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Abstract

Axions are among the best motivated dark matter candidates. Their isocurvature contribution

to the Cosmic Microwave Background is stringently constrained by current measurements, and

has so far been evaluated only in the linear approximation. In this Dissertation, we compute

the axion isocurvature power spectrum as a mathematical result using the stochastic method,

which captures non-linear effects in the axion dynamics. This is done through the evaluation of

the axion two-point energy density correlator as a spectral expansion. Finally, the cosmological

consequences of our axion model are studied numerically, reproducing results from previous

research. Most importantly, the stochastic approach reveals a region with yet unexplored

dynamics, having the potential to produce an observable cosmological signature for the axion.
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you for sharing your insights, and finally - Ägä, thank you for sending me to physics.
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Cosmology of the Stochastic Axion I

1 Introduction

This section motivates the axion through its history (1.2) and its relevance as a dark matter

particle (1.1). In addition, the Dissertation aim and method are discussed (1.3), together with a

general outline (1.4).

1.1 Dark matter axion

Understanding the fundamental building blocks of the universe lies at the core of theoretical

physics. With recent advances in this exploration such as the discovery of the Higgs boson,

the visible matter that sustains human existence has been characterised to an incredible accu-

racy through the Standard Model of particle physics. However, as humbling as it is to modern

physicists, the bulk of the Universe’s matter remains unknown. The origin of this fundamen-

tal substance, named dark matter for obvious reasons, is one of the most profound mysteries of

modern physics.

Dark matter is estimated to form 27 % of the Universe’s energy, and almost 90 % of its total matter

content [1]. With these statistics it is no wonder that enormous experimental and theoretical

efforts have been poured into finding this hidden matter since its postulation in the last century.

The axion is arguably among the best motivated theoretical particle candidates that could solve

this puzzling issue. Its name originates from Nobel laureate Franz Wilczek, who explained in his

Nobel lecture in 2004: “I named them [axions] after a laundry detergent, since they clean up a

problem with an axial current” [2]. The experimental hunt for axions has been unsuccessful so far.

However, a recent excess signal in the Xenon1T experiment looking for dark matter has raised

careful hopes in the scientific community that the axion could be detected in the near future [3]

(for a preliminary report published in June 2020 the reader is referred to [4]). The validation

of this signal would bring axions to the forefront of our current understanding of the Universe,

having huge implications on future cosmological research.
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Cosmology of the Stochastic Axion I

1.2 Axion history and motivation

The physics of axions dates back to 1977 when Roberto Peccei and Helen Quinn provided their

solution to the strong CP problem [5, 6] by introducing an additional global U(1) symmetry to the

Lagrangian of the Standard Model. The spontaneous symmetry breaking of this Peccei-Quinn

(PQ) symmetry leads to the postulation of a pseudo-Goldstone boson, the axion, as was first

discovered by Weinberg [7] and Wilczek [8]. Even though the axion was originally introduced in

the context of solving the strong CP problem, very soon it was noticed that it would be an excellent

cold dark matter (CDM) candidate, as it has a low velocity dispersion and weak couplings [2].

The CDM particles predicted by these kinds of invisible axion models are very light and long-

lived [2]. Due to this double success of the axion theory in both quantum chromodynamics and

cosmology, it is a promising area of research, with a lot of theoretical work done in the past few

decades on both conventional QCD axions and axion-like particles (ALPs). The latter ones often

arise from theories merging the Standard Model into string theory [9].

Axions can be produced in several ways, such as through the vacuum realignment mechanism [9],

which is explored in this Dissertation. The thermal relic axions at the end of inflation would be

too hot to model cold dark matter [10], but a CDM axion can also be produced through string

and domain-wall decay, which arise as topological defects when the inflation reheat temperature is

larger than the temperature scale of the PQ symmetry breaking [2]. However, in this Dissertation

we will assume that the PQ symmetry undergoes phase transition during inflation, producing

an axion field fluctuating quantum mechanically. The coherent oscillations of this field in the

post-inflationary epoch account for the axion CDM particle production.

1.3 Dissertation aim and method

In this Dissertation, the axion two-point energy density correlation function is calculated using

the stochastic method, which has previously been done only with the linear approximation. This

correlator measuring the axion density fluctuations is then used to evaluate the axion isocurvature

power spectrum, since quantum fluctuations in the axion field during inflation cause an isocur-
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Cosmology of the Stochastic Axion I

vature component to the Cosmic Microwave Background (CMB). Finally, these mathematical

results are applied to study the cosmological consequences of our axion model in the light of the

strict isocurvature bound derived from current observations of the CMB [11].

The two-point correlation function of a scalar field is a physical quantity that characterises per-

turbations in the field. In cosmology, it is often used in the context of large-scale formation to

describe excess probability for galaxies [12], and is measured by experiments such as Planck. In

the axion context our two-point correlator incorporates the quantum fluctuations of the axion field

during inflation. Mathematically, it is the expectation value of the energy density fluctuations at

two spatial points which are asymptotically distant from each other, since we are interested in

scales much larger than the Hubble scale, at which particle production occurs.

The stochastic method is used to evaluate this correlator, and is based on dividing the quan-

tum field into a classical and a quantum regime, such that the quantum “kicks” from the short

wavelength regime are approximated as stochastic noise, which acts like a random number in the

equation of motion of the classical field (see e.g. [13]). Assuming a de Sitter universe during

inflation with a constant Hubble parameter H, a Fokker-Planck equation can then be derived for

the axion field. This essentially describes the axion field evolution during inflation, giving the

probability distribution for the axion field values at the end of the inflationary epoch.

The eigenvalue equation corresponding to this time-dependent Schrödinger-type Fokker-Planck

equation is supersymmetric, and is investigated through the Hamiltonian formalism of supersym-

metric quantum mechanics. Its eigenspectrum is applied to evaluate the axion two-point correlator

as a spectral expansion. In this context we note that all the calculations presented in this Disser-

tation are evaluated in Mathematica, and natural units are used throughout where both the axion

decay constant Fa and the Hubble parameter H are expressed in GeV. The stochastic method

avoids the perturbative approach common in axion literature, and reveals a new region between

the known free-field limits. Exploring this transition region is the main aim of this Dissertation,

together with the analysis of our axion model through its cosmological consequences.
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1.4 Dissertation outline

The necessary background to understand the basics of axion physics (2.1) as well as the general

stochastic method (2.2) is presented first in Section 2. Section 3 then brings together the key

concepts in the evolution of the axion field from the inflationary epoch to its conversion into dark

matter particles, involving a detailed discussion on the isocurvature perturbations (3.4).

In Section 4, the stochastic approach for a general scalar field in de Sitter background is intro-

duced, presenting the calculations of the spectral expansion of the two-point correlator (4.3). The

interpretation of the stochastic approach in the context of a general scalar field is also discussed

(4.2). These results are then applied in Section 5 to the axion field, where its eigenspectrum is

studied as a supersymmetric problem (5.2), and the energy dynamics of the axion is investigated

through the α parameter (5.3).

Finally, the results are presented in Section 6. These include the mathematical derivation of the

axion isocurvature power spectrum (6.1) and its dark matter density parameter (6.2). The values

found numerically for the cosmological parameters (the axion decay constant (6.4) and the Hubble

parameter (6.5)) are analysed, together with a detailed study on the transition region (6.6), which

is a phenomenon revealed by the stochastic approach. This Dissertation then concludes with a

discussion on the results in Section 7, highlighting the significance of the stochastic method (7.2),

the limitations of our axion model (7.3), as well as its impact on current axion research (7.1).
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2 Background

The first part of this section (2.1) highlights how the axion arises as a solution to the strong CP

problem, gaining an effective potential that will be important for the stochastic method (see 2.1.3).

The general axion is also defined (see 2.1.4). The second part (2.2) introduces the stochastic

method, which is the framework used in this Dissertation to calculate the axion correlator.

2.1 QCD axion

2.1.1 U(1)A symmetry and the strong CP problem

In this subsection, we will follow the conversation in [2] to introduce the strong CP problem and

its resolution. In the 1970s it was expected that the strong interaction would be approximately

invariant under the U(2)vector×U(2)axial symmetry. This was due to a larger global symmetry in

the quantum chromodynamics (QCD) Lagrangian, in the limit of vanishing quark mass. The U(2)

vector symmetry is indeed observed in nature through the conservation of isospin and baryon

number. However, the U(2) axial symmetry is broken down spontaneously, as the existence

of quark condensates demonstrates. As a result of this spontaneous symmetry breaking, four

Goldstone bosons were expected – matching the three pions π0 and π±. However, the fourth light

hadron state was missing. Steven Weinberg called this the U(1)A problem and brought forward

his assumption that there would be no U(1) axial symmetry in the strong interaction. [2]

It was another Nobel laureate, Gerard ’t Hooft, who came up with a solution to this problem.

He showed that the structure of the QCD vacuum was more complicated than what was thought

at the time. His refined vacuum structure removed U(1)A as a true symmetry of QCD but

introduced a small CP (charge conjugation and parity) violating phase parameter θ associated

to the vacuum. The strong CP problem was born: the experimental data suggests that CP is

broken only by θ . 10−9 in QCD. Why is is not badly broken, i.e. why does θ look finetuned? [2]

The more complicated QCD vacuum structure introduced by ’t Hooft is based on the axial current

of U(1)A, Jµ5 , having a chiral anomaly due to quantum loop corrections. This changes the action
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by a pure surface integral [2],

δS ∝
∫
d4x∂µJ

µ
5 ∝

∫
d4xGµνa G̃aµν . (2.1)

The correct boundary conditions assume a pure gauge field Gµν at infinity, meaning its value is

either 0 or some gauge transformation of it. There are gauges for which δS does not vanish. Hence,

the action is not invariant under U(1)A and as Weinberg predicted, U(1)A is not a symmetry of

QCD. Analysing this QCD vacuum structure more carefully, one finds that the true vacuum is

actually a superposition of n-vacua [2],

|θ〉 =
∑
n

e−inθ|n〉. (2.2)

Furthermore, using the path integral representation for vacuum to vacuum amplitude one can

show that the QCD vacuum structure introduces an extra term to the QCD Lagrangian [2],

Lθ = θ
g2
s

32π2
Gµνa G̃aµν , (2.3)

where Ga is the gluon field strength. This term violates CP, as it conserves charge conjugation

but violates parity and time reversal. It also induces a neutron electric dipole moment, which

restricts the CP violating phase angle through experimental data to its apparently fine-tuned

value θ . 10−9. [2] So how to resolve the strong CP problem?

2.1.2 Peccei-Quinn solution

The solution proposed by Peccei and Quinn is to extend the Standard Model by an additional

chiral (meaning the left and right-handed components are treated differently, thus violating par-

ity by construction) U(1) symmetry, whose role is to effectively counteract the CP violation of

the QCD vacuum structure term (2.3). This U(1)PQ symmetry is automatically spontaneously
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broken, introducing the axion as its Goldstone boson. [2] The complex scalar field associated to

the U(1) Peccei-Quinn symmetry, χ(x), has two scalar degrees of freedom, ρ(x) and φ(x), and

carries the PQ charge,

χ(x) = ρ(x)eiφ(x). (2.4)

The PQ symmetry is spontaneously broken at energy scales ∼ Fa as χ(x) has a non-zero vacuum

expectation value,

〈χ(x)〉 = Fa. (2.5)

We can see from Eq. (2.4) that φ(x) is a dimensionless phase angle. However, we need to scale

this field to get the axion field a(x), which has the canonical kinetic term. Using Eq. (2.5),

a(x) = Faφ(x), (2.6)

where Fa is the decay constant of the axion, setting both the strength of the axion interactions,

as well as the periodicity of the axion potential. We will assume in this Dissertation that Fa is

constant, but we note that scenarios with a dynamical decay constant have been studied (see e.g.

[14]). According to classical field theory, after the spontaneous symmetry breaking (SSB) the

radial ρ(x) is set to the vev (2.5). The other degree of freedom, the axion (2.6), is the Goldstone

mode that remains massless. Finally, we note that under a U(1)PQ transformation,

a(x)→ a(x) + ωFa, (2.7)

where ω parametrises the transformation.

12
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2.1.3 Effective potential

The axion field has an effective potential, which can be derived from the total U(1)PQ invariant

Lagrangian that brings together the axion and the QCD theory [2],

Ltotal = LSM + θ
g2
s

32π2
Gµνc G̃cµν −

1

2
∂µa∂

µa+ Lint

[
∂µa

Fa
, ψ

]
− a

Fa

g2
s

32π2
Gµνc G̃cµν . (2.8)

Due to the SSB of U(1)PQ, we have a(x) instead of χ(x). The first term on the right hand side

of Eq. (2.8) is the Standard Model (SM) Lagrangian, followed by the QCD vacuum structure

term (2.3), the axion kinetic term, and the axion-SM particle interaction term. The last term

of Eq. (2.8) is the chiral anomaly term of the U(1)PQ symmetry, which is directly analogous to

the QCD vacuum term (2.3). If U(1)PQ was broken only spontaneously, the axion would indeed

be a massless degree of freedom (see section 2.1.2). However, this chiral anomaly term explicitly

breaks U(1)PQ [2]. Its physical consequence is that a(x) is actually a pseudo-Goldstone mode

with a small mass. In addition, its interaction with the corresponding QCD vacuum term (2.3)

produces a potential for a(x), which goes as a cosine in the effective vacuum angle [2],

Veff ∼ cos

(
a(x)

Fa
− θ
)
. (2.9)

Hence, the effective CP violating phase is not the static QCD θ anymore, but the dynamical

a(x)
Fa
− θ, combining all the CP violation of the Lagrangian [2], and eventually reaching 0 when

the axion field reaches the minimum of the potential (2.9) at

〈a〉 = θFa. (2.10)

At the minimum of this effective potential, the CP violation in the axion field cancels that from

QCD theory. This can directly be seen from the total Lagrangian (2.8), as setting the axion field
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to its vev (2.10) makes the two chiral anomaly terms in Ltotal cancel. [2] Therefore, when the

axion field is in its vacuum state, the theory predicts no CP violation, while small deviations from

it introduce a vanishing CP violating parameter, which is consistent with experiments [10].

Since the QCD CP violating phase θ is static, in the following calculations we can just shift the

potential to cancel it, and this is indeed done in most of the literature on axion fields (see e.g.

[15]). Then the effective potential will have the final form

V (a) = V0

[
1− cos

(
a

Fa

)]
, (2.11)

and no CP violation corresponds to the minimum of this potential at a(x) = 0. This potential

(2.11) for the axion field is the one that is used in this Dissertation to calculate the axion correlator

(see Section 5.1). It has a period of 2π in the dimensionless parameter φ (recall (2.6)). Therefore,

all of the calculations in this Dissertation will be done across a range [−π, π] in this dimensionless

phase angle.

The amplitude of the potential (2.11), V0, is evaluated from field theory as V0 = F 2
ama(T )2 (see

e.g. [16]), where ma(T ) is the mass the axion acquires through the explicit symmetry breaking

of U(1)PQ. This mass depends on the temperature of the universe close to the QCD breaking

scale, but later acquires an asymptotic zero temperature value [16]. It is generally characterised

through the topological susceptibility of QCD, χ(T ), which enables to write the mass as ma(T ) =

χ(T )m2
a(T = 0) [17]. Here ma(T = 0) is the asymptotic zero mass. For detailed calculations on

the axion mass using the QCD topological susceptibility, the reader is referred to [18]. We note

that as QCD is highly non-perturbative, the temperature dependence of the axion mass is best

evaluated using lattice QCD (see e.g. [19]).

In this Dissertation, we are interested in the final axion energy density correlator, which is eval-

uated after the end of inflation when the axion field has rolled down to its minimum. Therefore,

we assume that the universe has radically cooled down at that point compared to inflationary

14
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temperature scales, so the asymptotic zero mass limit holds. Thus, in this Dissertation we will

assume a constant axion mass. In this context we also note that in axion literature it is commonly

stated that the axion acquires its mass and its effective potential only at the QCD breaking scale

ΛQCD (see e.g. [16]). However, this statement includes the assumption that the inflationary

Hubble parameter HI , which is related to the axion energy density, is dominating during inflation

compared to the axion potential, and the axion can be treated as a massless free field (see Section

5.3.1). Hence, the mass would “turn on” only when the axion potential becomes important rela-

tive to the Hubble parameter. However, as QCD effects and instantons exist at all times during

inflation, we will assume the axion acquires its effective potential and a mass already at the PQ

phase transition. This is also required by the stochastic method, which uses the axion potential

as one input to characterise the quantum field (see Section 5.1).

2.1.4 General axion

For the rest of this Dissertation, we make an important distinction between the conventional

axion arising from pure QCD theory presented in Section 2.1, which we call from now on the

QCD axion, and a general axion that can originate from other Standard Model extensions or

from string theory, for example (see [20]). In our calculations, the QCD and general axion will

differ by the amplitude V0 of their potential. While the QCD axion has its potential bound by

V0 ' Λ4
QCD, (2.12)

where ΛQCD is the QCD breaking scale ∼ 250 MeV [21], we assume no such bound on V0 for

the general axion. For completeness we note that Eq. (2.12) implies ma ≈
Λ2
QCD

Fa
[13] for the

asymptotic zero mass of the QCD axion. In this Dissertation, only this mass will be evaluated,

and hence the mass will always implicitly refer to the QCD axion.
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2.2 Stochastic method and the Fokker-Planck equation

2.2.1 Basics of stochastic processes

Stochastic processes are random processes, where one or multiple variables have an inherently

random probability distribution, or they are analysed statistically as such as the system itself

would be too complicated to be solved deterministically. The most famous example is Brownian

motion, where in theory one could solve the set of coupled differential equations arising from the

motion of every single particle in the system and thus find deterministic equations of motion.

However, in view of the size of the system, the stochastic approach provides a powerful tool to

analyse the motion of the particles through probabilistic quantities.

The Fokker-Planck (F-P) equation was first applied exactly in this context, introducing ran-

dom fluctuations to an otherwise deterministic system. For Brownian motion, those fluctuations

represent random momentum kicks to the particles in the system. These particles then have a

probability distribution from which different quantities, such as their average location, can be

calculated [22]. The Fokker-Planck equation is a differential equation for this probability density

function (PDF) of the system. More generally, the Fokker-Planck equation provides an equation

of motion for the distribution function of macroscopic variables in the system which exhibit fluc-

tuations near transition points, where the transition from one state to another can be treated as

a random (and often microscopic) process [22]. In the context of this Dissertation, the transition

point is the wavelength that divides the axion scalar field modes into the classical (macroscopic)

and the quantum (microscopic) regimes (see Section 4.1). Solving the Fokker-Planck equation

gives the probabilistic time evolution of the system. Its solutions are generally quite difficult to

find, but even if analytic solutions do not exist, several numerical methods such as the simulation

method, numerical integration and the eigenfunction expansion can be used [22]. The latter is

the method used for calculations in this Dissertation, and is presented in detail for the actual

axion scalar field in Section 5.
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2.2.2 Langevin equation

The Fokker-Planck equation often arises from a stochastic Langevin equation. Its basic form is

[23],

ẋ+ β(x) = f(t), (2.13)

where x(t) is the stochastic quantity of which the PDF needs to be solved with the F-P equation.

The β(x) term represents a potential for the stochastic quantity, and it is derived from the

macroscopic theory. On the other hand, the stochastic noise term f(t) represents the microscopic

(inherently) random theory, which in the case of this Dissertation is the quantum world. Hence,

the Langevin equation combines the microscopic and macroscopic parts of a system into one

stochastic equation, where the macroscopic theory gets a random “kick” and thus its statistical

properties such as its PDF and correlation function can be considered. [23]

The F-P equation can be derived from the stochastic Langevin equation in multiple different

ways, see [22] for several in-depth derivations using for example the Kramers-Moyal expansion. A

simplified, yet mathematically debatable derivation can be found in [23], which relies on finding

the first and second moment of the PDF in two ways, directly from the probability theory and

by integrating the Langevin equation. This method makes use of the first two derivatives of the

Dirac delta function. The first derivative introduces a drift in the density distribution, while

the second derivative of the Dirac delta brings diffusive broadening to the PDF [23]. Hence, the

derivation shows explicitly how the F-P equation captures the diffusive spread and drift of the

PDF of a macroscopic variable, which is influenced by the potential and the random noise term

as introduced in the Langevin equation (2.13).
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2.2.3 General Fokker-Planck equation

The general form of the Fokker-Planck equation is (as derived in [23])

∂ρ(x, t)

∂t
=

∂

∂x

[
β(x)ρ(x, t)

]
+D

∂2ρ(x, t)

∂x2
, (2.14)

where ρ(x, t) is the PDF of the stochastic quantity x, β(x) is the potential as given in Equation

(2.13), and D is a diffusion coefficient associated with the stochastic noise term f(t), which

is assumed to be constant [23]. By integrating the PDF solved from the F-P equation, the

expectation value of any function of the stochastic quantity x can be determined [24],

〈F (x, t)〉 =

∫
dxF (x)ρ(x, t). (2.15)

Several key properties of the stochastic noise term f(t) (see Eq. (2.13)) in the context of this

Dissertation are worth mentioning. It is assumed to be a Gaussian white noise term, i.e. its

correlation function is proportional to a Dirac delta, where white refers to a spectral distribution

independent of the frequency [22]. Its correlation function is generally given by [22]

〈f(t)f(t′)〉 = 2Dδ(t− t′), (2.16)

where D is both the amplitude of the noise and the diffusion coefficient entering the F-P equation

(2.14). The Markoff condition states that the value of f(t) is uncorrelated between different time

intervals [23], which is in line with f(t) acting like a random number generator.
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3 Axion field evolution

This section covers the evolution of the axion field from its creation during inflation to particle

production through the realignment mechanism (3.1-3.2). The axion energy density function (3.3)

and isocurvature perturbations (3.4) are explored in detail.

3.1 Vacuum realignment mechanism

In this Dissertation we assume that the PQ phase transition, during which the axion field is

generated (see Section 2.1.2), occurs during inflation. The axion field then undergoes quantum

fluctuations until the end of inflation, in the same way as the inflaton. Both are massless and

weakly-coupled, hence they share a similar fluctuation spectrum. [2] At the end of inflation, the

axion field ”freezes out” to a different value in each Hubble volume, called the misalignment angle

[2]. If we assume that φ = 0 corresponds to the vacuum, where there is no CP violation, the

misalignment angle can be any in the range [−π, π], and corresponds to an offset of the field from

its minimum, along the axion effective potential (2.11).

The probability distribution for the misalignment angle is given by the stochastic method (see

Section 2.2), which we use to calculate the axion density correlator. Using (2.6), we write the axion

field value in each Hubble volume as a = Faφmis, where φmis is the misalignment angle. For the

rest of this Dissertation, we will not denote this explicitly, as all the calculations are related to the

post-inflationary epoch where the axion field has acquired this value. In the stochastic approach,

integrating over φ is thus equivalent to integrating over the possible misalignment angles. Often

in literature it is assumed that the axion field would be homogeneous in the whole observable

universe, taking on a single value that defines its energy density (see e.g. [2, 25]). However, this

generalisation is avoided with our stochastic method, which works with a probability distribution.

After the freeze-out at the end of inflation, the axion field will eventually start oscillating around

the minimum of its potential, once the slow-roll condition is not valid anymore [26]. These

oscillations are the mechanism for particle production, called vacuum realignment [26], where the
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energy of the axion field is converted into particles behaving as cold dark matter (CDM). Figure

1 brings together the most important events in the axion field evolution.

Figure 1: The main events in the axion field evolution from the spontaneous symmetry breaking
of the PQ symmetry until the present day, when we want to evaluate the axion density correlator.

3.2 Equation of motion and Hubble friction

The equation of motion of the axion field after the freeze-out determines how the axion particles

are born from the oscillations of the field. The general form can be written as [27]

ä+ 3Hȧ+ V ′(a) = 0, (3.1)

where the prime denotes a derivative with respect to the field a(x). In the quadratic approximation

this becomes the equation for a damped harmonic oscillator with V ′(a) ≈ m2
aa [17]. The Hubble

parameter H quantising the expansion of the universe introduces Hubble friction in the field

evolution, through the second term in (3.1) [17]. Therefore, if the axion field value due to the

misalignment is close to ±π, it will stay constant for a long time. On the other hand, the last

term in Eq. (3.1) with the derivative of the potential is the gradient force that pulls the axion

field towards the minimum.
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When these two counteracting terms reach the same order of magnitude (ma ∼ 3H), the Hubble

friction becomes too weak and the axion field will start rolling down towards the minimum of the

potential [28]. As we assume a constant mass for our axion theory, this will happen due to the

decrease of the Hubble parameter as the universe cools down. Since particle production is due to

the oscillations about the minimum, more particles are produced if the field is initially closer to

the top of the potential, as the oscillations will have a larger amplitude and last longer. Hence,

the final axion energy density depends strongly on the initial misalignment angle.

3.3 Interpolating the energy density function

To capture this dependence of the final axion energy density on the misalignment angle, we need to

find a function that encodes the information on how the energy in the axion field is converted into

particles through the realignment mechanism. This function contains a logarithmic part that can

be derived directly from the equation of motion of the axion field (3.1). We also know that when

the amplitude of the axion field oscillations becomes small enough (φ � 1), the axion potential

(2.11) can be approximated as quadratic. The axions then behave as free massive particles whose

behaviour can be approximated as a harmonic oscillator (see Section 5.3.1). The energy density

in these small oscillations can be approximated as [15]

fharm(φ) =
1

2
m2
aF

2
aφ

2 . (3.2)

Most of the current research on axions uses this quadratic approximation for the axion density.

We want to combine the logarithmic part (presented e.g. in [10]) with the harmonic behaviour

at the bottom of the potential. Several candidates for the axion energy density are represented

in Figure 2, with the quadratic approximation in red. The logarithmic factor entering the yellow

and green candidates is a common anharmonic factor (see e.g. [29]), producing a divergence at

φ = ±π, and is multiplied by a quadratic part dominating at low values of the misalignment

angle. For the calculations in this Dissertation, we choose to use the simplest density function,
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Figure 2: The axion density function candidates (without the dimensional factor m2
aF

2
a ), and the

quadratic approximation (in red).

in yellow, and multiplying it with the correct constants m2
aF

2
a by dimensional analysis, we get

ffull(φ) = m2
aF

2
a

φ2

2

[
ln

e

1− φ2

π2

] 7
6

. (3.3)

This function gives the final energy density of the axion field in each Hubble volume, as a function

of the misalignment angle, after the axion particles have been created. In the low φ limit, we

recover the quadratic approximation given in Eq. (3.2), as is seen from Fig. 2 where our function

(in yellow) aligns itself with the harmonic function (in red). Finally we note that in the ideal case,

the axion density function would be periodic over the [−π, π] range, as φ is a phase angle that

is periodic over 2π. However, since the axion correlator requires an integration over one period

only, we do not need to modify this interpolated density function to account for the periodicity.

3.4 Isocurvature perturbations

Quantum fluctuations of the inflaton scalar field during inflation produce curvature fluctuations

that are the main cause for the temperature anisotropies of the Cosmic Microwave Background

(CMB) [30]. These density perturbations in matter are called ”adiabatic”, and they satisfy [30]
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δρmatter
ρmatter

=
3

4

δρrad
ρrad

. (3.4)

However, just as the inflaton, the massless and weakly-coupled scalar axion field undergoes similar

fluctuations during the inflationary epoch [2]. These cause dark matter density perturbations, as

the axions born through the realignment mechanism are themselves CDM particles. Quantum

mechanical fluctuation contributions to the CMB anisotropies from other scalar fields than the

inflaton are generally named ”isocurvature” perturbations [2]. The adiabatic and isocurvature

components are usually assumed to be uncorrelated [16].

The existence of any non-adiabatic fluctuations, changing the relation between the matter and

radiation spectrum, is an indication of the presence of other scalar fields than the inflaton in the

inflationary epoch [30]. Hence, postulating the axion field introduces an isocurvature contribution

to the CMB anisotropies [31], arising from the role of the axionic dark matter in the total energy

density of the universe. The current data from the CMB constrains the isocurvature contribution

radically [32]. Therefore, the isocurvature component predicted by the axion model must be

small enough to fit this experimental bound. This theoretical axion contribution is what this

Dissertation aims to evaluate, with the help of the stochastic method. Results falling just below

the current observational limit are particularly interesting, as in the future more accurate CMB

observations will be able to place stricter bounds.

Two things must be noted in the context of axion isocurvature perturbations. Firstly, if the PQ

symmetry is broken after inflation (not the scenario considered in this Dissertation), axion models

still produce an isocurvature component but it acts on length scales similar to the QCD horizon,

which is much smaller than the CMB scale. While these perturbations cannot be observed in the

CMB spectrum, they lead to new phenomena such as axion miniclusters. [2] Secondly, while we

are assuming that the radial part of the complex PQ field is at its vev (Eq. (2.5)), a high inflation

scale may cause QM fluctuations also in this radial part that might restore the PQ symmetry,

and hence erase isocurvature perturbations [16].
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4 Stochastic approach for a general scalar field

This section applies the stochastic method introduced in Section 2.2 to a general scalar field (4.1),

demonstrating how to calculate the spectral expansion of its two-point correlator (4.3). A discus-

sion on the interpretation of the stochastic method in this context is also included (4.2).

The stochastic approach in an inflationary context has been studied e.g. in [33], with Starobinsky

and Yokoyama introducing its application to a self-interacting scalar field in de Sitter background

[24], for both a free field and a minimally coupled 1
4λφ

4 theory. The same method has later been

implemented for several types of potentials, such as a double-well potential (see [34]). In this

Dissertation, we will apply it to the axion potential (2.11).

The main goal in the use of the stochastic approach for a scalar field is to find its one-point

equilibrium probability distribution using the Fokker-Planck equation, from which important

quantities such as the two-point correlator of an arbitrary local function of the field can be

calculated as a spectral expansion [35] (see [36, 37, 38] for examples of scalar field correlators in

de Sitter background). We compute this correlator for the energy density of the axion field in this

Dissertation, as it allows to evaluate the power spectrum of the axionic isocurvature perturbations

(see Section 6.1). It is worth noting that while the use of the one-point probability distribution

is common, the stochastic approach for correlators has been overall less studied [35].

In the following, the axion field is assumed to a be a spectator field, i.e. a light scalar field that

develops superhorizon (λ > 1
H ) fluctuations during the inflationary epoch [35]. The stochastic

approach for a spectator field (see e.g. [39, 40]) takes into account the axion self-interactions in

the early universe, which are apparent from the non-harmonicity of the axion potential. However,

in this Dissertation we ignore the axion self-interactions of the present day. For more detail on

spectator field self-interactions, the reader is referred to [41]. Finally, we note that for the general

discussion in this section, the symbol φ refers to an arbitrary scalar field, which would correspond

to a(x) for the axion field.

24



Cosmology of the Stochastic Axion IV

4.1 Langevin equation of the coarse-grained field

The main steps in [24] that are applicable to the case of the axion scalar field are reviewed below.

Writing the Heisenberg operator of the quantum field φ̂ as

φ̂(~x, t) = φ̄(~x, t) +

∫
d3k

(2π)
3
2

θ
(
k − a(t)H

)[
âkφk(t)e

−i~k·~x + âk
†φ∗k(t)e

i~k·~x
]
, (4.1)

the quantum field can be split into two regimes: the long wavelength (classical) regime represented

by φ̄(~x, t), also called “coarse-grained” field, and the short wavelength (quantum) regime which

has the familiar form of a quantum field with the creation and annihilation operators. H = ȧ
a is

the Hubble parameter, which is assumed constant to keep the equation as simple as possible, and

a(t) is the scale factor. As mentioned in section 2.2.1, the stochastic approach is often used near

transition points. In this case, the transition point is the wavelength that divides the modes of the

quantum field into these two regimes, and is implemented by the step-function θ
(
k − a(t)H

)
in

Eq. (4.1). Hence, the modes with k > a(t)H belong to the quantum regime, whereas wavelengths

longer than the Hubble horizon are treated classically in this sharp cut-off approximation.

By varying the action of the scalar field in de Sitter space, one can find the equation of motion

for the short wavelength part, approximating it as a free field, which can be solved analytically

(see [24]). The action for the axion field using the dimensionless φ(x) (2.6) can be written as [25]

Sφ =

∫
d4x
√
−gF 2

a

[
− 1

2
∇µφ∇µφ− V (φ)

]
, (4.2)

where V (φ) = m2
a(1− cosφ) and g is the determinant of the FLRW metric.

In this Dissertation, we concentrate on the coarse-grained field, since the regime of interest for

calculating the two-point correlator at asymptotic distances is the super-horizon scale. Hence,

in the method presented in this Dissertation, the resulting Fokker-Planck equation will be an

equation for the probability distribution of the classical long wavelength part, ignoring the micro-
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scopic degrees of freedom. Starting again with the de Sitter action (Eq. (4.2) for the axion field),

the equation of motion for the coarse-grained field φ̄(~x, t) can be computed to find the classical

equation [24],

˙̄φ(~x, t) = − 1

3H
V ′(φ̄) + f(~x, t), (4.3)

where prime gives the derivative with respect to φ, and V (φ) is the potential of the scalar field.

To derive this equation, several assumptions have been made. Firstly, the derivatives of the

field are taken to be small at long distances, i.e. ∇2φ ≈ 0 compared to the other terms. This

is the equivalent condition to slow-roll for the inflaton. Secondly, the system is assumed to be

overdamped, i.e. φ̈ ≈ 0. The term f(~x, t) in (4.3) is given by [24]

f(~x, t) = a(t)H2

∫
d3k

(2π)
3
2

δ
(
k − a(t)H

)[
akφk(t)e

−i~k·~x + a†kφ
∗
k(t)e

i~k·~x
]
. (4.4)

Tying this back to the general stochastic method presented in Section 2.2, we notice that the

classical equation of motion (4.3) is a Langevin equation for the stochastic field φ̄ (compare with

Eq. (2.13)). The role of φ̄ as an operator does not affect the stochastic treatment [24]. f(~x, t),

given by Eq. (4.4), plays the role of the stochastic noise term in Eq. (2.13). It arises from

the interaction of the quantum and classical parts of the original quantum field, representing a

quantum regime contribution entering the classical equation of motion (4.3) due to the expansion

of the universe. This is important: why do we find a stochastic Langevin equation by solving the

equation of motion for the classical field? From where does the randomness come into play?
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4.2 Interpreting the stochastic approach and the Fokker-Planck equation

From a physical point of view, the short wavelength part of the scalar field contains the quantum

modes, and the Hubble horizon marks the transition point to the classical regime. However, as

the universe expands, each Fourier mode that was once in the quantum regime will move into

the classical one due to its stretching by the expansion. This transition is the stochastic noise

captured by f(~x, t) (4.4). If the universe would not be expanding, the quantum modes would stay

in the quantum regime, and thus no noise would be introduced into the system. To deal with

this stochastic noise term, we first treat it normally as a quantum field operator and calculate its

quantum two-point correlation function, which is given by [24]

〈f(~x, t1)f(~x, t2)〉 =
H3

4π2
δ(t1 − t2), (4.5)

where we concentrate on the time correlator, i.e. we set ~x1 = ~x2 = ~x. Comparing Eq. (4.5)

to the general white noise term (2.16), we see that f(~x, t) is indeed a white noise term, as its

correlator is proportional to the Dirac delta function. The conceptual mathematical jump from

this purely quantum theory derived equation (4.5) is to approximate the quantum term f(~x, t)

in the stochastic Langevin equation (4.3) as a random number, whose value is determined by

the probability distribution of a classical field that would have the two-point correlator (4.5).

Hence, we are approximating the f(~x, t) quantum field (4.4) as a classical field, whose correlator

properties are determined from quantum theory, and the mathematical effect of this stochastic

noise term is a random number entering the equation of motion (4.3).

Physically, this random number represents a ”quantum kick” of a QM mode transitioning from

the quantum regime into the classical one. In the case of a scalar field in an expanding de Sitter

background, we can think of “doing a measurement” every time the field transverses the Hubble

horizon, our transition point, i.e. one quantum mode joins the classical field. The amplitude of

this kick is approximated as a random number, as QM theory is inherently probabilistic. The

measurement gives the value of any observable of the quantum field, and in our case we are
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interested in the two-point correlation function, hence we use the PDF of the quantum two-point

correlator (4.5) to evaluate our stochastic noise term.

It is worth noting at this point that while Brownian motion is inherently deterministic, and the

stochastic approach is a computationally feasible way to treat a Brownian system, as introduced

in Section 2.2.1, the Langevin equation (4.3) arising in the context of a scalar field is inherently

stochastic, as it contains the quantum regime modes that are non-deterministic by nature. Hence,

approximating them with a stochastic noise term following the PDF derived from quantum theory

is a physically valid method for finding the correlation functions.

Finally, as introduced in section 2.2.3, the Fokker-Planck equation for the one-point probability

distribution of φ̄ can be derived from the Langevin equation, and is given by [24]

∂ρ1[φ]

∂t
=

1

3H

∂

∂φ

{
V ′[φ]ρ1[φ]

}
+
H3

8π2

∂2ρ1[φ]

∂φ2
, (4.6)

where the diffusion coefficient D = H3

8π2 comes from comparing the general white noise term in

Eq. (2.16) with our quantum correlator (4.5). This Fokker-Planck equation is deterministic, as

all the randomness has been integrated away from the Langevin equation. Another important

property is that it is linear. Hence, a spectral expansion can be used to determine the two-point

correlation function, which is presented in the next section.
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4.3 Spectral expansion of the two-point correlator

4.3.1 General two-point correlator

The following calculations will use the approach taken by [35]. We make the assumptions that the

two-point correlator is evaluated at super-horizon scales (λ� 1
H ), the field is light (V ′′(φ) < H)

and energetically subdominant. The aim of the spectral expansion method presented in this

section is to find the two-point correlator of a general function f(φ). This has the form [35]

Gf (t1, t2; ~r1, ~r2) = 〈f(φ(t1, ~r1))f(φ(t2, ~r2))〉, (4.7)

so it is an expectation value of the function. However, as we assume a de Sitter background, and

we are interested in the correlator at asymptotically far distances, de Sitter invariance can be

invoked to make the calculations easier. Just as in Minkowski space the scalar quantities are only

dependent on ds2, in the maximally symmetric de Sitter space the correlator of a de Sitter scalar

observable can only be dependent on the de Sitter invariant quantity [35],

y = cosh
(
H(t1 − t2)

)
− H2

2
eH(t1+t2)|~r1 − ~r2|2. (4.8)

Hence, we can first evaluate the temporal two-point correlator (defined by |~r1− ~r2| = 0), which is

relatively straightforward, and later rotate it in de Sitter space to the spatial correlation function

(defined by |t1−t2| = 0), which is the correlator we want to compute as it captures the correlation

of axion density fluctuations between spatially separated points (see Section 4.3.4). We note that

this rotation requires an analytical extension to negative values, but below we only state the key

results. Assuming asymptotically large time- and space-like separations, the general correlator

can be expressed as [35]

Gf (t1, t2; ~r1, ~r2) = Gf (H−1 ln |2y − 1|), (4.9)
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where the right hand side corresponds to the temporal correlation function [35],

Gf (t; 0) = 〈f(φ(t))f(φ(0))〉. (4.10)

In our treatment, the general scalar field φ(x) is the axion field a(x) and f(φ) is its final energy

density ffull (3.3) which we found in Section 3.3. It is important to note that asymptotically long

distances (i.e. |~r1 − ~r2| � 1) in the spatial correlator correspond to |t1 − t2| � 1 in the temporal

correlator.

4.3.2 Schrödinger-type eigenvalue equation

Starting from the Langevin equation for the coarse-grained field (4.3), its corresponding Fokker-

Planck equation (4.6) can be written in the form of a Schrödinger-type equation [35],

∂P (t;φ)

∂t
= DφP (t;φ). (4.11)

Here P (t;φ) is the one-point PDF that obeys the Fokker-Planck equation, giving the probability

distribution for the value of the field φ at a given time t. Dφ is the operator [35]

Dφ ≡
1

3H

[
V ′′(φ) + V ′(φ)

∂

∂φ

]
+
H3

8π2

∂2

∂φ2
, (4.12)

where the coefficient of the last term comes from the amplitude of the stochastic noise term in

the Langevin equation (4.3). To find the equilibrium distribution of P (t;φ), we set ∂P
∂t = 0 from

which one can see that [35]

Peq ∝ e−
8π2

3H4 V (φ). (4.13)
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Through this equilibrium distribution (4.13) we observe how the Hubble parameter H comes into

play, bringing in the theory the fact that the universe is expanding. In the axion context, if H

is really small, the probability distribution will give a sharp Gaussian centred at the minimum of

the axion potential, and hence the axion field will oscillate near the bottom (no expansion would

imply no oscillations). On the other hand, for large H (significant expansion of the universe)

Peq approaches a uniform distribution, i.e. it is equally likely for the axion field value at the end

of inflation to be near the top of the potential than at the bottom. The reason H is such an

important parameter in our stochastic theory is that we can link it to the energy density of the

field, which in turn determines how freely the axion can move in its potential.

As shown in [35], which follows the approach of Starobinsky and Yokoyama [24], defining

P̃ (t, φ) = e
4π2V (φ)

3H4 P (t, φ), (4.14)

Eq. (4.11) becomes

∂P̃ (t;φ)

∂t
=

3H3

4π2
D̃φP̃ (t;φ), (4.15)

where

D̃φ =
1

2

∂2

∂φ2
− 1

2

(
v′(φ)2 − v′′(φ)

)
and v(φ) =

4π2

3H4
V (φ). (4.16)

As equation (4.15) is linear, separation of variables can be used to find independent solutions of

the form

P̃n(t;φ) = e−Λntψn(φ), (4.17)
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where ψn(φ) obeys a time-independent Schrödinger-type eigenvalue equation,

D̃φψn(φ) = −4π2Λn
H3

ψn(φ), (4.18)

where the eigenfunctions ψn(φ) are assumed to be both orthonormal and complete. One can also

show (see [24]) that Λn ≥ 0. It can easily be seen that a stationary solution exists, i.e. the lowest

eigenvalue is Λ0 = 0, and by comparing with Eq. (4.13) one finds that [35]

Peq(φ) = ψ0(φ)2. (4.19)

4.3.3 Spectral expansion method

In this subsection we follow the approach in [35]. To derive the spectral expansion of the temporal

two-point correlation function, one can make use of the linearity of the probability distributions

between different times which is clear from the transfer matrix Ũ(∆t;φ, φ0),

P̃ (t+ ∆t;φ) =

∫
dφ0Ũ(∆t;φ, φ0)P̃ (t;φ0), (4.20)

where Ũ(∆t;φ, φ0) obeys the same differential equation (4.15) as P̃ . The unscaled probability

distribution can be written based on (4.20) as

P (t+ ∆t;φ) =

∫
dφ0e

− 4π2

3H4 V (φ)Ũ(∆t;φ, φ0)e
4π2

3H4 V (φ0)P (t;φ0), (4.21)

and we can write the transfer matrix entering (4.20) as a spectral expansion using the eigenfunc-

tions from Eq. (4.18) (see [35] for a more careful analysis),
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Ũ(t;φ, φ0) =
∑
n

e−Λntψn(φ)ψn(φ0). (4.22)

Now, as the two-point correlator is an expectation value, its basic form is

Gf (t) = 〈f(φ0)f(φ(t))〉 =

∫
dφf(φ0)f(φ)P (t;φ), (4.23)

where one must integrate over the field φ weighted by the PDF of the one-point function of the

field, P (t;φ), defined from Eq. (4.11). For evaluating P (t;φ) in Eq. (4.23), we use Eq. (4.21)

with t = 0, ∆t = t, and P (0;φ0) = Peq(φ0). Furthermore, using (4.19), and noticing that

e
4π2

3H4 (V (φ0)−V (φ))ψ0(φ0) = ψ0(φ), (4.24)

the correlator Gf (t) from Eq. (4.23) takes the form [35]

Gf (t) =

∫
dφ

∫
dφ0f(φ0)f(φ)ψ0(φ0)Ũ(t;φ, φ0)ψ0(φ). (4.25)

Finally, substituting in the spectral expansion of the transfer matrix (4.22),

Gf (t) =
∑
n

〈0|f |n〉〈n|f |0〉e−Λnt =
∑
n

f2
ne
−Λnt, (4.26)

we find the final form of the spectral expansion of the two-point correlator of a function f(φ),

where the spectral coefficient is written in Dirac notation,

fn = 〈0|f |n〉 =

∫
dφψ0(φ)f(φ)ψn(φ). (4.27)
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It is worth noting that if the original potential V (φ) entering the eigenvalue equation (4.18) has a

symmetry, this propagates to the eigenfunctions, which will affect strongly the spectral coefficients

(4.27) if f(φ) has parity [35]. The integration range of (4.27) is [−π, π] in the dimensionless φ for

the axion case, as the axion potential is periodic.

4.3.4 Rotating to spatial correlator

As presented in Section 4.3.1, we can rotate the temporal correlator (4.26) to the spatial one

using de Sitter invariance. From Eq. (4.9) we find as presented in [35],

Gf (0, ~x1, ~x2) = Gf

(
2

H
ln (| ~x1 − ~x2|H)

)
. (4.28)

Here Gf (0, ~x1, ~x2) is the spatial correlator we want to find, while the right hand side of (4.28) is

its corresponding temporal correlation function Gf (t), whose spectral expansion is given by Eq.

(4.26). Equation (4.28) is valid for distances much larger than the Hubble volume | ~x1− ~x2| � 1
H

[35], which is the case in this Dissertation as we are interested in asymptotically large distances.

From (4.28) we see that taking t → 2
H ln (| ~x1 − ~x2|H) in the temporal correlator (4.26) we find

the spatial correlator (using ~x1 − ~x2 = ~x),

Gf (0, ~x1, ~x2) =
∞∑
n=0

f2
n

1

(|~x|H)
2Λn
H

. (4.29)

From (4.29) we observe that for asymptotically long distances we need to consider only the first

non-zero terms in the expansion, since Λn increases with n. This makes the stochastic approach

powerful. However, for the axion case it was found that the most significant contribution to

the correlator can be given by either one of the first two excited levels of the expansion. This

interesting dynamics that is further investigated in Section 6.6 arises due to the form of (4.29),

where a larger fn increases the contribution while a larger Λn diminishes it. In the next section,

the stochastic method will be applied to the axion field.
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5 Stochastic method for the axion

This section applies the calculations from Section 4 to the axion field (5.1), investigating the found

eigenspectrum as a supersymmetric problem (5.2), and lastly studying the effect of the parameter

α (5.3), which controls the eigenspectrum. The calculations and findings of this section form the

basis for all the results presented in this Dissertation.

5.1 Eigenvalue equation

For the axion case, the one-point probability distribution from the Schrödinger-type equation

(4.15) gives the PDF for the axion field values at the end of inflation (which we refer to as the

misalignment angle, see Section 3.1). Using the potential (2.11) for our axion field a(x), the

operator D̃φ in (4.16) becomes

D̃a =
1

2

∂2

∂a2
− 1

2

[(
4π2

3H4

V0

Fa
sin

(
a

Fa

))2

− 4π2

3H4

V0

F 2
a

cos

(
a

Fa

)]
, (5.1)

since

∂2V (a)

∂a2
=

∂

∂a

(
V0

Fa
sin

(
a

Fa

))
=
V0

F 2
a

cos

(
a

Fa

)
. (5.2)

Hence the eigenvalue equation (4.18) for ψn(a) is

∂2ψn
∂a2

−
[(

4π2

3H4

V0

Fa
sin

(
a

Fa

))2

− 4π2

3H4

V0

F 2
a

cos

(
a

Fa

)]
ψn = −8π2Λn

H3
ψn. (5.3)

In this context we define the dimensionless ratio α,

α =
V0

H4
, (5.4)
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which will be a key quantity in the rest of this Dissertation, as it captures the dynamics between

the axion potential V0 and the Hubble parameter H. Implementing the misalignment angle φ

from (2.6),

∂

∂a
=

1

Fa

∂

∂φ
. (5.5)

Then we can rewrite Eq. (5.3) in a simple form using (5.5) and (5.4),

∂2ψn
∂φ2

−
[

16π4

9
α2 sin2 φ− 4π2

3
α cosφ

]
ψn = −8π2F 2

aΛn
H3

ψn, (5.6)

and we see that the eigenvalue Λn ∝ H3

F 2
a

on basis of dimensional analysis. For the sake of numerical

computations, we rewrite the right hand side of equation (5.6) with the dimensionless βn,

∂2ψn
∂φ2

−
[

16π4

9
α2 sin2 φ− 4π2

3
α cosφ

]
ψn = −8π2βn ψn, (5.7)

where

βn =
F 2
aΛn
H3

. (5.8)

5.1.1 Solving with Mathematica

As φ(x) is essentially a dimensionless phase angle, the second term of (5.7), representing the

Schrödinger potential of this eigenvalue equation, is clearly periodic over 2π. Therefore, peri-

odic boundary conditions over [−π, π] were implemented for the eigenfunctions. Eq. (5.7) was

solved numerically in Mathematica using the NDEigensystem function with a discretisation finite

element method, giving both the eigenfunctions and eigenvalues. NDEigensystem normalises the

eigenfunctions automatically to unity. In addition, all the eigenfunctions were assumed to be real.
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5.1.2 Eigenspectrum for α = 1

We concentrate first on the case α = 1, corresponding to V0 = H4 (see Eq. (5.4)), which is

expected to give us a typical eigenspectrum. The first seven eigenvalues for α = 1 are tabled

below, represented using the dimensionless βn (5.8) introduced above.

n βn
0 0
1 0.32680
2 0.32680
3 0.64011
4 0.64011
5 0.93889
6 0.93889

Table 1: The first seven eigenvalues for the eigenvalue equation (5.7) where βn is found by dividing
the value from NDEigensystem by −8π2.

A key observation is that the eigenvalues come in pairs, except for β0 = 0. This was assumed to

be an exact result in the light of the numerical accuracy of NDEigensystem, after the eigenvalues

from both the [−π, π] and a comparison range [0, 2π] were found to differ from their degenerate

partners only up to the ∼ 7th decimal. This degeneracy is a consequence of our eigenvalue

equation (5.7) having the form of a supersymmetric QM equation, which is further investigated

in Section 5.2. The first five eigenfunctions are represented in Figure 3. From the eigenvalues in

Table 1 we see that ψ1 and ψ2 are degenerate, and likewise for ψ3 and ψ4. The symmetry of these

eigenfunctions is expected from the symmetry of our axion potential. As these eigenfunctions

enter the spectral coefficients (4.27), studying their behaviour is essential in understanding their

contribution to the axion density correlator (see Section 5.3.2).

To investigate these eigenfunctions further, we note that the minimum of the axion potential

(2.11) is at φ = 0 while its first maxima lie at φ = ±π. Hence, from Fig. 3 we see that the ground

state ψ0 is centred at the minimum of the potential, as would be expected since it gives directly

the equilibrium probability distribution (4.19), where the most likely location of the axion is at

rest at the bottom of the potential. However, for the higher order eigenfunctions we notice that at

each degeneracy level one function is centred at φ = 0, and the other one at the maxima φ = ±π.
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Figure 3: The first five eigenfunctions of the eigenvalue equation (5.7) for α = 1, with the ground
state ψ0 centred at φ = 0.

In addition, one is always even and one is odd w.r.t φ = 0. As our chosen density function

ffull(φ) (3.3) is even w.r.t φ = 0, if ψn is odd, the spectral coefficient (4.27) will systematically

be zero. Hence, at each eigenlevel only one of the eigenfunctions brings a contribution to the

spectral expansion of the axion density correlator. A final point to note about the degenerate

eigenfunctions is that the one centred on the maximum φ = ±π has always one node less over one

period than its partner centred at φ = 0. By node we mean a point where the function crosses the

x-axis. For example, from Figure 3 it is clear that ψ4, centred on the minimum, has two nodes

while its counterpart, ψ3, has only one node (at ±π). This behaviour is also explained through

supersymmetry in the next section.

Overall, finding non-perturbative states at each eigenlevel is significant because of the common

linear approximation used in the axion context. In the rest of the Dissertation, we use the word

”perturbative” to describe states centred around the minimum of the potential, which can be

approached with a perturbative treatment (e.g. quadratic approximation). On the other hand,

non-perturbative states are not centred at the minimum, and are missed by the perturbative

treatment. The dynamics between perturbative and non-perturbative states is ultimately defining

the dominant contribution to the spectral expansion of the axion correlator.
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5.2 Supersymmetric spectrum

5.2.1 Supersymmetric quantum mechanics

We study our eigenvalue equation (5.7) in the context of quantum mechanics, as a supersymmetric

Schrödinger equation, to understand why it gives a degenerate spectrum. The basic idea behind

supersymmetry (SUSY) arising from a one-dimensional Schrödinger-type equation is that for the

original Hamiltonian of the theory, a partner Hamiltonian can be defined, possessing the same

energy spectrum as the original one (but usually without the ground state) [42]. This enables to

find a partner potential as well as ”bosonic” and ”fermionic” operators that allow to move between

the original states and their SUSY partners. In this Dissertation, we will use the mathematical

framework of SUSY to understand the spectrum of our eigenvalue equation, without deepening

the analysis into the breaking of supersymmetry. For further information on the SUSY dynamics,

the reader is referred to [43, 44] and for the particular case of the PQ symmetry, to [45].

Supersymmetry can be useful in problems with both perturbative and non-perturbative states.

If the originally non-perturbative states become perturbative for the SUSY treatment, they can

be computed using the partner Hamiltonian (one important application is the AdS-CFT corre-

spondence). This is also of interest for our axion case due to the common linear approximation,

which captures only the perturbative states.

5.2.2 Mathematical structure

Our starting point is the eigenvalue equation (5.7). As this is derived from a Fokker-Planck

equation as introduced in Section 4.3.2, we follow the approach of Bernstein and Brown in [46].

We can rewrite this Schrödinger-type equation using a Hamiltonian,

Hψn = λnψn, H = A†A, (5.9)

where ψn are the eigenstates of the spectrum, and we identify,
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λn = 8π2βn. (5.10)

Here we note that λn refers to the eigenvalues of this Hamiltonian formalism, while Λn are the

eigenvalues stemming from the stochastic spectral expansion (4.26). Next we define the operators,

A =
4π2

3
α sinφ+

∂

∂φ
, (5.11)

A† =
4π2

3
α sinφ− ∂

∂φ
, (5.12)

to find

A†A =

(
4π2α

3

)2

sin2 φ− 4π2α

3
cosφ− ∂2

∂φ2
. (5.13)

Combining this with (5.9) and (5.10), we see that (5.13) indeed gives the original eigenvalue

equation (5.7). Having thus set up our eigenvalue equation in a quantum mechanical context, we

can use supersymmetry to explore its properties. We define the nilpotent operators Q and Q†,

Q =

0 0

A 0

 , Q† =

0 A†

0 0

 . (5.14)

Using these, a supersymmetric matrix Hamiltonian can be written (see [46]),

HSUSY = Q†Q+QQ† =

H+ 0

0 H−

 , (5.15)
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where H+ = A†A, the original Hamiltonian, while H− = AA†, its SUSY partner. Q and Q†

are called supercharges, and together with HSUSY they form the closed superalgebra sl(1/1),

characterised by the vanishing commutator of HSUSY with both Q and Q† [42]. From the partner

Hamiltonians we can directly deduce the SUSY partner potentials. Denoting U(φ) as the QM

potential in the eigenvalue equation (5.7), and its supersymmetric partner as B(φ), we find,

U(φ) =

(
4π2α

3

)2

sin2 φ− 4π2α

3
cosφ, (5.16)

B(φ) =

(
4π2α

3

)2

sin2 φ+
4π2α

3
cosφ. (5.17)

In quantum mechanical SUSY literature it is also common to talk about a ”superpotential”, which

in our case would be

W (φ) =
4π2α

3
sinφ. (5.18)

The original potential is recovered through the well-known Riccati equation [42],

U(φ) = W 2(φ)−W ′(φ). (5.19)

To avoid confusion, we also note that it is common practice in cosmology to label the original

potential, U(φ) in the context of this Dissertation, as W (φ), so the reader should make note of

our conventions (5.16) and (5.18). The partner potentials are represented in Figure 4, from which

a translation symmetry between them is clear,

U(φ+ π) = B(φ). (5.20)

Hence, the SUSY partner potential for our eigenvalue equation (5.7) is just a translation by π.
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Figure 4: The potential U(φ) in the original eigen-
value equation and its supersymmetric partner B(φ).

This is ultimately the reason behind our

degenerate spectrum, and why we call

the eigenvalue equation (5.7) ”supersym-

metric”. We can think of our original po-

tential U(φ) including its superpartner in

itself, and hence both the states of the

original potential and its superpartner

B(φ) are visible in the eigenspectrum,

differing by translations of π. This can be

seen as self-duality, and ultimately origi-

nates from the shift symmetry of the ax-

ionic potential (2.11) from QCD theory,

− V0 cosφ = V0 cos (φ+ π). (5.21)

Here we emphasise that the Schrödinger potential U(φ) in the eigenvalue equation (5.7) is derived

from the axion potential (2.11). Hence, without the shift symmetry (5.21), there would be no

degeneracy in the eigenspectrum. This is explored further in Section 5.2.4 where we break the

translation symmetry by introducing a small deviation to the axion potential. However, next we

will explore the degenerate spectrum of Eq. (5.7) with the mathematical tools introduced above.

5.2.3 Exploring the degeneracy

Following [46], the eigenstate ψ can be expanded into a column vector with 2 components,

Ψ =

(
ψ+

ψ−

)
. (5.22)

The upper part of HSUSY (5.15), H+, acts on the upper part of Ψ and therefore gives the original
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eigenfunctions ψn. However, Qψn will also be an eigenfunction of HSUSY with the same eigenvalue

as ψn, because of the vanishing commutator of Q and HSUSY [46]. Hence we get two stacks of

states with degenerate eigenvalues, corresponding to the ”bosonic” ψ+ and the ”fermionic” ψ−

[46]. We can switch between these partner states as

Qψn+ = ψn− , (5.23)

Q†ψn− = ψn+ . (5.24)

Indeed, one interpretation for the action of the supercharges Q and Q† defined in (5.14) is to move

between fermionic and bosonic degrees of freedom [42]. The only exception is the ground state

which conventionally does not have a SUSY partner. This is seen in our axion spectrum by the

fact that there is only one state with the lowest eigenvalue Λ0 = 0. It is also worth noting that

the SUSY partner states in (5.23) and (5.24) are not normalised. To investigate this behaviour,

we start by studying the spectrum of our partner potential B(φ). The eigenvalues are found to

be the same as for the original potential, as expected. From the eigenspectrum of B(φ) in Figure

5 we note that the same symmetry pattern as for the original spectrum in Figure 3 emerges: one

-π -
π

2

π

2
π

ϕ

1

-1

ψ

SUSYpartner eigenfunctions (α = 1)

ψ0

ψ1

ψ2

ψ3

ψ4

Figure 5: The spectrum of the SUSY partner potential B(φ).
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Figure 6: The ground states of the partner potentials
U and B. The translation symmetry by π is apparent.

of the degenerate eigenfunctions is odd

and the other one even with respect to

φ = 0. We also observe the increase of

nodes from one eigenfunction to its part-

ner, and we see that the ground state

ψ0 has shifted to be now centred at the

minimum of the partner potential B(φ)

at ±π, which is demonstrated in Figure

6. This is an example of the perturba-

tive and non-perturbative states switch-

ing position – the states around ±π that

were non-perturbative for the original

potential become perturbative for the SUSY partner potential, introducing the possibility to

study the degenerate SUSY partner states instead of the originally non-perturbative ones. In this

context we note that even though conventional supersymmetric theory does not give a ground

state for the partner Hamiltonian, as it would generally not be normalisable [42], we have a finite

integration range due to the periodicity of the potential, and can thus normalise any non-divergent

function over the period. This explains the ground state in our SUSY spectrum.

Figure 7 allows a direct comparison between the first two eigenlevels of the partner potentials. It

is important to note that due to the translation symmetry, both U and B have two degenerate

states at each eigenlevel, and in addition we would expect the corresponding U and B states to be

the same but with a shift of π. This is clearly observed with both eigenlevels, where for example

ψU4 is ψB4 translated by π along the x-axis. The ψ1 case is interesting, because ψB1 is actually

the ground state of U(φ), whereas ψU1 is the ground state of B(φ). This implies that for our

periodic potential, the SUSY partner of the non-degenerate ground state is at the same time the

first excited state of the spectrum. We also note that the eigenfunctions are unique up to a sign,

and therefore the sign given by Mathematica is arbitrary (see e.g. ψB2 and ψU2).
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Figure 7: The degenerate states of the SUSY partner potentials for the first two energy levels.
The potential to which the state belongs is labelled as a subscript for ψn.

A second trend is that ψn+1 has one node more than ψn. This can be seen for example in Figure

7a, where ψU1 has no nodes, but its degenerate counterpart ψU2 has one. Similarly in Figure

7b, ψU3 has one node but ψU4 has two. To link this to SUSY theory, we note that as explicitly

shown in [42], acting with the operator A (A†) (see Eqs. (5.11), (5.12)) onto a state ψ+ (ψ−)

returns an eigenfunction of H− (H+) but in addition, this operation removes (adds) a node from

the eigenfunction. The results of applying the operators A and A† numerically to the eigenstates

in the second eigenlevel are shown in Figure 8.

As mentioned previously, the states obtained with A or A† are not normalised (see Eqs. (5.23) and

(5.24)). Focusing first on Figure 8a, we see that by applying A on ψU4 (green) we find the (non-

normalised) state ψB3 (yellow). Similarly, acting A† on the partner state ψB3 (red), we recover

ψU4 (blue), again with a larger scale than the normalised states. One can see explicitly that these

SUSY partner states are the same as the original ones by checking that their nodes coincide.

The same pattern is observed in Figure 8b, where again the states emerging under the action of

the operators are not normalised. In conclusion, by explicit calculation on Mathematica we have

shown the supersymmetric theory introduced in Section 5.2.2 to hold for our axion eigenvalue
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Figure 8: Switching between SUSY partner states using the A and A† operators.

equation (5.7). It is worth noting that while these results were evaluated for α = 1, they apply

to other α values as well, and therefore contribute to understanding the behaviour of the spectral

coefficients (4.27). Especially the parity and the perturbativeness of the eigenfunctions is key in

evaluating the spectral expansion of the axion correlator.

5.2.4 Breaking the translation symmetry

Finally, we study the case where we explicitly break the shift symmetry of the original axion

potential (see Eq. (5.21)) to get non-degenerate eigenvalues. This is important, because the

physical axion potential is most probably not a pure cosine, as assumed in this Dissertation, but

has correction terms breaking the original symmetry. We introduce a small deviation of cos2 φ to

the original potential,

V (φ) = −V0 cosφ− εV0 cos2 φ, (5.25)

where the parameter ε controls how much this potential deviates from the original one. Then

finding the derivatives (which must be taken w.r.t. the axion field a(x)),
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∂2V

∂a2
=

∂

∂a

[
V0

Fa
sin

(
a

Fa

)
+ ε

V0

Fa
sin

(
2
a

Fa

)]
=
V0

F 2
a

[
cos

(
a

Fa

)
+ 2ε cos

(
2
a

Fa

)]
, (5.26)

and again using our definition of φ (2.6), and α (5.4), the eigenvalue equation (4.18) becomes

∂2ψn
∂φ2

− 16π4

9
α2
(

sinφ+ ε sin 2φ
)2
ψn +

4π2

3
α
(

cosφ+ 2ε cos 2φ
)
ψn = −8π2F 2

aΛn
H3

ψn. (5.27)

From Eq. (5.27) we can immediately recognise the new Schrödinger potential U(φ),

U(φ) =
16π4

9
α2
(

sinφ+ ε sin 2φ
)2 − 4π2

3
α
(

cosφ+ 2ε cos 2φ
)
. (5.28)

We now find the superpotential using the Riccati equation (5.19),

W (φ) =
4π2

3
α
(

sinφ+ ε sin 2φ
)
, (5.29)

and the partner potential is easily found from this superpotential,

B(φ) =
16π4

9
α2
(

sinφ+ ε sin 2φ
)2

+
4π2

3
α
(

cosφ+ 2ε cos 2φ
)
. (5.30)

Figure 9 demonstrates how the correction term affects the shape of U(φ) and its supersymmetric

partner. To show the deviation clearly we used ε = 1. Just as for the original potential, the

minimum of both V (φ) (the axionic potential) and U(φ) is at φ = 0, but on the other hand

B(φ) has now its minima in the middle of the period, from which we expect the symmetry of the

eigenfunctions to partly break. As we are interested in the case of small correction terms to the

axion potential, we use ε = 0.2 for the following calculations.
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Figure 9: The changed potential U(φ) and its supersym-
metric partner B(φ).

Implementing the eigenvalue equation

(5.27) in Mathematica as for the pre-

vious calculations, we find the first

five eigenvalues. These are the same,

as expected, for the eigenvalue equa-

tion of the new B(φ) potential, since

the supersymmetric partner poten-

tials have the same eigenlevels. These

are listed in Table 2, from which we

first note that the degeneracy has

been lifted, as our new potential (5.25)

does not have a shift symmetry by π.

n βn
0 0
1 0.20526
2 0.41932
3 0.45450
4 0.63918

Table 2: The first five eigenvalues (see βn (5.8)) for the eigenvalue equation (5.27).

Hence, the supersymmetry is not apparent in the spectrum anymore. The corresponding eigen-

functions for both the U and B potentials are shown in Fig. 10. Comparing the U states in Fig.

10a with the unbroken spectra in Fig. 3, as well as the B spectrum in 10b with Fig. 5, we observe

that the new eigenfunctions are still highly symmetric. However, the symmetry breaking mani-

fests itself through the location of the excited eigenfunctions, which are now centred differently

than in the original spectra. We can again define the A and A† operators,

A =
4π2

3
α
(

sinφ+ ε sin 2φ
)

+
∂

∂φ
, A† =

4π2

3
α
(

sinφ+ ε sin 2φ
)
− ∂

∂φ
. (5.31)
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(a) Eigenfunctions for U potential.
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(b) Eigenfunctions for B potential.

Figure 10: The eigenstates of the modified potential and its SUSY partner.

Starting from a U state, we use A to obtain the (non-normalised) B state with the same eigenvalue,

and vice versa with A†. This is demonstrated in Figure 11 for the fourth excited level, where e.g.

acting A† on ψB4 (red) gives us back the (non-normalised) U state ψU4 (blue). Hence, as predicted,

-π -
π

2

π

2
π

ϕ

-5

5

ψ

SUSYpartnersψU4 andψB4

A†ψB4 ψU4 AψU4 ψB4

Figure 11: Switching between the SUSY partner states
of the U and B spectra using the operators A and A†.

we can move between the U and B

spectra using the operators (5.31). In

conclusion, by breaking the shift sym-

metry in the original axion potential,

we find a classical supersymmetric spec-

trum, where the degeneracy is hidden

in the SUSY partner states. This has

important implications for the study of

axion potentials that have correction

terms to the conventional cosine poten-

tial. Having thus investigated the axion

eigenspectrum for a fixed α = 1, we turn

next to study the effect of α.
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5.3 Impact of the α parameter

5.3.1 Free-field limits

In Section 5.1 it was shown that the eigenspectrum of the axionic eigenvalue equation depends on

the dimensionless ratio α = V0
H4 (5.4), which is a key quantity for our axion theory. This is because

V0 gives the amplitude of the axion potential, whereas H4 is directly linked to the axion energy

density. Hence, α controls the dynamics of the equilibrium probability distribution (4.13) given

by the stochastic method, which sets the misalignment angle (see Section 3.1). To understand

the axion field behaviour in the limit of small and large α, we list the first seven eigenvalues from

α = 0 to 3 in Table 3.

α 0 0.5 1 3

λ0 0 0 0 0
λ1,2 1.00 12.6 25.8 78.5
λ3,4 4.00 24.1 50.5 156
λ5,6 9.00 34.1 74.1 232

Table 3: The first seven eigenvalues for different α, where λn is the full Schrödinger-type equation
eigenvalue as defined in (5.10) in SUSY context.

We first note that for α = 0, Eq. (5.7) becomes a classical QM particle-in-a-box -type scenario,

from which we expect the eigenvalues to be proportional to n2. This is indeed observed in

Table 3 for the first four levels. We note that λ1,2 corresponds to n = 1, λ3,4 to n = 2, exc.

However, as our boundary conditions do not restrict the eigenfunctions to vanish at the edges of

the period, we also have the ground state with λ0 = 0. Low values of α thus correspond to plane

waves, which essentially do not feel the potential. Mathematically this happens because α is the

factor controlling the potential term in the eigenvalue equation (5.7). Physically, this free-field

behaviour corresponds to H4 � V0, where the energy of the axion is enough for climbing the

potential, leading to an almost equal probability for any value of the misalignment angle. For

completeness, we note that as will be found in Section 6, this free-field behaviour cannot be

approximated by the perturbative treatment, unlike the other α limit.
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For large α, the axion energy density is much lower than the amplitude of the potential (H4 � V0).

The axion is essentially oscillating as a massive particle at the bottom of the potential, which

can therefore be approximated as quadratic. This is the classical case of a harmonic oscillator,

with the eigenvalues increasing approximately linearly for α = 1 and α = 3, as observed in Table

3. This quadratic free-field behaviour translates into a high probability for a low misalignment

angle, and corresponds to the case where the linear approximation most commonly used in axion

literature is valid (see e.g. [47] for a detailed discussion on this approximation in the context of

the axion isocurvature power spectrum).

Figure 12 demonstrates the energy scales of the two free-field limits discussed above, where we

can think of H4 as quantising the axion energy and hence corresponding to the green (H4 � V0)

and yellow (H4 � V0) lines. The axion potential is shown in blue. One of our main goals in the

study of the axion correlator through the stochastic approach is to investigate the region in the

α parameter space where neither of these free-field limits is valid. As most of the current work

on axions has been done using the linear approximation, the dynamics of an axion in this middle

region is yet unexplored. The results on this are presented in Section 6.

-π -
π

2

π

2
π

ϕ

2V0

V0

V(ϕ)

V(ϕ)= V0[1-cos(ϕ)]

α << 1

α >> 1

Figure 12: The axion potential V (φ) with the free-field limits of α.

51



Cosmology of the Stochastic Axion V

5.3.2 Behaviour of the spectral coefficients

The ground state of the spectral expansion (4.26) gives directly the probability distribution for

the misalignment angle (4.19), and hence the probability for the axion to be found in different

regions along its potential can be read from the shape of the ground state. From Figure 13 we

observe that the ground state is spreading out with decreasing α. For low α, the energy density

starts to dominate over the potential, giving the axion freedom to move along the potential. This

then translates into the ground state becoming more uniform across the misalignment angle range,

mirroring the probability density which becomes flat in the limit α → 0. On the other hand, in

the large α limit, the axion is confined near the minimum of the potential, which is reflected in

a sharp Gaussian-like ground state centred at φ = 0.

The overlap of the ground state ψ0 with the excited state ψn defines the spectral coefficients

fn (4.27). The perturbative states centred around the minimum will have naturally a higher

spectral coefficient (provided that they have the correct parity), while the contribution from non-

perturbative states will depend strongly on the value of α. This can be thought of as a tunnelling

problem. When the overlap is small, the tunnelling probability to go from the ground state

-π -π
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π

2
π

ϕ

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

1.4
ψ

Behaviour of ground state with α

α = 0.1 α = 0.2 α = 0.5

Figure 13: The ground state ψ0 spreads out with de-
creasing α.

to a higher state centred on a differ-

ent symmetry point away from the min-

imum is low. This is illustrated in Fig-

ure 14a for α = 0.5, where the overlap

is practically zero. With a larger over-

lap (see Fig. 14b), the tunnelling of our

axion particle is more probable, which

is reflected in a higher value of fn. This

non-perturbative first excited state ψ1

in Fig. 14b gives the dominating contri-

bution to the isocurvature power spec-

trum for low α (see Section 6).
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(a) Overlap for α = 0.5
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Figure 14: Visualising the overlap between the ground state and the first excited state for α = 0.5
and α = 0.2. Numerical errors due to a small α value are observed in the shape of ψ1 in Fig. 14b.

To explore this dependence of fn on α, we start with the simplest correlator – the temporal

correlator of the field itself. This is defined as the expectation value of the complex U(1)PQ field

χ(x),

〈χ(0)χ∗(t)〉 = F 2
a 〈eiφ(0)e−iφ(t)〉, (5.32)

where we suppose that the radial part of the field ρ(x) is at its vev Fa. From (5.32) we see that the

function f needed for the stochastic approach is eiφ, and hence the parity of the eigenfunctions

is not relevant. From Eqs. (4.26) and (4.27) we find,

〈eiφ(0)e−iφ(t)〉 =
∑
n

〈0|eiφ(x)|n〉e−Λnt〈n|e−iφ(x)|0〉, (5.33)

fn =

∫ π

−π
eiφψ0(φ)ψn(φ)dφ . (5.34)
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(a) The eigenspectrum for α = 0.3.
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(b) The spectral coefficients as a function of α.

Figure 15: The non-perturbative states ψ1 and ψ3 have a smaller overlap with the ground state
than their corresponding degenerate partners ψ2 and ψ4.

The overlap between the ground and excited states of α = 0.3 can be visualised from Figure

15a. Fig. 15b shows the corresponding spectral coefficients. We observe, as expected, that f1

and f3 of the non-perturbative states are smaller for all α than f2 and f4, correspondingly, the

states centred at φ = 0. We also note that the spectral coefficients increase systematically with

decreasing α for all n, except for n = 0, where there is no excited state involved. This is due to

the spreading of the eigenstates with decreasing α, as was illustrated in Fig. 13 for the ground

state, introducing a higher overlap. From Fig. 15b we conclude that for the correlator of f = eiφ,

the contribution from the non-perturbative states effectively vanishes for increasing α. This will

also be true for our actual density correlator, and is significant for the linear approximation.

Figure 15 also demonstrates how numerical errors for small α values become visible in the higher

excited states. For example, ψ3 in Fig. 15a should be ψ2 shifted by π, instead it seems like a

complicated linear superposition. This could be due to the eigenvalues of different levels getting

closer together for decreasing α, making it harder to differentiate the eigenfunctions numerically.

The same behaviour is seen in Fig. 14b, where ψ1 should have the same shape as the corresponding

function in Fig. 14a. The numerical errors will be further discussed in Section 7.3. Using all

these findings about the stochastic axion, we move on to evaluate its power spectrum.
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6 Results

This section presents the results from the stochastic axion model developed in this Dissertation.

The mathematical results include the isocurvature power spectrum (6.1) and the axion dark matter

parameter (6.2). The approximation schemes used to analyse the results are detailed in Section

6.3. Finally, the cosmological parameter values found are presented in Section 6.4 (the axion

decay constant) and in Section 6.5 (the Hubble parameter). The novel feature revealed by the

stochastic approach, the transition region, is carefully analysed in Section 6.6.

6.1 Isocurvature power spectrum

Our goal is to compare the axion isocurvature contribution predicted by our theory to the current

experimental bound derived from the Planck satellite data (see Section 3.4). The physical quantity

capturing these isocurvature fluctuations is the axion density correlator, which measures how the

current axion energy density is correlated between asymptotically distant locations (see Section

1.3). Both the adiabatic and isocurvature contributions are conventionally given in terms of their

power spectrum, which in cosmology is generally defined as the Fourier transform of a spatial

two-point correlation function [12]. Hence, we need to relate the physical axion energy density

correlator to the power spectrum of the isocurvature component it produces. For the calculations,

we recall that the axion energy density correlator has the form (4.29) from the stochastic method,

and it involves the eigenfunctions and eigenvalues from the axion eigenvalue equation (5.7), which

were investigated in detail in Section 5. More importantly, the function f(φ) entering the spatial

correlator through the spectral coefficients (4.27) is the axion energy density function ffull(φ)

(3.3), discussed in Section 3.3.

In the following we use the approach presented in [41]. The isocurvature between CDM and

radiation (γ) is defined as

S ≡ δρa
ρa
− 3

4

δργ
ργ

. (6.1)
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Then, choosing a gauge where the ”normal” curvature fluctuations will be apparent in the scale

factor, and assuming that only fluctuations of the axion field at the end of inflation are contribut-

ing to the dark matter isocurvature component [41], we can write

S =
f(a(x))− 〈f(a)〉

〈f(a)〉
, (6.2)

where f(a) is our axion energy density function ffull. Here we note that we use a(x) to emphasise

that these calculations apply to the actual axion field, but for computation purposes the dimen-

sionless φ(x) will be used (for the correct dimensional relation see Eq. (2.6)). In (6.2), we need to

subtract the average axion density 〈f(a)〉 to get fluctuations. From this we find the isocurvature

equal-time correlator [41],

〈S(0)S(~x)〉 =
〈f(a(0))f(a(~x))〉 − 〈f(a)〉2

〈f(a)〉2
, (6.3)

where we identify the spatial axion energy density correlator in the numerator. Using its spectral

expansion (4.29), we see that the first expansion term (Λ0 = 0) cancels the second term in the

isocurvature correlator (6.3) since

〈f(a(0))f(a(~x))〉 = 〈f〉2 +

∞∑
n=1

f2
n

1

(|~x|H)
2Λn
H

, (6.4)

where f0 = 〈0|f |0〉 = 〈f〉 gives the expectation value of f(a). Using (6.4), the final form of the

isocurvature correlator (6.3) for our density function f(a) (3.3) is

〈S(0)S(~x)〉 =
∞∑
n=1

f2
n

〈f〉2
1

(|~x|H)
2Λn
H

. (6.5)

For the asymptotic limit, we take only the leading non-zero term n = d,
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〈S(0)S(~x)〉 ≈
f2
d

〈f〉2
(|~x|H)

−2Λd
H . (6.6)

The isocurvature power spectrum is defined as the Fourier transform of this correlator,

P (k) =
k3

2π

∫
d3xei

~k~x〈S(0)S(~x)〉. (6.7)

Hence using (6.6) to evaluate (6.7) [41],

P (k) ≈ 2

π

f2
d

〈f〉2
Γ

(
2− 2Λd

H

)
sin

(
Λdπ

H

)(
k

k̃

) 2Λd
H

, (6.8)

where k̃ is defined as the horizon scale at the end of inflation. To make our comparison with

the curvature power spectrum (the adiabatic component), measured at the pivot scale kP = 0.05

Mpc−1, we use the e-fold number NP [41],

NP ≡ ln

(
k̃

kP

)
≈ 56 +

1

2
ln

(
HI

8× 1013 GeV

)
, (6.9)

where HI is the inflationary Hubble parameter. Then approximating sin (Λdπ
H ) ≈ Λdπ

H since

H � Λd, and Γ(2− 2Λd
H ) ≈ Γ(2) = 1, we get the final form for the isocurvature power spectrum

at the pivot scale,

P (kP ) =
f2
d

〈f〉2
2Λd
H

e
−2Λd
H

NP . (6.10)

This can be rewritten using the dimensionless βn (see Eq. (5.8)),
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P (kP ) =
f2
d

〈f〉2
2βd

H2

F 2
a

e
−2βd

H2

F2
a
NP
. (6.11)

From (6.11) it is clear that the important factor determining the value of the power spectrum is

the dimensionless H
Fa

. The current data gives an upper bound on the isocurvature between dark

matter and CMB photons, P (kP ) . 0.040Pζ(kP ) [41], which corresponds to

P (kP ) . 8.8× 10−11. (6.12)

Finally, it is important to note that there are originally two different Hubble parameters entering

equation (6.11). The e-fold number NP features HI , the inflationary Hubble parameter. The

other Hubble parameter H originates from our Fokker-Planck equation, but since it describes the

evolution of the axion quantum field in a de Sitter universe during inflation, the two can indeed

be assumed to be a same constant value.

6.2 Dark matter density parameter

Having found the mathematical form of our axion isocurvature power spectrum (6.11), we need to

link its three free parameters – Fa, H, and α – to each other, in order to derive numerical values

that can be compared to existing data and research (we note that α affects the power spectrum

through the eigenvalue equation (5.7)). In this Dissertation, we assume that the strongest con-

straint on the various axion parameters is the isocurvature constraint introduced above (6.12).

In addition, we use the well-known dark matter density parameter to get a further relation [48],

ΩDMh
2 ' 0.12 . (6.13)

In the following we will assume that the axion particles are created purely through the realignment

mechanism, and account for the total dark matter density. However, we need to adapt the
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available calculations on the axion energy to accommodate for our density function (3.3). A

rigorous treatment involving the quark masses and the QCD breaking scale can be found in [49],

and for a simplified version using the critical time when the axion field starts oscillating, as

well as the conservation of axions per comoving volume, the reader is referred to [15]. As our

density function (3.3) contains a logarithmic anharmonic part, we use the version for ΩDM as

presented in [10]. This relies on [50, 51, 52], which form the basis for any axion energy density

calculations. For completeness, we note that the scenario we use from [10] initially assumes a

homogeneous misalignment angle at the end of inflation, which is common to most models where

the PQ symmetry is broken during inflation. However, using our definition for the energy density

(3.3) and the stochastic method, we can directly write the result from [10] as

ΩDMh
2 = 0.12× 2

〈ffull(φ)〉
F 2
am

2
a

(
Fa

5× 1011 GeV

) 7
6

, (6.14)

where the coefficient F 2
am

2
a of our density function ffull(φ) cancels out. The factor 〈ffull(φ)〉

is where the stochastic approach comes into play, replacing the assumption of a homogeneous

misalignment angle. It is the expectation value for the energy density function, and can be

expressed as

〈f(φ)〉 =

∫ π

−π
Peqf(φ)dφ , (6.15)

with Peq defined in (4.19). It is worth noting that Eq. (6.14) includes the assumption that

HI � ΛQCD [53], and hence it does not depend on the inflationary Hubble parameter HI ,

even though this would theoretically be expected as the axion density is strongly influenced by

the inflationary fluctuations. This assumption should be carefully investigated for the different

scenarios presented. The final relation restricting Fa comes from combining Eq. (6.14) with the

experimental value (6.13), and is used in the rest of the calculations to find a value of Fa for a

given α.
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6.3 Approximation schemes

In addition to the full stochastic treatment for the axion presented in Section 5, the corresponding

calculations were also computed for two different approximation schemes: the harmonic approxi-

mation and a mixed treatment with the harmonic spectrum but the full density function. These

approximation schemes give further insight into the role of the various factors in our calculations.

6.3.1 Harmonic treatment

For the harmonic treatment, we approximate both the cosine axion potential (2.11) and the axion

energy density function with a quadratic form. Hence, we use

V (φ) =
1

2
V0φ

2 (6.16)

for the potential, and the quadratic energy density fharm(φ) (3.2), as presented in Section 3.3.

Then following the steps in Section 5.1 to find the eigenvalue equation for the quadratic potential

(6.16), we find the operator

D̃a =
1

2

∂2

∂a2
− 1

2

[(
4π2

3H4

V0

F 2
a

a

)2

− 4π2

3H4

V0

F 2
a

]
, (6.17)

where we remember the relation (2.6) between φ(x) and a(x). This then gives the harmonic

eigenvalue equation,

∂2ψn
∂φ2

−
[

16π4

9
α2φ2 − 4π2

3
α

]
ψn = −8π2βnψn, (6.18)

with α (5.4) and βn (5.8) defined as before. This leads to the energy density equation (6.14)

becoming
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ΩDMh
2 = 0.12× 2

〈fharm(φ)〉
F 2
am

2
a

(
Fa

5× 1011 GeV

) 7
6

(6.19)

in the quadratic scheme, using fharm(φ) (3.2) and the eigenvalue equation (6.18) to find 〈fharm(φ)〉

from ψ0 (see Eqs. (6.15) and (4.19)). Again, the experimental value for ΩDMh
2 (6.13) can be

used to constrain Fa.

6.3.2 Mixed treatment

The mixed approximation involves the quadratic eigenvalue equation (6.18), thus having a har-

monic spectrum, but for the axion energy density it uses the full density function ffull(φ) (3.3).

Hence, it is expected to give more accurate results than the harmonic approximation, being a

middle ground between the harmonic and the full stochastic treatment. To avoid confusion, we

emphasise that the mixed treatment uses Eq. (6.14) just as the full treatment, but the eigenfunc-

tion ψ0 entering the equation through (6.15) differs from the full treatment, as it comes from the

harmonic eigenvalue equation (6.18).
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6.4 Axion decay constant Fa

Since the parameter α (5.4) controls the eigenvalue equation (5.7) of our stochastic method (for

the quadratic approximation Eq. (6.18)), we compute our results by fixing α and constraining

the axion decay constant Fa afterwards through the assumption that all dark matter must have

been created from axions (see Eqs. (6.14) and (6.13)). Figure 16 demonstrates the obtained

range of Fa values for the full treatment (in blue) and the approximation schemes. The dots

represent the calculated data points and they are joined by a second order interpolation method.

We first note that the range of found Fa values, ∼ 1011-1015 GeV, needed to explain the dark

matter abundance for a wide range of α values, corresponds well to the range of values found in

literature. For example, [29] gives a range of 109 . Fa . 1017 GeV stating that Fa is bounded

from below by supernova cooling and from above by black hole superradiance. Other references

constrain the QCD axion upper limit further to Fa . 1012 GeV through arguments on the fine-

tuning of the misalignment angle, see e.g. [47, 14]. Next we observe from Fig. 16 that for large α

10-5 10-4 10-3 10-2 10-1 100 101 102
1011

1012

1013

1014

1015

α = V0/H4

F
a
[G
eV

]

full
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mixed

Figure 16: The axion decay constant Fa needed to explain the observed dark matter abundance as
a function of the parameter α. A second order interpolation has been used to join the calculated
data points (represented by the dots). The relevant equations are (6.14) for the full and mixed,
and (6.19) for the harmonic treatment.
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(α & 1), both approximations converge to the same limit as the full treatment. This is expected

since it is the case when V0 � H, i.e. the energy density of the axion is low compared to its

potential. Hence, the axion will be found close to the bottom of the potential, where the harmonic

approximation is accurate for both the axion energy density (3.2) and its potential (6.16), making

the corresponding factors in the mixed and full treatment become quadratic.

On the other hand, for α . 1 the approximations show a clear difference from the full treatment.

Figure 16 demonstrates that around α ∼ 0.1 the mixed approximation (in red) follows first the

harmonic one (in orange) before converging back to the full treatment (in blue). This is because

the mixed treatment includes the harmonic spectrum, as discussed in Section 6.3.2. As long as

the quadratic approximation for the axion potential (6.16) is valid, and the logarithmic factor

does not dominate the energy density (3.3), the mixed treatment follows the harmonic one closely.

The full treatment differs from these two because the anharmonic part of its potential becomes

significant. In the following analysis, we call this regime where all three curves are distinct a

transition region. This is the regime where V0 ∼ H4, i.e. the axion potential is comparable to its

energy density, the free-field approximations break down, and new dynamics are observed.

For small α, V0 � H4, we observe the other free field approximation, the freely travelling wave.

The axion has so much energy that it does not ”see” the potential. Mathematically, the potential

term which is multiplied by α does not affect the eigenvalue equation (5.7) anymore, and we

essentially recover a one-dimensional Helmholtz equation which has well-known analytical solu-

tions. Since the full and mixed treatments differ only in their potential (see Section 6.3), they

converge as would be expected. We recall that the mixed treatment agrees with the full one also

at large α values, due to the harmonic convergence, and hence is a good approximation for axion

dynamics outside the transition region. The reason the harmonic approximation is clearly off for

small α in Fig. 16 is that its energy density function is the harmonic approximation (3.2), which

is invalid in this limit. We also note that the convergence of Fa for low α in Fig. 16 seems to

imply that there exists a low bound on Fa, below which our axion model cannot account for the

whole of the dark matter anymore. On the other hand, there seem to be no such upper bound.
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6.5 Power spectrum and Hubble parameter H

6.5.1 QCD axion and low-scale inflation

Having constrained Fa as a function of α with the known dark matter density parameter (see

Section 6.4), we can directly calculate the zero temperature asymptotic mass of the QCD axion

(discussed in Section 2.1.3), from [17] we find

ma = 5.7× 10−6

(
1012 GeV

Fa

)
eV. (6.20)

This equation is derived from the bound on V0 (2.12) for the QCD axion. As fixing α fixes both

Fa and ma, the Hubble parameter H is then directly defined from α (5.4) with the canonical form

of the axion potential amplitude, V0 = F 2
am

2
a,

α =
F 2
am

2
a

H4
. (6.21)

The found values of H for the QCD axion are demonstrated in Figure 17. Here we use H instead

of HI to emphasise that the found Hubble value is the one from the stochastic method, even

though it is assumed to correspond to the inflationary Hubble parameter, as discussed at the

end of Section 6.1. From Fig. 17 it is clear that the Hubble values predicted for our QCD

axion model, of order ∼ 10−1 GeV, are really small compared to the current upper bound on the

inflationary Hubble parameter, which is constrained to be lower than ∼ 1014 GeV for a single-field

inflationary model with slow-roll [54]. While the inflationary Hubble parameter does not have an

experimental lower bound, a low-scale inflation model like the one found here is hard to match

with other theoretical requirements from the inflationary epoch. The QCD axion in the context

of low-scale inflation has been studied in [53], and our values match well their predicted range,

providing one way to test our model. We also observe that these Hubble parameter values are of

the same order of magnitude as the QCD breaking scale ΛQCD. This implies that for this axion
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Figure 17: The Hubble parameter for the QCD axion calculated from (6.21), which indicates a
low-scale inflation model. Each dot is a data point, and second-order interpolation has been used
to join them. The transition region is observed in the α range 0.001-0.3.

model the explicit symmetry breaking of U(1)PQ might happen already during inflation, with

potentially observable consequences. It is important to note that this scenario also breaks the

assumption about the magnitude of the Hubble parameter used in calculating ΩDM .

From Figure 17 we notice again the free-field behaviours where the full and mixed treatments

agree, as well as how the harmonic approximation breaks down for small α. In the middle the

transition region appears, approximately in the α range 0.001-0.3 (see Section 6.6). As expected,

the mixed treatment follows again first the harmonic curve before converging to the full one.

As Fa decreases, we notice a converging pattern, due to the fact that Fa has a lower bound

as demonstrated in Fig. 16, and hence from (6.21) we see that H → ∞ as α → 0. The

physicality of this behaviour is open to further study, but if the results apply for small enough

α, we conclude that the QCD axion can also predict conventional inflationary scales (see Section

7.3 for a discussion on the numerical errors at small parameter values). This would be the case

of a highly energetic axion (see Section 5.3.1).
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Figure 18: The power spectrum of the QCD axion as a function of Fa. It is negligible compared
to the current observational bound (6.12) for the isocurvature contribution.

Having found these values for the Hubble parameter, we can next turn to investigate whether

the corresponding power spectrum, calculated from Eq. (6.11), obeys the allowed bound. This is

shown in Figure 18, which demonstrates that the power spectrum of the QCD axion is smaller than

the isocurvature bound (6.12) by many orders of magnitude, at least for α & 0.001. This makes

our axion theory a potential dark matter candidate from an isocurvature point of view. However,

a negligible isocurvature compared to the current observational limit makes it hard to test this

theory experimentally. From Figure 18 we also observe the asymptotic behaviour of the power

spectrum for low α, which is a direct consequence of the behaviour of H in Fig. 17. Assuming

this behaviour is physical, the power spectrum of the QCD axion could theoretically reach the

current isocurvature bound, in the limit of vanishing α. Finally, from the power spectrum in

Figure 18 we notice a clear edge in the transition region for the full treatment (in blue), below

α ∼ 0.3, which is not present in the mixed treatment (in red), even though it follows the full one

quite closely. This will be investigated in Section 6.6.
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6.5.2 Inflationary scales for general axion

The mass of the general axion (see Section 2.1.4) depends on the underlying extended theory,

and hence we do not use it in the context of this Dissertation. Instead, assuming an arbitrary

but constant amplitude V0, we use the isocurvature bound to give a constraint on the inflationary

Hubble parameter for the general axion scenario. This is done by setting the power spectrum

(6.11) to the maximum isocurvature value in Eq. (6.12), which gives an upper limit for HI .

The results are demonstrated in Figure 19, where the purple line gives a first-order interpolation

for the values calculated from the full treatment, showing the transition region as a sharp edge

around Fa ∼ 1012 GeV. These values of HI are much closer to common inflationary scales than

the low-scale values found in Fig. 17 for the QCD axion. For demonstration purposes, the right

y-axis shows the mass of the QCD axion in eV corresponding to the decay constant Fa (see Eq.

(6.20)). We observe that these values for the axion mass fit within the upper bound ma . 10−4 eV

5×106 1×107 5×107 1×108 5×108
1011

1012

1013

1014

1015

10-8

10-7

10-6

10-5

HI [GeV]

F
a
[G
eV

]

m
a
[e
V
]

Figure 19: Allowed values (in purple) for the inflationary Hubble parameter HI for a general
axion. A first-order interpolation for the calculated points has been used, making the transition
region around Fa ∼ 1012 GeV visible. The left y-axis shows the decay constant Fa, while the
right y-axis gives the corresponding mass for the QCD axion.
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for non-thermally produced QCD axions [55]. For completeness, we also note that implementing

the isocurvature bound actually results in two boundary values for HI for a given Fa. However,

as the other one is much larger than the well-established upper bound on the inflationary Hubble

parameter, we choose to dismiss it as unphysical and concentrate on the lower value, which is

pictured in Fig. 19.

We can compare this predicted parameter space with existing research, for example with the

bounding regions in [56], which match our boundary for HI in Fig. 19 closely, both being limited

by the isocurvature bound. The fact that our stochastic method gives a boundary for HI that is

not only in the correct order of magnitude from an inflationary point of view, but also a close fit to

results from previous research, is a validation of the approach we have taken in this Dissertation

to calculate the axion two-point correlator. In addition, our findings for the upper limit of HI in

Fig. 19 reveal unexplored dynamics in the transition region, which will be further discussed in

the next section. Overall, we conclude that the scale of HI that is predicted for our general axion

is more compatible with current inflationary models, making it a more physical scenario than the

QCD axion.

Finally, we note that while the general axion scenario relaxes the QCD bound on V0 and allows

the inflationary scales pictured in Fig. 19, it brings more complexity to other axion parameters

as well. For example, string axions permit decay constants in the GUT scale Fa ∼ 1016 GeV

[29]. In addition, in string axion models the dark matter parameter ΩDM depends strongly on

the inflationary scale HI [20], which might be the case for other general axion types as well, and

hence should be taken into account for any rigorous treatment of a specific general axion model.

The final part of the results consists of studying the new dynamics emerging from the stochastic

approach in the transition region where both free-field approximations break down.
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6.6 The transition region

This subsection investigates the novel feature captured by our stochastic treatment, the transition

region, found e.g. in Figure 17 to be approximately in the α range 0.001-0.3. We start by picturing

in Figure 20 a zoomed in version of Fig. 19 but now with the approximation schemes (see Section

6.3), demonstrating the transition region where the harmonic and mixed approximations break

down in our Fa-HI parameter plane. There is a clear edge around α ∼ 0.2 in the full treatment

(in blue) that is not observed in the approximation schemes. This is particularly interesting as

the corresponding Fa ∼ 1012 GeV is a conventional value for the QCD axion decay constant.

From Figure 20 we also note how the computational numerical inaccuracy becomes significant for

low values of Fa, as all the three curves exhibit random non-smooth patterns.

The sharp behaviour in the full treatment in Fig. 20 arises from the calculation of the isocurvature

power spectrum (6.11), where we need to choose the leading eigenlevel that gives the dominant

contribution fd to the spectral expansion of the two-point correlator (4.29) (see the discussion on
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Figure 20: The transition region in our Fa-HI parameter plane showing the upper bound on
HI for a general axion. The clear edge in the full treatment (in blue) can be observed close to
α ∼ 0.2.
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the eigenlevels at the end of Section 4.3.4). We use the level that gives the smallest HI , i.e. the

strictest upper bound on the Hubble parameter (or alternatively, the largest value for the power

spectrum P (kP )). It was observed that the second largest expansion term usually gave a result

that was differing from the leading term by at least one order of magnitude, hence validating

our approximation in the isocurvature correlator calculation (6.6) to use only the leading term of

the spectral expansion. In our case, the significant contributions come from the first two excited

eigenlevels, and in the transition region the balance between them changes.

In the full treatment, the leading eigenlevel is the first one for α . 0.2, which corresponds to

a non-perturbative state. However, for α & 0.2, the leading eigenlevel is the second one with a

perturbative eigenfunction. We recall that there are two eigenfunctions per level, but only one of

them has the correct parity to give a non-zero spectral coefficient (4.27), as both the ground state

and the energy density function are even. The dynamics between the first two excited eigenlevels

is demonstrated in Figure 21, where the purple data points correspond to the first eigenlevel while
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Figure 21: The bounds for HI , calculated using the power spectrum (6.11), from eigenlevel 1 (in
purple) and eigenlevel 2 (in blue) of the stochastic method. The red dashed line indicates the
combined boundary for HI , which is evaluated based on the most stringent constraint.
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the blue ones correspond to the second one. This is another zoomed in version of Fig. 19, focused

on the transition region, now revealing the contributions of the two dominating eigenlevels in

addition to the combined boundary for HI , shown by the red dashed line (which is presented in

blue in Fig. 20 and in purple in Fig. 19). From a cosmological point of view, we see that the

first eigenlevel has a red spectrum, since it dominates at long distances (the Hubble parameter

has natural units of 1/length). The second eigenlevel, dominating at short distances, corresponds

thus to a blue spectrum.

In contrast, in the harmonic approximation the leading level is always the first excited eigenlevel,

producing a smooth behaviour. The leading term of the mixed approximation does include a

transition from one eigenlevel to the other, but it is much smoother than the transition of the

full treatment. From Fig. 21 we observe that while the first eigenlevel seems to exhibit a smooth

behaviour, the second one has a really sharp edge below α = 0.18. To understand this feature,

we investigate the spectral coefficients fn (from Eq. (4.27)) and the eigenvalues βn (calculated

from (5.7)) entering the power spectrum (6.11) as a function of α, which is shown in Figure 22.

We observe that the spectral coefficient fn of the second eigenlevel (in blue) changes sign around

α ≈ 0.12, which results in the sharp behaviour in Fig. 21 as f2
n effectively goes to zero (see Eq.

(6.11)). This is understood when remembering that the actual physical quantity that is behind

the spectral coefficient is the matrix element fn = 〈0|f |n〉, the sign of which is arbitrary. However,

as this singular behaviour in the second eigenlevel arises when it is no longer the dominant level,

as demonstrated in Fig. 21, it does not affect the overall results and remains a curiosity.

The power spectrum (6.11) is completely determined by the dynamics between the spectral co-

efficient and the corresponding eigenvalue. While f2
n provides an overall multiplicative factor, βn

both multiplies the power spectrum and enters the exponential in (6.11). However, βn will have

only a small impact on the exponential term, which contains numerically much larger parameters

(HI , Fa), and hence its overall multiplicative effect is more significant. For α & 0.18, the spec-

tral coefficient f2
n in Fig. 22 is approximately the same for both eigenlevels (recalling that Fig.

22 shows fn), but the βn of the second eigenlevel (in blue) is clearly larger, giving the tightest
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Figure 22: The spectral coefficients fn and the eigenvalues βn contributing to the power spectrum
(6.11) as a function of α in the transition region. The first eigenlevel is shown in red, and the
second one is in blue.

constrain on HI . With a larger value of HI , the contribution from the second eigenlevel would

alone exceed the isocurvature bound. On the other hand, for α . 0.18, the spectral coefficients

start to differ with f2
n of the second level being significantly lower. Hence, the difference between

the spectral coefficients fn dominates the power spectrum values and now it is the first eigenlevel

that gives the most stringent constrain on HI , as its spectral coefficient is much larger.

To give a physical interpretation to this behaviour, we explore the perturbativeness of the eigen-

states corresponding to the two eigenlevels in Fig. 22. As mentioned previously, the eigenstate

of the second level, dominating at larger α, is perturbative. This makes sense as the harmonic

approximation is valid in this limit, and it sees only the perturbative states centred around the

minimum of the potential. However, on the small α side of the transition region, the first eigen-

level becomes dominant, and the corresponding eigenfunction is non-perturbative. This is exactly

the regime where the harmonic approximation breaks down, as it does not take into account this

non-perturbative state, and the full stochastic treatment is needed. The reason for the domi-

nance of this non-perturbative state is a higher tunnelling probability with the ground state, as

the axion is no longer confined to the bottom of its potential (see discussion in Section 5.3.2).
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7 Discussion

In this Dissertation, the cosmological consequences of the stochastic axion were studied. In the

calculations, it was assumed that axions would be the only dark matter species, and we use the

dimensionless parameter α throughout the results to characterise the dynamics between the axion

energy and its potential. In addition to the full stochastic approach, the final calculations were

computed for both the harmonic and the mixed treatment to test the accuracy of the stochastic

method. The final results span two different levels. The mathematical part includes calculating

the axion isocurvature power spectrum (see Eq. (6.11)), while the cosmological part involves

predictions on the axion decay constant Fa, the Hubble parameter H, and the isocurvature

component (Sections 6.4 and 6.5). The bound for the Hubble parameter in the general axion

scenario is particularly interesting as it reaches conventional inflationary scales (see Figure 19).

The axion two-point correlator and its isocurvature component have not been previously calcu-

lated using the stochastic approach. Hence, the results in this Dissertation provide a new input

to current axion research. Especially the transition region (see Figure 21) emerging from the

stochastic method reveals new aspects in the dynamics of the cosmological axion. This is the

regime where neither of the free-field limits is valid, and we conclude that only the full stochastic

treatment gives accurate results. In this section, we discuss and draw together these results,

highlighting the significance of the stochastic approach (7.2), the limitations of our axion model

(7.3), and its consequence for the axion theory (7.1).

7.1 Consequence for axion theory

The results found for the axion decay constant Fa, constrained through the dark matter density

parameter, fit well within existing literature values. Implementing the found range of Fa for

the QCD axion, we found a low-scale inflation model. While improbable in the light of current

research, this scenario cannot be directly cast out as unphysical, as there is currently no experi-

mental lower bound on HI . The isocurvature power spectrum of the QCD axion was computed

with these low-scale HI values and was found negligible compared to the current isocurvature
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bound. It is however worth noting that in the limit of vanishing α, the QCD axion has an

asymptotic behaviour with the potential to reach conventional inflationary scales.

For the general axion, we used the current observational isocurvature bound to find a limiting

value for the inflationary Hubble parameter. The upper bound for HI from our theory reproduces

results from common axion literature, belonging to the conventional inflationary scales. The

general axion scenario is therefore easier to combine with other requirements from the inflationary

epoch, in addition to opening up the possibility to merge axion theory into physics beyond the

Standard Model.

7.2 Significance of the stochastic method

The axion correlator has commonly been computed through the linear approximation. The

stochastic behaviour in the axion quantum field has previously been taken into account only

in the evaluation of the axion scalar field one-point distribution (see [13]), but in this Dissertation

we have computed the whole stochastic spectrum, which is beneficial for multiple reasons. Firstly,

by working with probability distributions it avoids the fine-tuning problem of the misalignment

angle (discussed for example in [57]), which assumes a homogeneous misalignment angle for the

whole axion field if the PQ symmetry is broken during inflation.

Secondly, the stochastic treatment of the cosmological axion reveals the non-linear effects respon-

sible for the transition region, which was found to be within 0.001 . α . 0.3. In this region

the balance between the energy density and the potential of the axion changes, rendering the

free-field approximations invalid. This physical behaviour is reflected in the dynamics occurring

between the first two excited eigenlevels, which dominate the spectral expansion of the two-point

correlator (see Figure 21). The eigenstate of the first level is non-perturbative, while the second

one is perturbative, which is significant since the validity of the harmonic approximation can be

directly derived from the perturbativeness of these eigenstates. Consequently, it was found that

the linear approximation breaks down for α . 0.18, where the non-perturbative state has the

dominating contribution due to the higher tunnelling probability at lower α. The potentially ob-
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servable cosmological signatures of the axion dynamics at play within the transition region form

an area for further research.

7.3 Limitations of the model

As the axion eigenvalue equation (5.7), which is a second-order differential equation, was evaluated

numerically in Mathematica, errors arise especially for small parameter values from the finite

difference scheme used. The numerical evaluation forms the main error source for the results

presented in this Dissertation. It was commonly observed during the computation process that the

eigenspectrum for really small α seemed to be unreliable. Hence, to quantify the computational

level of accuracy, the calculations should be done with varying numerical methods, preferably

manually using e.g. the overshoot/undershoot method. Another way to validate the results

would be to repeat the calculations for a different range of the misalignment angle, e.g. for

[0, 2π], which should give the same numerical results due to the periodicity of the axion potential.

Another important point to notice is that we have assumed in this Dissertation constant values for

the inflationary Hubble parameter HI and the axion mass ma, which in reality are temperature-

dependent. To refine our axion model, this variation should be taken into account. Another

potential error source is the assumption HI � ΛQCD behind the calculation of ΩDM , which

should be carefully examined depending on the axion scenario we are considering, especially in

the case of low-scale inflation. As this Dissertation provides an overall exploration of the stochastic

axion, the different steps in the calculations could be refined to serve a specific axion model, such

as the string axion. In addition, several factors such as quantum corrections and present-day

axion self-interactions could be considered.
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8 Conclusion

The results presented in this Dissertation highlight new aspects of the cosmological axion, emerg-

ing from the stochastic approach that has not been previously implemented in the evaluation of

the axion isocurvature contribution. Developing these further would enable a deep understanding

of the dynamics at play in the transition region, with the potential to predict an experimentally

detectable cosmological signature. In addition, it was found that general axion scenarios allow

isocurvature components close to the current experimental limit, enabling the refinement of the

corresponding models with more accurate data from the CMB. Overall, our results highlight the

limitations of existing axion models relying on the common linear approximation.

As dark matter accounts for almost a third of the Universe’s energy, its origin is a pressing sci-

entific problem waiting to be solved. With the unexpected signal discovered from the Xenon1T

experiment hunting dark matter, this is an exciting time for the global axion community. If the

quest for axions ultimately proves to be successful, it would not only revolutionise our under-

standing of the Universe, but also transform the theoretical work presented in this Dissertation

into the physics of the most abundant form of matter in our Universe.
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