment of gravity, calculating the one-loop scalar correction

to a graviton propagator, the pathology that arises when quantising Einstein grav-

ity, namely the necessity of introducing higher-derivative counterterms at each loop

level, becomes apparent.

2.1 The graviton propagator

Classically, Einstein gravity is described by the usual Einstein-Hilbert action

SEH =
1

2κ2

∫
d4x
√
−gR (2)

where κ =
√

8πG, G is the usual gravitational constant, and the cosmological con-

stant is discarded for the time being. Einstein gravity enjoys an invariance under

diffeomorphisms of the form

gµν → g′µν ≡ gµν + gαν∂µξ
α + gµα∂νξ

α + ξα∂αgµν (3)

where ξα are the components of an infinitesimal vector field. This invariance stems

from the fact that there is no preferred coordinate system in general relativity, and

can be seen as a gauge invariance. Thus, it could be shown that at each point in

spacetime, there is a local neighbourhood where the geometry can be described by

the Minkowski metric ηµν , which justifies the decomposition of the metric

gµν = ηµν + hµν (4)

where hµν is the dynamical fluctuation of the metric that is to be quantised. How-

ever, it was noted by Fadeev and Popov [11] that if hµν is not sufficiently small, its

quantum effects would change the signature of the metric tensor gµν . Here, this com-
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2 COVARIANT QUANTISATION OF GRAVITY

plication is ignored, and hµν is assumed to be small. The diffeomorphism invariance

induces a similar invariance of hµν under the gauge variation

hµν → h′µν ≡ hµν +∇µξν +∇νξµ (5)

In order to derive the Feynman rules, the theory is quantised in the usual path

integral formulation, taking into account the gauge invariance mentioned above.

Thus, in addition to the classical Einstein-Hilbert action, gauge-fixing and the re-

lated Fadeev-Popov ghost terms need to be added. The resultant path integral will

be of the form

Z =

∫
DhµνDCµDC̄µ exp[SEH(h) + Sgf(h) + Sgh(h,C, C̄)]Zmatter (6)

where the fluctuation metric hµν is integrated over, but the raising and lowering of

the spacetime indices are performed using the background Minkowski metric ηµν ,

and C and C̄ are the usual Fadeev-Popov ghosts.

First, the Lagrangian is expanded in powers of hµν . For the derivation of the prop-

agator, expansion to the quadratic order is sufficient. Following the procedure of

Veltman [6], the background metric is first assumed to be a general metric that is

not necessarily ηµν . The full metric is relabelled ḡµν , and the background is labelled

gµν , such that the decomposition is of the form:

ḡµν = gµν + hµν (7)

Then, up to quadratic order in hµν , the classical part of the Lagrangian can be de-

composed as

Lcl =
√
−ḡ[R +R +R] (8)

where R is constructed using the background metric, and R is the part of the Ricci

scalar linear in hµν , while R is the part of the Ricci scalar quadratic in hµν . Following

the expansions carried out in Appendix A, and using the shorthand h = hµµ, one
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2 COVARIANT QUANTISATION OF GRAVITY

arrives at

Lcl = −1

4
(∂µhαβ)2 +

1

4
(∂µh)2 − 1

2
∂µh∂νh

µν +
1

2
∂αhαν∂µh

µν (9)

As general relativity has gauge invariance in the form of (5), a gauge fixing term

Lgf = −1
2
G2
µ needs to be added to the Lagrangian to prevent redundant functional

integration. The gauge that produces the simplest form for the propagator is the de

Donder gauge

Gµ = ∂νhµν −
1

2
∂µh (10)

which simplifies the part of the Lagrangian relevant to the graviton propagator to

L = Lcl + Lgf

= −1

4
(∂µhαβ)2 +

1

8
(∂µh)2

= −1

2
∂λhαβV

αβµν∂λhµν

(11)

where

V αβµν =
1

2
ηαµηβν − 1

4
ηαβηµν (12)

Taking its inverse, one arrives at the graviton propagator

k
µν αβ

Dµναβ(k) =
ηαµηβν + ηβµηαν − ηµνηαβ

k2 + iε
(13)

It is helpful at this point to examine the dimensionality of all terms involved. The

Lagrangian above is to the second order of the derivative of the metric. The metric

itself has to be dimensionless, in natural units the act of differentiation gives a mass

dimension of 1, the integration measure is of dimension −4, and the action needs

to be overall dimensionless, so κ has to be of dimension −1. In order to rewrite

the kinetic term (11) into one that does not need a coupling constant, the coupling

constant can be absorbed into a redefinition hµν → κhµν , so that hµν now has mass
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2 COVARIANT QUANTISATION OF GRAVITY

dimension 1. Then, it becomes apparent that for the action to be dimensionless, any

operator with mass dimension larger than 4, such as ones to the order (∂h)2h, must

have a coupling with negative mass dimension. Unfortunately, the full expansion

of the Ricci scalar contains an abundance of such terms. Hence, Einstein gravity is

superficially power-counting unrenormalisable.

2.2 One-loop scalar corrections to the graviton propagator

The superficial unrenormalisablity can be confirmed by calculating the one-loop

scalar correction to the graviton propagator. Matter is coupled to gravity through

its stress-energy tensor Tµν . Using the redefined dimensionful metric, the interaction

term in the Lagrangian is of the form κ
2
hµνT

µν . For a massive scalar, the stress-energy

tensor is

Tµν = ∂µφ∂νφ−
1

2
ηµν(∂λφ∂

λφ−m2φ2) (14)

It is immediately apparent this interaction is power-counting unrenormalisable. One

proceeds to show this by calculating the one-loop scalar correction to the graviton

propagator.

The scalar-scalar-graviton vertex can be read off the interaction term to be

pµ

p′ν

Vµν =
iκ

2
[(pµp

′
ν + p′µpν)− ηµν(p · p′ −m2)] (15)
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2 COVARIANT QUANTISATION OF GRAVITY

With the usual scalar propagator

p

D(p) =
1

p2 −m2 + iε
(16)

As a sanity check, the tree-level scalar-scalar scattering amplitude is

p1

p3

p2

q

p4

iM =
iκ

2
[(pµ1p

ν
2 + pµ2p

ν
1 − ηµν(p1 · p2 −m2)]

× iηαµηβν + ηβµηαν − ηµνηαβ
q2

× iκ

2
[(pα3p

β
4 + pα4p

β
3 − ηαβ(p3 · p4 −m2)]

(17)

Taking the non-relativistic limit pµ → (m,0), this amplitude can be read off to be

M = −κ2m
4

q2
(18)

which can be “Fourier transformed” to obtain the usual gravitational potential energy

for two equal masses V (r) = −Gm2/r.

Then, one proceeds to calculate the one-loop scalar correction to the graviton prop-

agator

hαβ hµν

8



2 COVARIANT QUANTISATION OF GRAVITY

−iΠ(1)
αβµν(q) =

∫
d4k

(2π)4

iκ

2
[kα(k + q)β + kβ(k + q)α]

i

k2

i

(k + q)2

× iκ

2
[kµ(k + q)ν + kν(k + q)µ]

(19)

Following the procedures of Appendix B, it can be shown that there is a divergent

term of the form

∼ κ2

(4π)2
(qαqβqµqν)

∫ 1

0

dx x2(1− x)2

(
2

ε
− ln ∆− γ + ln (4π)

)
(20)

The q4 dependence cannot be absorbed into any existing operator, as the Ricci scalar

is up to the second derivative of the metric, and the absorption of the above diver-

gence requires a fourth-derivative counterterm. As a result, higher-order countert-

erms not present in the original action must be introduced to cancel out divergences

in gravitational interactions.

2.3 One-loop finiteness of pure gravity

Using gravity coupled to scalar fields and deducting the contribution due to the

scalars, ’t Hooft and Veltman [12] showed explicitly that pure gravity in the absence

of matter and vacuum energy is finite at one-loop order. Here, one can skip the ex-

plicit calculations by postulating that the one-loop corrections to pure gravitational

processes also carry divergences that are of the order p4 (which is indeed the case, as

shown by ’t Hooft and Veltman). Then, the fourth-derivative counterterms allowed

by the diffeomorphism invariance of the theory are proportional to R2, RµνR
µν and

RµναβR
µναβ. However, the counterterm involving RµναβR

µναβ can be absorbed into

the other two terms by observing that the Euler characteristic

χ =
1

8π2

∫
d4x
√
−g
(
R2 − 4RµνR

µν +RµναβR
µναβ

)
(21)

is a topological invariant.

9



2 COVARIANT QUANTISATION OF GRAVITY

Einstein’s field equations in the absence of matter and vacuum energy are uniquely

solved by R = Rµν = 0. Hence, for the quantum theory to reproduce the classical

theory on-shell, the entire counter-Lagrangian has to vanish, which implies that at

one-loop order, Einstein gravity can be written as a finite quantum theory.

This convenient cancellation of the counter-Lagrangian gave hope that similar can-

cellations might also occur at higher loop orders. Unfortunately, Goroff and Sagnotti

[13] showed conclusively that such coincidences do not happen at two-loop order

for pure gravity. In addition, as soon as matter is introduced, the on-shell condi-

tions no longer stipulate that R = Rµν = 0, and one-loop gravity is once again un-

renormalisable. In general, absorption of divergences at all loop orders requires the

introduction of an infinite number of higher-derivative operators into the counter-

Lagrangian. Each of these counterterms contains a finite part that has to be experi-

mentally determined, removing any predictive power from naively quantised general

relativity.
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3 THE ASYMPTOTIC SAFETY PROGRAMME

3 The asymptotic safety programme

The perturbative unrenormalisability of Einstein gravity does not conclusively rule

out UV completeness of the covariant formulation of quantum gravity. Perturba-

tive expansions using Feynman diagrams probe only the neighbourhood where the

coupling constants are small, and give little to no information about the couplings

far from the free theory. In fact, the action of renormalisation was considered a

mathematical trick of “sweeping divergences under the rug” until Wilson [8] intro-

duced the concept of the renormalisation group, which gave the procedure physical

meaning.

3.1 The Wilsonian renormalisation group

The Wilsonian renormalisation group (RG) is based on the idea that descriptions

of the physical world is dependent on the scales at which one probes it. Consider

a physical system described at some momentum scale k by some function Z of the

complete set of operators {ψi} allowed by the symmetries of the physical system

described, and their coupling constants {gi}. Then, an RG action of coarse-graining

and rescaling of the theory to a new scale k′ will shift the couplings by {gi} → {g̃i}.

Thus, the couplings can be written as functions of the scale gi(k), where the flow of

the couplings due to shifts in the scale is given by the β function

βi[gi(k)] = k∂kgi(k) (22)

To illustrate this more concretely, consider a general scalar field theory in d dimen-

sional Euclidian space, with the action

S[φ] =

∫
ddx

(
1

2
(∇φ)2 +

1

2
m2φ2 +

λ

4!
φ4 + · · ·

)
(23)

11



3 THE ASYMPTOTIC SAFETY PROGRAMME

The theory is taken to be effective up to some momentum scale k0, which is infinite

for a “fundamental” theory. The momentum cutoff can be made manifest by regu-

larising the theory so that the path integral is only integrated up to the cutoff, or

equivalently by stipulating that the fields are finitely supported in momentum space,

so that

φ(p) =

 0 |p| > k0

φ(p) |p| < k0

(24)

The partition function is written as

Zk0 =

∫
Dφ e−Sk0 [φ] (25)

Now, if one wants to extract from this theory an effective theory valid up to a lower

momentum scale k, one needs to integrate out modes with momenta k < |p| < k0.

The procedure is as follows.

The field can be split into two components, the high energy (UV) modes that will be

integrated out

φ+(p) =


0 |p| > k0

φ(p) k < |p| < k0

0 |p| < k

(26)

and the low energy (IR) modes that will be rescaled to be the degrees of freedom

for the IR effective theory

φ−(p) =

 0 |p| > k

φ(p) |p| < k
(27)

The partition function then becomes

Zk0 =

∫
Dφ−Dφ+ e−Sk0 [φ

++φ−] =

∫
Dφ− e−Sk[φ

−] (28)

where one wishes to absorb the effect of the UV modes into an effective action that

12



3 THE ASYMPTOTIC SAFETY PROGRAMME

depends only on the IR modes.

e−Sk[φ
−] =

∫
Dφ+ e−Sk0 [φ

++φ−] (29)

This action can in general be evaluated by functionally integrating over the high

momentum modes, treating the low momentum modes as external sources. The

action (23) is already the most general action that can be written down, so the

effective action can only be of the same form, but with different couplings.

Sk[φ
−] =

∫
ddx

(
1

2
Zφ(∇φ−)2 +

1

2
m2(φ−)2 +

λ

4!
(φ−)4 + · · ·

)
(30)

Thus, at a lower energy scale, one sees a different theory with different values for

the couplings, which have absorbed the effects of higher-energy modes beyond the

cutoff of the theory. However, the original theory contains an implicit dependence

on the cutoff scale k0 different from the cutoff k of the effective theory, which means

that the momenta in the IR theory are in fact to scale with the cutoff in the UV theory.

What one really wants is a theory defined up to the same scale as the UV theory, with

merely a smaller scope of effectiveness. In such a theory, taking the momentum to

k should be equivalent to taking the momentum to k0 in the UV theory. To achieve

this, the positions and momenta in the IR theory must be rescaled as

x→ x′ =
k

k0

x, p→ p′ =
k0

k
p (31)

This induces a rescaling of the integration measure and the gradient operator

ddx =

(
k0

k

)d
ddx′, ∇ =

k

k0

∇′ (32)

In addition, the overall scaling of the field has no physical significance. Thus, the

scale of the field must be manually fixed. It is customary to choose the coupling of

the kinetic term to be 1/2, which is achieved through a field rescaling

φ′(x′) = (
k0

k
)
d−2
2

√
Zφφ

−(x) (33)

13
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The effective action is now

Sk[φ
′] =

∫
ddx′

(
1

2
(∇′φ′)2 +

1

2
m2(k)(φ′)2 +

λ(k)

4!
(φ′)4 + · · ·

)
(34)

This form is exactly analogous with the original action, but now with coupling con-

stants running with the energy scale. The above procedure is the renormalisation

group, which in general consists of three steps:

1. “Coarse grain” the theory by integrating out modes with momenta above an

imposed cutoff.

2. Rescale spacetime and momenta so that the action is now to scale with the new

cutoff.

3. Rescale the fields so that the effective and UV actions are of forms that are directly

comparable.

In practice, these procedures are carried out in a continuous flow, integrating out an

infinitesimal momentum shell at each time. It should be noted that despite the name,

the renormalisation group procedure is not a group action, as the coarse graining at

each step causes one to lose information about the physics at momenta higher than

the cutoff, making the procedure irreversible.

As shown above, the RG procedure induces a flow in the typically infinite dimen-

sional space of coupling constants, with each theory corresponding to a point in that

space, which is hence also known as theory space. In analogy to dynamical systems,

such flows also yield fixed points where the RG procedure does not change the cou-

plings of the theory. In other words, the β function vanishes at these points, and

these theories are known as conformal field theories, with manifest scale invariance.

The infinitesimal RG flow around these points give useful information about the be-

haviour of theories in their neighbourhoods. Around a fixed point g∗ with couplings

14



3 THE ASYMPTOTIC SAFETY PROGRAMME

{gi∗}, the β functions can be linearly expanded in the couplings to be

βi[gi(k)] = k∂kgi(k) =
∑
j

Bij(gj(k)− gj∗) (35)

where the stability matrix Bij encodes the behaviour of the RG flow in the vicinity

of the fixed point. This matrix can be diagonalised to yield the eigenvalues and

eigenvectors ∑
j

BijV
J
j = −θJV J

i (36)

With the complete set of eigenvectors {V J}, the RG equation (35) can be solved as

gi(k) = gi∗ +
∑
J

CJV J
i

(
k0

k

)θJ
(37)

where {CJ} are the integration constants, and k0 is some initial energy scale. In gen-

eral, Bij will not be diagonal, and the eigenvalues will be complex. However, for any

physically relevant solution, the CJs will be such that they cancel out contributions

from the imaginary part of the θJs. Then, the stability of the fixed point in response

to RG action can be read off the sign of Re(θJ).

1) Re(θJ) > 0: The fixed point is repulsive to small RG perturbations in the direction

of V J . An RG trajectory emanates from the fixed point in this direction. As the RG

action is always from the UV to the IR, the flow in this direction is relevant to the

observed physics at low energy. Thus, this direction is a relevant direction.

2) Re(θJ) < 0: The fixed point is attractive to small RG perturbations in the di-

rection of V J . An RG trajectory flows into the fixed point in this direction, making

that trajectory irrelevant to low-energy physics. Thus, this direction is an irrelevant

direction.

3) Re(θJ) = 0: More information is needed to determine the RG flow in the direction

of V J . This direction is a marginal direction.

15



3 THE ASYMPTOTIC SAFETY PROGRAMME

For low-energy physics, the relevant directions are of interest. The RG flow em-

anating from these directions around a fixed point span a manifold known as the

unstable manifold or the UV critical surface, whose dimensionality is given by the

number of orthogonal relevant directions around that fixed point.

For any theory space, there is always a trivial fixed point located at the origin known

as the Gaussian fixed point (GFP). At this point, all couplings vanish, and Re(θJ)

in the directions of the couplings are exactly equal to the mass dimensions of the

couplings. This can be shown using the example of the scalar field (34) given above.

Consider some RG action on the theory where the effect of the coarse-graining is

negligibly small, and the rescaling dominates. Then, Zφ can be taken to be unity in

(33) so that the scalar field is rescaled by a factor of (k0
k

)
d−2
2 . For a general interaction

term at some power n of the field, the rescaling is realised as

ddx gn(k0) φn =

[
(
k0

k
)dddx′

]
gn(k0)

[
(
k

k0

)n
d−2
2 (φ′)n

]
= ddx′ gn(k) (φ′)n

(38)

where

gn(k) =

(
k0

k

)d+n 2−d
2

gn(k0) (39)

Instead of finding the β functions, which is trivial at this point, one observes that in

the vicinity of the GFP where couplings vanish, a small perturbation of some coupling

gn can only grow under an RG action when the power d + n(2 − d)/2 is positive. If

this power is negative, a small “turn-on” of the coupling would be re-attracted to

the GFP, rendering the coupling irrelevant. This power is exactly equal to the mass

dimension of the coupling.

This gives physical meaning to the statement from perturbation theory that theories

with couplings with negative mass dimensions are unrenormalisable: they do not lie

in the UV critical surface of the GFP. The direct opposite of this would be an asymp-

totically free theory, which lies in the UV critical surface of the GFP, so that at higher

16



3 THE ASYMPTOTIC SAFETY PROGRAMME

energy scales the theory tends towards the free theory. As perturbative expansions

assume weak coupling, they in fact form the linearisation of theory space around

the GFP. A coupling with negative mass dimension lies in the irrelevant direction of

the GFP, but this leaves open the possibility that the UV behaviour of the theory is

instead governed by a non-trivial non-Gaussian fixed point (NGFP) away from the

origin.

3.2 Weinberg’s criterion

Thus, one sees that the perturbative unrenormalisability does not completely rule out

possibilities of UV completion of gravity in the covariant formulation. This motivated

Weinberg [7] to propose a conjecture that there exists a physical infinite-cufoff limit

of quantum gravity if:

1) The theory space contains a non-trivial NGFP with a finite-dimensional UV critical

surface.

2) Every RG trajectory that does not emanate from this fixed point develop unphys-

ical behaviour such as diverging couplings at the UV limit.

If both of these two criteria are confirmed, then gravity can be considered asymp-

totically safe, in analogy to the asymptotic freedom of theories such as QCD. The

finiteness of the dimensionality of the UV critical surface distinguishes asymptoti-

cally safe gravity from an effective field theory, as the latter requires an increasing

number of couplings that need to be experimentally fixed as the energy scale in-

creases, making the theory increasingly ineffecient at higher energies, and removing

any predictive power at the UV limit. On the contrary, asymptotically safe gravity

can be considered fundamental, as even in the limit when the energy scale diverges,

the theory still only contains a finite number of relevant constants that can be deter-

mined experimentally.
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3.3 Gravity in 2 + ε dimensions

The first example hinting at asympotically safe gravity, mentioned in Weinberg’s

original article, is gravity in 2 + ε dimensions. In exactly 2 dimensions, Newton’s

constant becomes dimensionless, so that Einstein gravity is power-counting pertur-

batively renormalisable. However, in 2 dimensions, the action also happens to be

proportional to the topologically invariant Euler characteristic, making the entire

theory trivial. Thus, to study gravity in 2 dimensions, one needs to first perform the

necessary calculations in an expansion of 2+ε dimensions, then take the limit ε→ 0.

In the ε expansion, Newton’s constant gains a mass dimension −ε, so instead one

considers the dimensionless parameter

g0(k) = kεG0 (40)

to be the bare coupling constant. Then, the finite part of this bare coupling is labelled

g(k). In analogy to dimensional regularisation, this coupling admits poles as ε → 0.

Thus, the bare coupling can be written in a Laurent expansion

g0(k) = g(k) +
∞∑
ν=1

ε−νbν [g(k)] (41)

where the constants bν can only depend on k through g(k) as k is an artificially

introduced scale, so there are no dimensionful parameters that k can be compared

to. Then the operation k∂k can be performed on both sides of the equation to yield

εg + b1(g) +
∞∑
ν=1

ε−νbν+1(g) = β(g) +
∞∑
ν=1

ε−ν
∂bν
∂g

β(g) (42)

which can be rearranged into

β(g) =

(
εg + b1(g) +

∞∑
ν=1

ε−νbν+1(g)

)(
1 +

∞∑
ν=1

ε−ν
∂bν
∂g

)−1

(43)
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Taking a binomial expansion and retaining only the terms analytic as ε→ 0

β(g) = εg + b1(g)− g ∂b1

∂g
(44)

For small g, it is expected that b1 = bg2 +O(g3), so that

β(g) = εg − bg2 (45)

Literature differ on the exact value of b, but all agree that b is positive [1]. Thus, the

RG flow contains a NGFP at

g∗ =
ε

b
(46)

This result is clearly obtained in the limit ε � 1, and the validity of its extension to

ε = 2 is highly questionable. Nonetheless, it provides a hint that a NGFP may exist

in the theory space of four-dimensional gravity.

3.4 Perturbative treatment of quadratic gravity

As shown in the calculations in Appendix B, the problematic divergence in gravi-

tational interactions at one loop order is quartic in the external momenta, which

requires fourth-derivative counterterms to absorb. Thus, a candidate of a perturba-

tively renormalisable theory of gravity would be one containing higher derivative

terms. It was shown by Stelle [14] that a fourth-derivative theory with the action

quadratic in the Ricci scalar

S =
1

2κ2

∫
d4x
√
−g
(
R− βR2 + αRµνR

µν
)

(47)

is indeed perturbatively renormalisable to all loop orders, with significant caveats

that will be discussed later. Using the topological invariance of the Gauss-Bonnett

term E which is the integrand of the Euler characteristic given in (21), and the fact
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that the square of the Weyl tensor is given by

C2 = CµναβC
µναβ = E + 2RµνR

µν − 2

3
R2 (48)

the term proportional to the square of the Ricci tensor can be absorbed into a term

proportional to the square of the Weyl tensor. Hence, the action of quadratic gravity

can be rewritten (with the cosmological constant included) as

S =

∫
d4x
√
−g
(

Λ̃− 1

κ2
R +

1

2s
C2 − ω

3s
R2

)
(49)

It was proven [15][16] that the coupling s of the C2 term is asymptotically free. Re-

call that in the quantisation of EH gravity, before evaluating the Feynman diagrams,

the metric was rescaled by hµν → κhµν so that the kinetic term has the usual cou-

pling of 1/2. Then, the gravitational vertices would carry a factor of κ. The same

treatment, extended to quadratic gravity, would mean that any vertex contained in

the action carries positive powers of s, so that perturbative expansions are effectively

expansions in powers of s. Thus, asymptotic freedom of this coupling implies that

perturbation theory well describes the behaviour of the theory in the UV limit, and

if a NGFP exists in that limit, it should be visible through perturbation theory. This

argument is exactly analogous to the argument for the validity of the description

of high-energy strong interactions using perturbative QCD due to the asymptotic

freedom of the coupling in that theory.

This motivated Niedermaier [17][10] to search for such a fixed point using perturba-

tion theory. As the dimensionful nature of the couplings dictate that there is power

law running of the couplings, the conventional method of dimensional regularisa-

tion and minimal subtraction, which sees only logarithmic divergences, is no longer

effective. Hence, a new nonminimal subtraction ansatz is introduced to take care

of the power law divergences, so that at one loop order, the bare couplings now
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become

Λ̃0 = µ4 2λ

gN

{
1 +

h̄

(4π)2

[
a10 + a11 ln

(
ΛUV

µ

)
+a12

(
ΛUV

µ

)2

+ a13

(
ΛUV

µ

)4
]}

(50)

κ2
0 = µ−2gN

{
1 +

h̄

(4π)2

[
b10 + b11 ln

(
ΛUV

µ

)
+b12

(
ΛUV

µ

)2
]}

(51)

where µ is the renormalisation scale, gN and λ are the dimensionless renormalised

gravitational and cosmological “constants”, and ΛUV is the UV cutoff. For the dimen-

sionless couplings s and ω, conventional minimal subtraction suffice, so that

s0 = s

{
1 +

h̄

(4π)2

[
c10 + c11 ln

(
ΛUV

µ

)]}
(52)

ω0 = ω

{
1 +

h̄

(4π)2

[
d10 + d11 ln

(
ΛUV

µ

)]}
(53)

The metric is again decomposed into ḡµν = gµν + hµν , where ḡµν is the total metric

in the original action, gµν is the static background metric, with which raising and

lowering operations are performed, and hµν is the dynamical quantum metric, which

is functionally integrated over in the path integral. The field renormalisation is then

ḡ0
µν = ḡµν

[
1 +

h̄

(4π)2
ln

(
ΛUV

µ

)
ξgN

]
(54)

where ξ can in general be a function of s/gN , λ or ω.

In addition, when the theory is renormalised at the cutoff scale, the renormalised

couplings should coincide with the bare ones. This yields the condition

κ2
0 = Λ−2

UVgN(µ = ΛUV)

Λ̃0 = Λ4
UV

(
2λ

gN

)
(µ = ΛUV)

(55)

that is only satisfied when

a10 + a12 + a13 = 0, b10 + b12 = 0 (56)
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For pure gravity, the general form of the one-loop effective action containing the

logarithmic and power law divergences at one loop level can be written down as

Γ
(1)
div =− 1

(4π)2

∫
d4x
√
−g
[
Λ4

UVΥ1 + Λ2
UV

(
Υ2R + µ2Υ3

)
+ ln

(
ΛUV

µ

)(
ζ1C

2 + ζ2R
2 + µ2ζ4R + µ4ζ5

)] (57)

where g is the determinant of the static background metric, and the Υs and ζs are

loop-counting parameters which are real valued functions of s/gN , λ or ω.

Substituting the bare couplings and field (50)-(54) into the action (49) and expand-

ing to first order in h̄, the divergent part of the one-loop effective action can be

calculated to be

Γ
(1)
div =

∫
d4x
√
−g h̄

(4π)2

{
gNξ

2
ln

(
ΛUV

µ

)(
2λµ4

gN
− µ2

gN
R +

1

2s
C2 − ω

3s
R2

)
+

2λµ4

gN

[
a11 ln

(
ΛUV

µ

)
+ a12 ln

(
ΛUV

µ

)2

+ a13 ln

(
ΛUV

µ

)4
]

+
µ2

gN

[
b11 ln

(
ΛUV

µ

)
+ b12 ln

(
ΛUV

µ

)2
]
R

+
1

2s
c11 ln

(
ΛUV

µ

)
C2

+
ω

3s
(d11 − c11) ln

(
ΛUV

µ

)
R2

}

(58)

By comparing the forms of (57) and (58) and using the relations (56), the relations

between all the Latin coefficients (except c10 and d10 which do not enter the β func-

tions) and the Greek coefficients can be determined. Operating on both sides of the

relations (50)-(53) with the operator µ∂µ and expanding to first order in the loop-

counting parameter h̄ while rewriting the Latin coefficients as the Greek ones, the β
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functions can then be calculated to be

µ∂µs = − h̄

(4π)2
2ζ1s

2

µ∂µω = − h̄

(4π)2
s (3ζ2 + 2ωζ1)

µ∂µgN = 2gN +
h̄

(4π)2
g2
N [ζ4 + ξ + 2Υ2]

µ∂µλ = −2λ+
h̄

(4π)2

gN
2

[ζ5 + 4λζ4 + Υ3 + 4λΥ2 + 4Υ1 − (2λξ + 2λζ4 −Υ3)]

(59)

The determination of the RG flow then depends on the evaluation of the one-loop

effective action to extract the Greek coefficients. First, a gauge-fixing term needs

to be added to the action. Niedermaier used a three-parameter minimal harmonic

gauge

Sgf =
1

2s

∫
d4x
√
−gχµY µνχν

χµ = ∇νhµν + b1∇µh

Y µν = −gµν∇2 − (b2 − 1)∇µ∇ν +Rµν

b1 = −1

4

1 + 4ω

1 + ω
, b2 =

2

3
(1 + ω)

(60)

The ghost action in this gauge is

Sgh =

∫
d4x
√
−gC̄µ∆µ

νC
ν

∆µν = −
[
gµν∇2 + (1 + 2b1)∇µ∇ν +Rµν

] (61)

Then, the total action will be of the form

Stot = S + Sgf + Sgh (62)

Formally the one-loop effective action is of the form

Γ(1) =
1

2
Tr lnH− 1

2
Tr lnY − Tr ln ∆ (63)

where H is the Hessian of the operator 2s(S + Sgf). The factor of 2s arises from

a rescaling of hµν →
√

2shµν when evaluating the functional integral, which is in
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complete analogy with similar operations in Einstein gravity and Yang-Mills theory.

Explicitly,
δ2

δh̄µν(x)δh̄αβ(y)
[2s (S + Sgf)] = H δµαδνβδ

(d)(x− y) (64)

where h̄µν is the vacuum expectation value of the quantum metric hµν . As con-

ventional dimensional regularisation fails to detect power law divergences, a back-

ground covariant operator regularisation scheme [18] is employed in combination

with heat kernel methods introduced in Appendix C. For a self-adjoint operator A

with order 2r on a d dimensional Riemannian manifold, the prescription is to replace

lnA with Fkr,ΛrUV
(A) acting as an integral operator obtained by averaging the heat

kernel

Fkr,ΛrUV
(A)(x, y) =

∫ ∞
0

dτ F̃kr,ΛrUV
(τ)A(τ ;x, y) (65)

where A(τ ;x, y) is the heat kernel of the operator A. The function F̃kr,ΛrUV
is the

inverse Laplace transform of Fkr,ΛrUV
, which depends parametrically on an IR cutoff

k and the UV cutoff ΛUV through

Fkr,ΛrUV
(z) = f

( z
k2

)
− f

(
z

Λ2
UV

)
(66)

for a suitable f so that for k = ΛUV all regularised Gaussian integrals are reduced to

unity. Here, one uses

f(y) = − ln

(
1 +

1

y

)
+

1

1 + y
+

1

2(1 + y)2
(67)

Moreover, for a flat background the heat kernel can be decomposed in momentum

space to

A(τ ;x, y) =

∫
ddp

(2π)d
eip(x−y)e−τA(p) (68)

where there is a spectral decomposition

A(p) =
∑
j

λj(p)Πj

(
p√
p2

)
(69)
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for a set of orthogonal projectors Πj. This gives

TrFkr,ΛrUV
(A) =

∑
j

mj

∫
ddp

(2π)d
Fkr,ΛrUV

[λj(p)] (70)

where mj = tr Πj is the multiplicity of λj.

Figure 1: The RG flow of gN and λ in quadratic gravity [10].

The UV divergences correspond to the behaviour of the heat kernel at small τ which

corresponds to the early time expansion in four dimensions

〈x|e−τA|x〉 ∼ 1

(4π)2

Γ(2
r
)

r

∞∑
n=0

τ
n−2
r E2n(x) (71)

Then the divergent part of Tr lnA can be regularised as

TrFkr,ΛrUV
(A) =

1

(4π)2

Γ(2
r
)

r

∫
ddx
√
−g [2rE4(x) ln ΛUV + q1/rE1(x)Λ2

UV

+ q2/rE0(x)Λ4
UV +O(1) ]

(72)
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where qn = (2n)−1Γ(3− n) is related to the choice of f(y), the derivation of which is

given by [10].

What remains is the calculation of the heat kernel coefficients of the operators H, Y

and ∆. The coefficients of the latter two are well tabulated, but the heat kernel of

H is highly non-trivial in curved backgrounds, so that Niedermaier [10] evaluated it

on a flat background. The resultant numerical results of the non-trivial fixed points

of the couplings are

g∗N ≈ 1.3697, λ∗ ≈ 0.9451, ω∗ ≈ −0.0228 (73)

where the value of ω∗ agrees with previous results [16][15] and the rough position

of the fixed point is confirmed by later nonperturbative treatments [19]. The overall

RG flow is illustrated in Figure 1, showing that the fixed point is indeed repulsive to

RG action, in line with the requirements of asymptotic safety.

3.5 The functional renormalisation group equation

Despite the effectiveness of perturbation theory in quadratic gravity, to gain a more

complete view of the RG trajectory in general truncations of theory space, non-

perturbative tools have to be used. The most commonly used such tool is the func-

tional renormalisation group equation (FRGE) first introduced by Wetterich [20] and

adapted for gravitational scenarios by Reuter [21].

The starting point is the generating functional of the connected Green’s functions. As

usual, the metric consists of a fixed background and a fluctuating part ḡµν = gµν+hµν ,
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so that the generating functional is

exp (Wk [tµν , σµ, σ̄µ, β
µν , τµ])

=

∫
DhµνDCµDC̄µ exp (S(h) + Sgf(h) + Sgh(h,C, C̄)

+ ∆Sk(h,C, C̄) + Ssource )

(74)

where S, Sgf and Sgh are the usual classical, gauge fixing and ghost actions. The

source term is given by

Ssource =

∫
ddx
√
−g
(
tµνhµν + σ̄µC

µ + σµC̄µ + βµνLC ḡµν + τµC
ν∂νC

µ
)

(75)

where the last two terms are required by BRST symmetry, which is not of importance

in the scope of this dissertation. The crucial term relevant to the nonperturbative

evaluation of the RG flow is the mode suppression term ∆Sk, which is bilinear in

the metric and ghost. The term is introduced to suppress the modes with momenta

lower than k, and is in general of the form

∆Sk =
κ2

2

∫
ddx
√
−ghµνRgrav

k (g)µνρσhρσ +
√

2

∫
ddx
√
−gC̄µRgh

k (g)Cµ (76)

where the operators have the general structure Rk(g) = Zkk2R(0)(−∇2/k2). The di-

mensionless shape function R(0)(−∇2/k2) is chosen to interpolate smoothly between

R(0)(0) = 1 and R(0)(∞) = 0. Examples of such functions are shown in Figure 2.

Figure 2: Typical shapes of the mode suppressing function R(0) [22].
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Suppressing the terms with low momenta in the functional integral prevent them

from being integrated out. Thus, lowering the IR cutoff scale k is equivalent to

integrating out UV modes starting from a lower momentum scale, which is in the

spirit of an RG action. The term Zk is different for the ghost and graviton, and is

in general a number for the ghost, and a tensor constructed from the background

metric for the graviton.

The expectation values of the graviton and ghost fields are then given by

h̄µν =
1√
−g

δWk

δtµν
, ξµ =

1√
−g

δWk

δσ̄µ
, ξ̄µ =

1√
−g

δWk

δσµ
(77)

Then, one can take the Legendre transform to obtain the effective action

Γ̃k[h̄, ξ, ξ̄, β, τ ] =

∫
ddx
√
−g(tµν h̄µν + σ̄µξ

µ + σµξ̄µ)−Wk [t, σ, σ̄, β, τ ] (78)

which as usual gives rise to the source-field relations

δΓ̃k
δh̄µν

=
√
−gtµν , δΓ̃k

δξ̄µ
= −
√
−gσµ, δΓ̃k

δξµ
= −
√
−gσ̄µ (79)

The effective average action (EAA) can hence be defined as

Γk[h̄, ξ, ξ̄, β, τ ] = Γ̃k[h̄, ξ, ξ̄, β, τ ]−∆Sk[h̄, ξ, ξ̄] (80)

where the mode suppression term is now inserted with the classical fields. For con-

venience, the quantum fields are labelled ϕ = (h,C, C̄), the classical fields, with

implicit k dependence, are labelled ϕ̄k = (h̄, ξ, ξ̄), and the sources are labelled

J = (t, σ, σ̄). One then observes that at fixed values of ϕ̄k

k∂kΓ̃k = −k∂kWk = k∂k〈∆S〉

=
1

2

∫
ddx

∫
ddy 〈ϕ(x)ϕ(y)〉 k∂kRk(x, y)

(81)

where Rk(x, y) = Rk(−∇2/k2)δ(d)(x− y), and the angular brackets denote expecta-
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tion values. The expectation value of the product of the fields at two points is related

to the definition of the two-point correlation function as

〈ϕ(x)ϕ(y)〉 = G(x, y) + ϕ̄k(x)ϕ̄k(y) (82)

Substituting this into (81), one has

k∂kΓ̃k =
1

2
Tr[Gk∂kRk] + k∂k∆Sk[ϕ̄k] (83)

However, the two-point correlation function is also given by the inverse of the Hes-

sian of the effective action with respect to the classical fields

G−1(x, y) = Γ̃
(2)
k (x, y) =

δ2Γ̃k
δϕ̄k(x)δϕ̄k(y)

= Γ
(2)
k (x, y) +Rk(x, y)

(84)

Hence, one arrives at the functional renormalisation group equation (FRGE)

k∂kΓk[ϕ̄k] =
1

2
Tr

[(
Γ

(2)
k +Rk

)−1

k∂kRk

]
=

1

2
Tr

[(
Γ

(2)
k +Rk

)−1

h̄h̄
(k∂kRk)h̄h̄

]
− 1

2
Tr

[{(
Γ

(2)
k +Rk

)−1

ξ̄ξ
−
(

Γ
(2)
k +Rk

)−1

ξξ̄

}
(k∂kRk)ξ̄ξ

] (85)

The cancellation of the k∂k∆Sk term is one of the main motivations for the definition

of the EAA.

With the FRGE, one can then attempt to probe the entire RG flow by choosing the

background field and cutoff function. Ideally, one should investigate the flow in the

infinite-dimensional theory space

S =

∫
d4x
√
−g
{

Λ +
1

2κ2
R + c1R

2 + c2RµνR
µν + . . .

}
(86)

but this is clearly unrealistic, so in practice one would always take some sort of finite
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truncation. In general, early-time heat kernel expansions or numerical methods such

as Monte Carlo simulations are employed to probe the fixed points within these sub-

spaces. Most notably, the Einstein-Hilbert truncation was found to yield a repulsive

NGFP at g∗N ≈ 0.403, λ∗ ≈ 0.330 [23]. The RG flow in the two-dimensional theory

subspace is plotted in Figure 3.

Figure 3: The RG flow of the Einstein-Hilbert truncation [23].

A large assortment of other truncations have being investigated with various back-

grounds and cutoffs. A recent list of publications containing such results can be

found in [9], which includes the Einstein- Hilbert action, quadratic gravity, gravity

with the two-loop counterterm, actions containing up to 71 powers of the Ricci scalar,

actions containing a single trace of up to 35 Ricci tensors, and actions composed with

polynomial functions of RµνR
µν and RµναβR

µναβ. In addition, systems coupled with

matter were also investigated extensively [24]. Remarkably, fixed points obeying the

requirements of asymptotic safety have being found in all cases [9], strongly hinting

at the existence of such a fixed point in the full theory space.
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4 Obstacles to asymptotically safe gravity

Despite the positive prospects of the existence of an asymptotically safe theory of

gravity, various complications remain to be addressed. Most notably, the exact loca-

tion of the fixed point is dependent on the choice of the background metric, the cutoff

function and the truncation used. In particular, there is an implicit assumption that

including higher and higher order terms in the truncation would eventually cause

the calculated fixed point to converge towards the one in the infinite-dimensional

theory space, and current results appear to be encouraging [9], but unlike for the

GFP, where the eigenvectors of the stability matrix point exactly in the directions

of the axes in theory space, for a NGFP such eigenvectors may in general point in

directions that are linear combinations of an infinite number of couplings, making

it near impossible to determine if any chosen truncation contain sufficient informa-

tion about the RG flow in vicinity of the NGFP in full theory space. In addition to

these technical difficulties, there exist a number of foundational questions that pose

serious challenges to the asymptotic safety programme.

4.1 Unitarity, causality and analyticity

For any truncation of theory space containing more terms than the Einstein-Hilbert

one, there inevitably exist higher-derivative terms in the classical action. The in-

clusion of higher-derivative terms in the Lagrangian is already problematic on the

classical level due to Ostrogradsky’s instability theorem [25], which states that any

non-degenerate Lagrangian dependent on time derivatives higher than one corre-

sponds to a linearly unstable Hamiltonian that contains at least one term linear in

some conjugate momentum, so that it is unbounded from below. To see this, con-

sider a general Lagrangian L(x, ẋ, · · · , x(N)), where the Euler-Lagrange equations

are
N∑
i=0

(
− d

dt

)i
∂L

∂x(i)
= 0 (87)
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Ostrogrdsky chose to span the phase space with the 2N canonical variables

Xi = x(i−1), Pi =
N∑
j=i

(
− d

dt

)j−i
∂L

∂x(j)
(88)

Non-degeneracy requires that one can always solve for the x(i)s in terms of the Pis

and the Xis, so that there exists a function A such that

∂L

∂q(N)

∣∣∣∣∣
x(i−1)=Xi, x(N)=A

= PN (89)

For a general N , the Hamiltonian is

H =
N∑
i=1

Pix
(i) − L

= P1X2 + P2X3 + · · ·+ PN−1XN + PNA− L (X1, . . . , XN ,A)

(90)

Clearly, except for the special case N = 1, the Hamiltonian has linear dependencies

on at least one conjugate momentum, and can thus be taken to arbitrarily low values

by choosing arbitrarily low values for the conjugate momenta. As the Hamiltonian

corresponds to energy for natural systems, such a theory clearly cannot describe

real-world physics.

In quantum theories, this problem manifests itself in the existence of propagating

states that violate unitarity. The existence of such ghost states in higher derivative

theories of gravity was first shown by Stelle [14], who proved that a theory with the

action (47) is perturbatively renormalisable to all loop orders at the expense of prop-

agating spin-2 ghost states. Stelle showed rigorously that the graviton propagator

in such a theory has momentum dependency ∝ p−4, which is the reason for its per-

turbative renormalisability as it is able to absorb the divergences in the numerator.

Consider a general p−4 propagator, which can be decomposed in a partial fraction

D(p) =
1

p2 − p4/M2
=

1

p2
− 1

p2 −M2
(91)
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where M2 can be interpreted as the mass of the ghost state, and can in general be

negative, which implies tachyons that further complicate the situation. Clearly, if the

same usual Feynman prescription +iε is used for both terms in the partial fraction,

the second term will yield a negative residue due to its negative sign. Recall that a

propagator can be written in the Källén-Lehmann representation

D(p) =
1

p2 −m2 + iε
+

∫ ∞
4m2

dµ2 ρ(µ2)

p2 − µ2 + iε
(92)

where m is the mass of the free theory, and the density function ρ(µ2) is a sum of

some norm states | 〈0|φ|n〉 |2. A negative residue of the propagator means that ρ(µ2)

is negative, violating unitarity, and implies that some physical process has negative

probability.

One might salvage unitarity by using a different Feynman prescription −iε for the

negative-sign propagator, so that it now has the pole structure shown in Figure 4b.

(a) (b)

Figure 4: (a) The pole structure for the +iε prescription; (b) The pole structure for the
−iε prescription.

Now, the Feynman propagator of the ghost state is of the form

DF (x, y) =

∫
d4p

(2π)4
e−ip(x−y) −i

p2 −M2 − iε
(93)

Consider the forward-propagating part of this propagator, which corresponds to x0−

y0 > 0. The p0 coordinate is as usual integrated over a left-handed semicircular
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contour in the lower half of the complex plane so that the contribution from the arc

vanishes when the radius of the semicircle is taken to infinity. Hence, using Cauchy’s

theorem, the forward propagator picks up the residue from the pole at −Ep, so that

D
(+)
F (x, y) =

∫
d3p

(2π)32Ep
exp

[
−iEp(y0 − x0) + ip · (x− y)

]
(94)

The residue is now indeed positive, but at the expense of the state propagating

backwards in time (equivalent to a negative energy state propagating forward in

time), violating causality. Hence, it could be seen that for higher-derivative theories

one is forced to make a choice between unitarity and causality.

There are proposed ways to circumvent this problem. For the specific example of

quadratic gravity, Niedermaier [10] calculated the spectrum of the Hessian which

amounts to the inverse propagator, and found that in an area of theory space around

the vicinity of the NGFP the eigenvalues are strictly positive, so that there are no

ghost states. This is by no means general, as the perturbative treatment employed

exploits the asymptotic freedom of the Weyl-squared coupling, and contains little to

no information about the RG flow far away from the UV fixed point. However, it

hints at the possibility that some theory would follow trajectories in theory space

where the Hessian has a strictly positive spectrum, so that the ghost states are never

turned on.

For general quantum theories, self-energy corrections need to be added to the prop-

agator. Donoghue and Menezes [26] argued that the self-energy corrections cause

the denominator of the propagator to develop an imaginary part, which will be non-

negative to satisfy unitarity. For example, after quantum corrections the scalar part

of the propagator of quadratic gravity takes the approximate form

D(p) =
1

p2
− 1

p2 −m2
r − iγ(p2)

(95)

where the real part is absorbed into mr and γ is the imaginary part, so that the

pole in the ghost propagator is now located at p0 = ±
√
E2
p + iγ ≈ ±(Ep + iγ/2Ep).
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This results in the same pole structure as the one shown in Figure 4b, but with

ε replaced with a natural imaginary part γ/2Ep that is not taken to vanish. The

resultant forward Feynman propagator evaluated using the usual contour integral

will yield the same result as (94), but with Ep replaced by (Ep + iγ/2Ep), so that

D
(+)
F (x, y) =

∫
d3p

(2π)3

e−iEp(y0−x0)+ip·(x−y)

2(Ep + iγ/2Ep)
e
− γ

2Ep
(x0−y0) (96)

This propagator still violates causality, but for large enough γ it will decay very

rapidly so that causality is only violated microscopically. For this particular ghost

state, the timescale of the decay is proportional to the inverse Planck scale, mak-

ing the ghost effectively undetectable [26]. This violation of micro-causality is ex-

actly analogous to Dirac’s cure [27] for the linear runaway mode of a point-charge

electron in classical electrodynamics, and is also a general feature of Lee-Wick type

theories [28].

In the context of asymptotic safety, an additional complication arise. All functional

integrals mentioned in this dissertation are evaluated in Euclidean space, which is

connected to the physical Lorentzian space by a Wick rotation continuously rotating

the time coordinate from the imaginary axis back to the real axis in the complex

plane. This rotation is only mathematically valid if the physical amplitudes retain

their analytic properties along the path of the rotation, which stipulates that it does

not sweep over poles of the propagator. For the usual Feynman prescription in com-

mon QFTs, the poles are always in the second and fourth quadrant in the complex

plane, so that they are not swept over by the Wick rotation. However, as shown

above, quantum corrections cause the propagator of quadratic gravity to develop

poles in the first and third quadrants, which are swept over by the Wick rotation,

undermining the robustness of such an operation. Moreover, it was shown that ad-

dition of even higher derivative terms would only introduce more such ghost poles

[29], further worsening the situation.

Alternative cures to the unitarity problem include a proposal that the propagator is
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an entire function with a single pole at vanishing momentum [30] which would in-

evitably require knowledge of the behaviour of the theory in the infinite dimensional

theory space, or including higher spacial derivative terms while keeping two orders

of time derivatives, violating Lorentz invariance [31].

4.2 The running of gravitational couplings

It is already shown in earlier sections that in the context of the Wilsonian renormal-

isation group, the couplings of the general theory can seen as running in an infinite

dimensional theory space. However, for finite truncations of the theory, the defini-

tion of running dimensionful couplings becomes ambiguous, as the RG procedure

inevitably causes them to receive contributions from operators that were turned off

in the original truncation, as clearly shown in the case of Einstein gravity, where

each additional loop introduces terms two derivative orders higher into the counter

Lagrangian. As the forms of these contributions are dependent on the physical pro-

cess used to probe the momentum dependency of the couplings, the definition of

running dimensionful couplings is not universal.

At the perturbative level, Donoghue and Anber [32] were able to demonstrate this

explicitly by calculating to one-loop order the running Newton’s constant using

the graviton vacuum polarisation, graviton-graviton scattering and the gravitational

scattering of identical massless scalars and non-identical relativistic scalars. The re-

sultant forms of the running Newton’s constant turn out to be different for each pro-

cess. For instance, consider the scattering of non-identical scalars A + B → A + B.

Using the usual Mandelstam variables s, t and u and taking the relativistic limit

s� m2, one finds the tree-level amplitude

Mtree =
iκ2su

4t
(97)
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and the one-loop amplitude

M1−loop = i
κ4

(4π)2

[
1

16

(
s4I4(s, t) + u4I4(u, t)

)
+

1

8

(
s3 + u3 + tsu

)
I3(t)

− 1

8

(
s3I3(s) + u3I3(u)

)
− 1

240

(
71us− 11t2

)
I2(t)

+
1

16

(
s2I2(s) + u2I2(u)

)] (98)

where I4, I3 and I2 are the scalar box, triangle and bubbled diagrams respectively,

with the form

I4(s, t) =
1

st

{
2

ε2
[
(−s)−ε + (−t)−ε

]
− ln2

(
−s
−t

)
− π2

}
=

1

st

{
4

ε2
− 2 ln(−s) + 2 ln(−t)

ε
+ 2 ln(−s) ln(−t) + finite

}
I3(s) =

1

ε2
(−s)−1−ε = −1

s

(
1

ε2
− ln(−s)

ε
+

ln2(−s)
2

)
I2(s) =

1

ε(1− 2ε)
(−s)−ε =

(
1

ε
− ln(−s) + finite

)
(99)

where ε = (4 − d)/2 is introduced due to dimensional regularisation. The overall

amplitude contains IR divergences, which can be eliminated [33] by subtracting

MIR =
κ2

2(4π)2

(−s)1−ε + (−t)1−ε + (−u)1−ε

ε2
Mtree (100)

to obtain the hard amplitude

Mh = i
κ4

(4π)2

[
1

8

(
s3

t
ln(−s) ln(−t) +

u3

t
ln(−u) ln(−t)

)
− 1

16t

(
s3 + u3 + tsu

)
ln(−t) +

1

16

(
s2 ln2(−s) + u2 ln2(−u)

)
+
us

16t

(
s ln2(−s) + t ln2(−t) + u ln2(−u)

)
+

1

240

(
71us− 11t2

)
ln(−t)− 1

16

(
s2 ln(−s) + u2 ln(−u)

)]
(101)

To obtain the total amplitude that can be used to calculate the running coupling,

the renormalisation point is chosen to be s = 2E2, t = u = −E2 so that the total
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amplitude is

M =
iκ2E2

2

[
1− κ2E2

10(4π)2

(
(19 + 10 ln 2) ln

(
E2

µ2

)
+ 5

(
π2 − (ln 2− 1) ln 2

))] (102)

which yields the running Newton’s constant

G(E) = G0

[
1− κ2E2

10(4π)2

(
(19 + 10 ln 2) ln

(
E2

µ2

)
+ 5

(
π2 − (ln 2− 1) ln 2

))]
(103)

However, the amplitude of the process A+A→ B+B is linked to this amplitude by

s↔ t, which becomes

M =
iκ2E2

8

[
1 +

κ2E2

10(4π)2

(
9 ln

(
E2

µ2

)
− 5π2 + (19 + 5 ln 2) ln 2

)]
(104)

This yields another definition for the running coupling, which is now

G(E) =
G0

4

[
1 +

κ2E2

10(4π)2

(
9 ln

(
E2

µ2

)
− 5π2 + (19 + 5 ln 2) ln 2

)]
(105)

One immediately sees that the gravitational couplings obtained from the two pro-

cesses are completely different. In general, different processes will yield different

expressions for the running gravitational coupling due to them receiving different

contributions from implicit higher-derivative operators.

There is no reason to believe that this behaviour is absent in the non-perturbative

regime. For a non-perturbative example, one could invoke the two-dimensional Ising

model on a square lattice for N spins in the absence of external fields, whose parti-

tion function is simply

Z(K1, N) =
∑
{si}

exp

K1

N∑
〈ij〉

sisj

 (106)

where K1 is the nearest-neighbour coupling and only distinct nearest-neighbour
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pairs are summed over. Then, Kadanoff’s real-space renormalisation group proce-

dure [34] illustrated in Figure 5 is carried out.

(a) (b) (c)

Figure 5: The real-space renormalisation group procedure [35]. (a) Every second spin
shown in dark grey is decimated. (b) All decimated spins in the original lattice are
summed out, generating nearest-neighbour coupling K ′1, next-nearest-neighbour cou-
pling K ′2 and quadruple coupling K ′3. (c) The lattice spacing is rescaled by a factor of√
2 and rotated 45◦ to obtain the renormalised theory.

Collecting the decimated spins in one term, the partition function is now

Z(K1, N) =
∑

remaining

∑
decimated

· · · exp (K1s5 [s1 + s2 + s3 + s4]) · · ·

=
∑

remaining

· · · 2 cosh (K1 [s1 + s2 + s3 + s4]) · · ·
(107)

where the sums over the decimated spins such as s5 = ±1 are performed. However,

one notes that the sum of four spins has 3 allowed values due to symmetry. By

considering all possible spin combinations, one has

2 cosh (K1 [s1 + s2 + s3 + s4]) = exp (K ′0 +K ′1 [s1s2 + s1s4 + s2s3 + s3s4]

+K ′2 [s1s3 + s2s4] + K ′3s1s2s3s4)
(108)

where the new couplings are functions of K1. Then it becomes clear that after a

single RG action, the renormalised partition function now has two new interactions

turned on. The same would be expected to happen in finite truncations of a gravita-

tional theory, so that the connection between the running of a coupling calculated in
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a finite truncation and the running of that coupling in the infinite dimensional theory

space requires further investigation. The fact that running dimensionful couplings

receive contributions from other interation terms is the key motivation for Wilson

to formulate the renormalisation group in an infinite dimensional theory space that

contains all possible interactions.

In addition to these issues, some awkward technical nuances may also arise. For

example, if more than one NGFPs that satisfy Weinberg’s criteria are discovered,

the theory may be ill-equipped to choose between them in the absence of physical

predictions within the scope of currently available experiments.

Even more fundamentally, some claim that the quantisation of gravity in the covari-

ant formulation itself is problematic. For instance, Fadeev and Popov [11] noted that

for a fluctuation metric that is not small enough, the quantum effects could change

its signature. Moreover, Hawking [36] found that the gravitational path integral is

dominated by virtual gravitational instantons. Thus, in the words of Gibbons and

Hawking [37], one might argue that:

“Attempts to quantize gravity ignoring the topological possibilities and

simply drawing Feynman diagrams around flat space have not been very

successful. It seems to me that the fault lies not with the pure gravity

or supergravity theories themselves but with the uncritical application of

perturbation theory to them. In classical relativity we have found that

perturbation theory has only limited range of validity. One cannot de-

scribe a black hole as a perturbation around flat space. Yet this is what

writing down a string of Feynman diagrams amounts to.”

It should be noted that the above quote is somewhat inaccurate, and is only included

to provide a perspective, as Duff [38] had already obtained the Schwarzschild solu-

tion from tree-level quantum contributions in 1973.
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5 Discussion

As demonstrated, the asymptotic safety programme in gravity has made significant

progress over the past few decades, but certain key questions remain open. Com-

ments on certain technicalities are in place. Firstly, for longer truncations, the non-

Gaussian fixed points are rarely unique. In the polynomial f(R) truncation investi-

gated up to R70, the addition of additional terms often introduces new fixed points

[39], while a truncation containing a sum of traces of up to 35 Ricci tensors con-

tains two non-trivial fixed points [40]. In each example, a particular fixed point,

whose coordinates in the cosmological constant-Newton’s constant plane is in the

neighbourhood of the fixed point Reuter found for the Einstein-Hilbert truncation,

is identified and chosen as the fixed point corresponding to the one in the infinite-

dimensional theory space. A more rigorous mechanism of choosing between multiple

fixed points would be desirable.

Secondly, there is currently no convincing indication of the finiteness of the dimen-

sionality of the UV critical surface, which is the key criterion that differentiates be-

tween a fundamental theory and an effective one. The ideal way to show this finite-

ness is to show that the number of relevant directions at the NGFP, after reaching

a certain value, stops increasing even when new operators are added into the trun-

cation. This is indeed true for the polynomial f(R) truncation, whose Reuter fixed

point has exactly three relevant directions even when terms up to R70 are added

[39]. However, for a truncation containing a sum of traces of the Ricci tensor, it

was shown that the Reuter fixed point has up to four relevant directions [40]. The

increase in the dimensionality of the UV critical surface due to the inclusion of a dif-

ferent class of terms is a negative sign for fundamental asymptotically safe gravity,

and longer truncations containing a greater variety of terms need to be investigated

to see if this trend continues.

It should be noted that many of the problems mentioned above disappear if an ef-
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fective field theory (EFT) approach is taken. In fact, if Einstein gravity is treated

as an EFT, its unrenormalisability is no longer a fundamental issue, as EFTs are not

required to be UV complete. In addition, the ghost issue with higher derivative the-

ories dissolves if the theory is treated as an effective one that is to be taken over

by some more fundamental UV theory, as one can simply claim that the range of

effectiveness of the EFT is up to the mass scale of the ghost. For instance, in the

asymptotic safety scenario for matter couplings it was proposed [41] that if the tran-

sition scale into the asymptotically safe scaling regime occurs lower than the Planck

scale, then the asymptotically safe theory can act as an intermediate effective theory

between a UV fundamental theory such as string theory and the IR regime governed

by the standard model.

In summary, the asymptotic safety scenario in gravity is still an active area of research

with significant obstacles to overcome, and progress in this field would shed light on

the nature of gravitational interactions, even if the fundamental theory of quantum

gravity is not described by such a scenario.
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A Quadratic expansion of the Einstein-Hilbert action

Throughout this section, Veltman’s [6] notation and procedure are followed. An

overbar indicates “with respect to the full metric”, lack of bars indicate “with respect

to the background metric”, an underbar indicates “linear in hµν”, and double un-

derbars indicate “quadratic in hµν”. Raising and lowering operations are performed

using the background metric. Terms above quadratic order are omitted, and commas

refer to covariant differentiation.

The expression to be calculated is

Lcl =
√
−ḡ[R +R +R] (109)

Starting from

ḡµν = gµν + hµν = gµα(δαν + hαν ) (110)

one has the inverse metric

ḡµν = gµα(δνα − hνα + hβαh
ν
β) (111)

Then using the identity

√
−ḡ = exp

(
1

2
Tr[ln(−ḡ)]

)
=
√
−g exp

(
1

2
Tr[ln(δαν + hαν )]

)
(112)

and expanding to the appropriate order, one has

√
−ḡ =

√
−g(1 +

1

2
hαα −

1

4
hαβh

β
α +

1

8
(hαα)2) (113)

Then expanding the Ricci scalar step by step

Γ̄αµν = Γαµν + Γαµν + Γα
µν

Γαµν =
1

2

(
hαν,µ + hαµ,ν − h,αµν

)
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Γα
µν

= −1

2
hαγ (hγν,µ + hµγ,ν − hµν,γ)

Γαµα =
1

2
hαα,µ, Γα

µα
= −1

2
hαβh

β
α,µ

R̄µ
ναβ = Rµ

ναβ +Rµ
ναβ +Rµ

ναβ

Rµ
ναβ =

1

2

(
hµβ,να − h

,µ
νβ,α − h

µ
α,νβ + h,µνα,β

)
+

1

2
Rµ
γαβh

γ
ν +

1

2
Rγ
νβαh

µ
γ

Rµ

ναβ
= ∇αΓµ

νβ
−∇βΓµ

να
+ ΓγβνΓ

µ
γα − ΓγανΓ

µ
γβ

Rνα =
1

2

(
hββ,να − h

β
ν,αβ − h

β
α,νβ + h,βνα,β

)
R
να

= −1

2
∇α

(
hβµh

µ
β,ν

)
+

1

2
∇β

{
hβγ
(
hγν,α + hγα,ν − h,γαν

)}
+

1

4

(
hγβ,ν + hγν,β − h

,γ
βν

) (
hβγ,α + hβα,γ − h,βγα

)
− 1

4

(
hγα,ν + hγν,α − h,γνα

)
hββ,γ

R = hβ,αβ,α − h
β,α
α,β −R

α
νh

ν
α

R = −1

2
∇α

(
hβµh

µ,α
β

)
+

1

2
∇β

{
hβν
(
2hνα,α − hα,να

)}
+

1

4

(
hνβ,α + hνα,β − h

,ν
βα

) (
hβ,αν + hβα,ν − hα,βν

)
− 1

4

(
2hνα,α − hα,να

)
hββ,ν −

1

2
hναhββ,να

+
1

2
hνα∇β

(
hβ,αν + hβα,ν − hα,βν

)
+ hνβh

β
αR

α
ν

Omitting total derivatives and taking gµν → ηµν , the background Ricci tensor and

scalar, both multiples of the derivative of the metric, vanish, and covariant deriva-

tives turn into partial derivatives. Hence, using
√
−η = 1 one can take the expanded

Lagrangian to be

Lcl = −1

4
∂νh

β
α∂

νhαβ +
1

4
∂µh

α
α∂

µhββ −
1

2
∂βh

α
α∂

µhβµ +
1

2
∂αhνβ∂νh

β
α

= −1

4
(∂µhαβ)2 +

1

4
(∂µh)2 − 1

2
∂µh∂νh

µν +
1

2
∂αhαν∂µh

µν
(114)

where in the last line the shorthand h = hµµ is used, and the last terms in the two

lines are equal up to two total derivatives.
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B One-loop scalar corrections to the graviton propa-

gator

hαβ hµν

iΠ
(1)
αβµν(q) =

∫
d4k

(2π)4

iκ

2
[kα(k + q)β + kβ(k + q)α]

i

k2

i

(k + q)2

× iκ

2
[kµ(k + q)ν + kν(k + q)µ]

(115)

Using a Feynman parameter, the denominator of the integrand becomes

1

k2(k + q)2
=

∫ 1

0

dx

(k2 + 2xk · q + xq2)2

=

∫ 1

0

dx

(l2 + x(1− x)q2)2

(116)

where l = k+xq. Taking into account that that parity of the Wick-rotated integration

measure will prohibit integrand terms that are odd powers of l, the numerator can

be reorganised in terms of l to be

4lαlβlµlν + 4x(x− 1)(qαqβlµlν + qµqνlαlβ)

+ (1− 2x)2(qαqµlβlν + qαqνlβlµ + qβqµlαlν + qβqνlαlµ)

+ 4x2(x− 1)2qαqβqµqν

(117)

where the term of interest is the one quartic in the external momentum.

Then, performing a Wick rotation by substituting l0 = ilE0, one obtains

iΠ
(1)
αβµν(q) ∼ iκ2(qαqβqµqν)

∫ 1

0

dx x2(x− 1)2

∫
d4lE
(2π)4

1

(l2E + ∆)2
(118)

where ∆ = −x(1 − x)q2. The last integral in (118) can be evaluated using dimen-
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sional regularisation, where d = 4− ε

∫
ddlE
(2π)4

1

(l2E + ∆)2
=

1

(4π)d/2
Γ(2− d

2
)

Γ(2)

(
1

∆

)2− d
2

d→4−−→ 1

(4π)2

(
2

ε
− ln ∆− γ + ln (4π)

) (119)

Thus, the amplitude of interest is

iΠ
(1)
αβµν(q) ∼

iκ2

(4π)2
(qαqβqµqν)

∫ 1

0

dx x2(x− 1)2

(
2

ε
− ln ∆− γ + ln (4π)

)
(120)
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C The heat kernel method

Consider a self-adjoint differential operator ∆ in d dimensions. One can define the

heat kernel

K(τ ;x, y; ∆) = 〈x|e−τ∆|y〉 (121)

which satisties the heat equation

(∂τ + ∆)K(τ ;x, y; ∆) = 0 (122)

subject to the initial condition

lim
τ→0

K(τ ;x, y; ∆) = δ(x− y) (123)

Then it becomes clear that the heat kernel K(τ ;x, y; ∆) is the Green’s function of the

operator (∂τ + ∆).

Consider the canonical example where ∆0 = −∇µ∇µ + m2, then the heat kernel is

the Green’s function of a forced heat equation

K(τ ;x, y; ∆0) =
1

(4πτ)d/2
exp

(
−(x− y)2

4τ
− τm2

)
(124)

An important use of heat kernel methods in QFT is related to its ability to calculate

one-loop effective actions. For a theory whose action is defined by

δ2S

δφ̄(x)δφ̄(y)
= ∆ δ(d)(x− y) (125)

with some Hessian ∆, where φ̄ is the vacuum expectation value of the quantum field

φ, the one-loop effective action is given by

Γ(1) ∼ Tr ln ∆

=

∫
ddx
√
−g 〈x|ln ∆|x〉

(126)
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However, one could use the identity that

ln ∆ =

∫ ∞
0

dτ

τ
e−τ∆ + const. (127)

so that
Γ(1) ∼

∫ ∞
0

dτ

τ

∫
ddx
√
−g 〈x|e−τ∆|x〉

=

∫ ∞
0

dτ

τ

∫
ddx
√
−gK(τ ;x, x; ∆)

(128)

This expression can be divergent at both large τ and small τ , but only the small τ

limit is relevant to the UV behaviour of the theory. Thus, the heat kernel can be

expanded in an early-time expansion

K(τ ;x, x; ∆) = K(τ ;x, x; ∆0)(a0 + a1τ + a2τ
2 + · · · )

=
e−τm

2

(4πτ)d/2
(a0 + a1τ + a2τ

2 + · · · )
(129)

where the coefficients an can in general be looked up for common operators ∆.
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[39] K. Falls, D. Litim, and J. Schröder. Aspects of asymptotic safety for quantum

gravity. Phys. Rev. D, 99, 2019. pages 41

[40] Y. Kluth and D. Litim. Talk at OIST workshop quantum and gravity in Okinawa

2019: Asymptotically safe gravity with Riemann and Ricci tensors. 2019. pages

41

[41] S. de Alwis, A. Eichhorn, A. Held, M. Pawlowski, M. Schiffer, and F. Versteegen.

Asymptotic safety, string theory and the weak gravity conjecture. Phys. Lett. B,

798, 2019. pages 42

52


	1 Introduction
	2 Covariant quantisation of gravity
	2.1 The graviton propagator
	2.2 One-loop scalar corrections to the graviton propagator
	2.3 One-loop finiteness of pure gravity

	3 The asymptotic safety programme
	3.1 The Wilsonian renormalisation group
	3.2 Weinberg's criterion
	3.3 Gravity in 2+ dimensions
	3.4 Perturbative treatment of quadratic gravity
	3.5 The functional renormalisation group equation

	4 Obstacles to asymptotically safe gravity
	4.1 Unitarity, causality and analyticity
	4.2 The running of gravitational couplings

	5 Discussion
	A Quadratic expansion of the Einstein-Hilbert action
	B One-loop scalar corrections to the graviton propagator
	C The heat kernel method

