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Abstract

Magnetic monopole is a hypothetical particle that produce magnetic fields with non-zero diver-
gence. However, none have been found experimentally. There is a mathematical solution of mag-
netic monopole discovered by ’t Hooft and Polyakov by considering SO(3) gauge theory [1, 2].

In this thesis, we will be focusing on finding magnetic monopoles in the Pati-Salam model.
We are able to find the solution of a monopole similiar to the ’t Hooft–Polyakov monopole in the
Pati-Salam model. We found that its mass is around the Pati-Salam symmetry breaking scale.
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Chapter 1

Introduction

1.1 Magnetic monopole
One of the elementary properties of magnetism is that magnets are magnetic dipoles and magnetic
field lines are always in loops. However, in 1974, a magnetic monopole in non-Abelian gauge
theories were discovered by ’t Hooft and Polyakov [1, 2]. The ’t Hooft–Polyakov monopole is a
topological soliton. It arises when the gauge group SO(3), coupled to a scalar field, is spontaneously
broken to U(1) via Higgs mechanism.

Similar to electric charges, magnetic field lines start or end at magnetic monopoles. They
interact strongly with electromagnetic fields. Classically, separated magnetic poles are forbidden
in the formulation of electrodynamics as the magnetic field is given by the curl of the vector
potential.

~B =∇× ~A (1.1)

Divergence of curl of any vector field must vanish.

∇ ·
(
∇× ~V

)
= 0 (1.2)

So, magnetic monopoles cannot be described by vector potential in classical electrodynamics.
A particle with electric charge q produces electric field

~E = q

(
~r

r3

)
(1.3)

A charge moving in an electromagnetic field with velocity v would experience Lorentz force

~F = q( ~E + ~v× ~B) (1.4)

However, the reciprocity between electricity and magnetism suggests that if magnetic monopole
exists, with magnetic charge g, it would produce magnetic field

~B = g

(
~r

r3

)
(1.5)

and it would experience "Lorentz force"

~F = g( ~B − ~v× ~E) (1.6)

[3]
In 1931, Dirac proposed a vector field that could describe magnetic monopole [4]. Introduce

the electromagnetic potential ~B. Note that this is not the magnetic flux density we mentioned
before. This electromagnetic potential ~B introduced by Dirac satisfies

~E =∇× ~B (1.7.1)

~H =
1

c

∂ ~B

∂t
+∇ ~B0 (1.7.2)
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[4], where ~H is the magnetic field strength. Note that the magnetic flux density and magnetic field
strength differs by magnetization field.

Dirac suggested that it would result in magnetic charge being µ0 = 137
2 e. So, the attractive

force between monopole and anti-monopole is (137/2)2 = 4962.25 times the attractive force between
proton and electron, so magnetic monopoles with opposite charge had never been seperated yet
[4].

This formulation allows the existence of magnetic monopole. However, it does not describe
electric charges. This means the dynamics of electric charge and magnetic charge cannot be
described simultaneously in a simple U(1) gauge theory. The solution to this is found to be
non-abelian gauge theory e.g. SO(3) or SU(2). ’t Hooft–Polyakov monopole was discovered as
topological soliton by considering SO(3) theory [1, 2].

Following the discovery of ’t Hooft–Polyakov monopole, there have been searches and exper-
iments to detect magnetic monopoles. Monopoles should be produced in particle accelerators
experiments if the collision energy is higher than 2Mc2, where M is the mass of the monopole.
Magnetic monopoles are easy to detect as they interact strongly with electromagnetic field. Unlike
other particles produced in accelerators, magnetic monopoles are stable as they do not decay. A
monopole can only be destroyed when it meets an anti-monopole [3].

The Dirac quantization condition states that qg = N/2 [5, 6], where q and g are the elec-
tric charge and magnetic charge respectively, N is an integer. The magnetic charge of the ’t
Hooft–Polyakov monopole is found to be 1

e [1]. In SO(3) theory, e is the elementary electric charge.
This is in contradiction with the minimum charge allowed by Dirac quantization condition.

To resolve the contradiction of minimum electric and magnetic charge of a particle (carrying
both and only electric and magnetic charge) allowed by Dirac quantization condition, we are
searching for magnetic monopole in a theory where the elementary electric charge is e

2 . We could
consider a different gauge group. It is intuitive that if we want half the charge we got in SO(3)
theory, we should try SU(2) instead as SU(2) is a double cover of SO(3). We are looking for
magnetic monopoles in the Pati-Salam model since it is a candidate of grand unified theory, and
it has SU(2) supgroup spontaneously broken into U(1).

1.2 Pati-Salam model

The Pati-Salam model SU(4)PS × SU(2)L× SU(2)R is an alternative of SU(5) grand unification
[7, 8]. Both the Pati-Salam group and SU(5) are subgroup of SO(10), and both can be further
spontaneously broken to the Standard Model gauge group SU(3)C × SU(2)L × U(1)Y [7]. The
subscript PS stands for Pati-Salam, C for colour, L for left-handed particle, R for right-handed
particle, and Y for weak hyper-charge.

1.2.1 Symmetry breaking scale

At the moment, we only understand physics up to electroweak scale ∼ 100GeV. We do not fully un-
derstand how Physics work at higher energy scale. It is possible that there are magnetic monopoles
with mass above electroweak scale but below GUT scale. e.g. Pati-Salam breaking scale. The Pati-
Salam model has a much lower symmetry breaking scale ∼ 1000TeV compared to SU(5) ∼ 1016GeV
[9]. Although LHC could only accelerate particles to a few TeV, the Pati-Salam energy scale is
more realistic and achievable in near future. It is much more likely to be tested experimentally.
This is why we are searching for magnetic monopoles in the Pati-Salam model in this project.

1.2.2 Leptons as the fourth color

In the Standard Model, leptons are treated as singlets of SU(3). In the Pati-Salam model, the
gauge symmetry SU(3) of the 3 colors is extended to SU(4) of 4 colors. The leptons are treated
as the fourth color [8].

1.2.3 Left-right symmetry

The right-handed particles are also a doublet in the Pati-Salam model. Left-handed particles are
in (4,2,1) representation, and the right-handed particles are in (4,1,2) representation [7]. The
Pati-Salam group has several subgroups. The Standard Model group is one of them. Then, we
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requires SU(4)PS×SU(2)R spontaneously broken into SU(3)C×U(1)Y . This breaks the Left-right
symmetry. Right-handed particles in the Standard Model do not interact via weak force.

1.3 Outline of the project
In this project, we will follow the method in ’t Hooft’s paper [1]. In chapter 2, we first calculate
the Pati-Salam symmetry breaking and deduce the vacuum manifold. From this, we will embed
a 2 sphere into the vacuum manifold which will give rise to a monopole. In chapter 3, we will
then write a suitable ansatz for the gauge connection, and derive the associated Euler-Lagrange
equations. Lastly, we will evaluate the mass and charge of the monopole.
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Chapter 2

Pati-Salam symmetry breaking

Magnetic monopoles arise when SU(2) symmetry group is broken into U(1). We are interested
in the SSB process that the Pati-Salam group is spontaneouly broken into the Standard Model
group. That requires SU(4)PS × SU(2)R → SU(3)C × U(1)Y .

To find the residual symmetry group after SSB, we need to define a matrix [10]

Sab = Q†0{ta, tb}Q0 (2.1)

where ta are the generators, Q0 is the vacuum expectation value of the scalar field.

SU(4) group has 15 generators and SU(2) group has 3 generators. So, SU(4)× SU(2) has 18
generators in total (see Appendix A).

Eigenvectors of Sab with zero eigenvalue corresponds to the unbroken generators, and eigen-
vectors with non-zero eigenvalue corresponds to the broken generators.

The SU(4) and SU(2) gauge group may have different coupling constants. We will re-scale
the SU(2) generators by c = g2

g4
such that the covarient derivative can be written as DµQ =

∂µQ+ ig4A
a
µt
aQ.

The VEV required such that the residual symmetry group is SU(3) × U(1) is found to be
Q0 = (0, 0, 0, 0, 0, 0, 0, v), where v is the field value at the minimum potential.

For VEV = Q0 = (0, 0, 0, 0, 0, 0, 0, v) (see appendix B.1),

Sab = v2



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0
√
6c

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2c2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2c2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
√
6c 0 0 2c2



(2.2)
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The eigen-vectors are

λ1 = 0 v1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (2.3.1)
λ2 = 0 v2 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (2.3.2)
λ3 = 0 v3 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (2.3.3)
λ4 = 0 v4 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (2.3.4)
λ5 = 0 v5 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (2.3.5)
λ6 = 0 v6 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (2.3.6)
λ7 = 0 v7 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (2.3.7)
λ8 = 0 v8 = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (2.3.8)

λ9 = 2v2 v9 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) (2.3.9)

λ10 = 2v2 v10 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) (2.3.10)

λ11 = 2v2 v11 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0) (2.3.11)

λ12 = 2v2 v12 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) (2.3.12)

λ13 = 2v2 v13 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0) (2.3.13)

λ14 = 2v2 v14 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0) (2.3.14)
λ15 = 0 v15 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, cosγ, 0, 0,−sinγ) (2.3.15)

λ16 = 2c2v2 v16 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0) (2.3.16)

λ17 = 2c2v2 v17 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0) (2.3.17)

λ18 = (3 + 2c2)v2 v18 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sinγ, 0, 0, cosγ) (2.3.18)

where sinγ =

√
3
2 g4√

g22+
3
2 g

2
4

, cosγ = g2√
g22+

3
2 g

2
4

Define a new set of generators T a = vabt
b. T 1 to T 8 are the unbroken SU(4) generators, which

form the residual SU(3) group. T 9 to T 14 are the broken SU(4) generators. T 16 and T 17 are the
broken SU(2) generators. T 15 is the residual U(1) generator, which is a linear combination of σz
and t15. T 18 is the linear combination orthonormal to T 15, which is broken. So, we can identify
that the residual symmetry group is SU(3)× U(1)

2.1 Vacuum manifold

In order to find the Lagrangian, we would have to parameterise the scalar field. Take the vacuum
manifold as G/H, where G is the gauge group and H is the unbroken subgroup [10].

2.1.1 SU(2)× SU(2)→ U(1)

Let’s consider a simpler case of SU(2) × SU(2) → U(1) first. For simplicity, we assume the 2
SU(2) groups have the same coupling constant.

For VEV = (0, 0, 0, v) (see appendix B.2),

Sab = v2


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 2
0 0 0 2 0 0
0 0 0 0 2 0
0 0 2 0 0 2

 (2.4)
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The eigenvectors are

λ1 = 4 v1 = (0, 0, 1, 0, 0, 1) (2.5.1)
λ2 = 2 v2 = (1, 0, 0, 0, 0, 0) (2.5.2)
λ3 = 2 v3 = (0, 1, 0, 0, 0, 0) (2.5.3)
λ4 = 2 v4 = (0, 0, 0, 1, 0, 0) (2.5.4)
λ5 = 2 v5 = (0, 0, 0, 0, 1, 0) (2.5.5)
λ6 = 0 v6 = (0, 0,−1, 0, 0, 1) (2.5.6)

There is only 1 unbroken generator. So we can identify that the residual symmetry group is
U(1). Define a new set of generators T a = vabt

b.
Note that in the Pati-Salam model, We only need a 2-sphere embedding in the vacuum manifold

to produce a magnetic monopole. We can parameterise any point on a 2-sphere with 2 parameters.
So, in the SU(2)× SU(2) case, we chose only T 1 and T 3 when defining the 2-sphere. Note that
the normalization does not matter when we consider the vacuum manifold.

The scalar field has 2 indices. We can represent it as a matrix, so that the first index transforms
by multiplying SU(2) matrix on the left, and the second index transforms by multiplying the
transpose of SU(2) matrix on the right.

The VEV can be factorized into Q0 =

(
0 0
0 v

)
= v

(
0
1

)(
0 1

)
. With σi being the SU(2) gener-

ators, we can define the embeded 2-sphere in the vacuummanifold as χ = eigσ3α2eigσ2α1

(
0 0
0 v

)
eigσ3α2 ,

where α1 and α2 are real parameters.
We require χ to satisfies χ(0, θ) = χ(2π, θ). Fix the parameters α1 and α2 such that χ =

v

(
0 eiφsinnθ2
0 cosnθ2

)
, where n is an integer. φ and θ are the azimuthal and polar angle respectively

in spherical coordinates.

2.1.2 SU(4)× SU(2)→ SU(3)× U(1)

Back to the SU(4)× SU(2) case. As we only need a 2-sphere embedding in the vacuum manifold
to produce a magnetic monopole, we chose to take only T 17 and T 18 when parameterising the
scalar field instead of the full vacuum manifold.

We can represent the scalar field as

χ = eig4sinγt
15α1


0 0
0 0
0 0
0 v

 e−ig2cosγt
17α2eig2t

18α1

= v


0
0
0

e−
3ig4α1

2k

(sin(g2α2)e
i(g2)2α1
g4k cos(g2α2)e

−i(g2)2α1
g4k

)

= v


0
0
0
1

(sin(g2α2)e
i[(g2)2− 3

2
(g4)2]α1

g4k cos(g2α2)e
−i[(g2)2+ 3

2
(g4)2]α1

g4k

)
(2.6)

where k =
√
g22 +

3
2g

2
4

We can rotate it by a global phase as there is unbroken U(1) subgroup in the gauge group. The
Lagrangian is invariant under this rotation. The scalar field becomes

χ = v


0
0
0
1

(sin(g2α2)e
2i(g2)2α1

g4k cos(g2α2)

)
(2.7)
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Then, fix the parameters α1 and α2 such that

χ = v


0
0
0
1

(eiφsinnθ2 cosnθ2
)

(2.8)

This describes a 2-sphere embedding in the vacuum manifold. Next, we want to show that it
cannot be deformed continuously to a point such that it has non-trivial homotopy which gives rise
to magnetic monopoles. Consider the vector

ζa = tr[χ†χ(σa)T ] (2.9)

Calculate its components

ζ1 = v2tr

(0 0 0 e−iφsinnθ2
0 0 0 cosnθ2

)
0 0
0 0
0 0

eiφsinnθ2 cosnθ2

(0 1
1 0

)

= v2tr

(0 0 0 e−iφsinnθ2
0 0 0 cosnθ2

)
0 0
0 0
0 0

cosnθ2 eiφsinnθ2




= v2sin
nθ

2
cos

nθ

2
(eiφ + e−iφ)

= 2v2sin
nθ

2
cos

nθ

2
cosφ

(2.10)

ζ2 = v2tr

(0 0 0 e−iφsinnθ2
0 0 0 cosnθ2

)
0 0
0 0
0 0

eiφsinnθ2 cosnθ2

(0 −i
i 0

)

= iv2tr

(0 0 0 e−iφsinnθ2
0 0 0 cosnθ2

)
0 0
0 0
0 0

cosnθ2 −eiφsinnθ2




= iv2sin
nθ

2
cos

nθ

2
(e−iφ − eiφ)

= 2v2sin
nθ

2
cos

nθ

2
sinφ

(2.11)

ζ3 = v2tr

(0 0 0 e−iφsinnθ2
0 0 0 cosnθ2

)
0 0
0 0
0 0

eiφsinnθ2 cosnθ2

(1 0
0 −1

)

= v2tr

(0 0 0 e−iφsinnθ2
0 0 0 cosnθ2

)
0 0
0 0
0 0

eiφsinnθ2 −cosnθ2




= v2
(
sin2

nθ

2
− cos2nθ

2

)
(2.12)

Now we can calculate the length of this vector. Length of the vector =
√
ζaζa
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ζaζa = v4

[
4sin2

nθ

2
cos2

nθ

2
cos2φ+ 4sin2

nθ

2
cos2

nθ

2
sin2φ+

(
sin2

nθ

2
− cos2nθ

2

)2
]

= v4

[
4sin2

nθ

2
cos2

nθ

2
+

(
sin2

nθ

2
− cos2nθ

2

)2
]

= v4
(
sin2

nθ

2
+ cos2

nθ

2

)2

= v4

(2.13)

So, the length of this vector is always v2, which means every point on the manifold are equal-
distant from the origin. It cannot go through the origin when moving from one point to another
point without leaving the manifold. Thus, it cannot be deformed continuously to a point. It has
non-trivial homotopy which give rise to magnetic monopoles we are searching for.
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Chapter 3

’t Hooft–Polyakov monopole

In chapter 2, we found that a 2-sphere embedding in the vacuum manifold can be parameterized
as

χ = v


0
0
0
1

(eiφsinnθ2 cosnθ2
)

(3.1)

We would focus on the n = 2 case here. Any representation of SO(3) is equivalent to a
representation of SU(2). The fundamental representation of SO(3) is equivalent to the the adjoint
representation of SU(2). It should give similar result as the ’t Hooft–Polyakov monopole.

3.1 Lagrangian

We will work with the Lagrangian density following ’t Hooft’s recipe [1]. From this point, we omit
the contribution from SU(4) generators.

Let’s propose the Lagrangian density

L = −1

4
GaµνG

µνa − 1

2
DµQiα(D

µQiα)
∗ − 1

2
µ2Q2

iα −
1

8
λ2(Q2

iα)
2 (3.2)

where
Gaµν = ∂µW

a
ν − ∂νW a

µ + eεabcW
b
µW

c
ν (3.3)

is the field strength tensor. W a
µ are the fields of gauge bosons. Note that we are using letter e

here to represent the coupling constant of SU(2)R. If considering theory with other gauge group,
e is the coupling constant of the associated gauge group. Not to confuse with electroweak theory,
where e refers to the coupling constant of U(1)Y , which is the charge of electron.

The parameter µ2 is chosen to be negative so that the scalar field has non-zero vacuum expec-
tation value

µ2 = −1

2
λF 2 (3.4)

< Q2
a >= F 2 (3.5)

This is not the full Pati-Salam Lagrangian density. For the Pati-Salam group, there are other
gauge invarient terms that could be added to the Lagrangian. We ignored the contributions from
the SU(4) part. This is sufficient to produce the magnetic monopole we are looking for.

Note that this is not the usual convention for SU(N) theories. However, for n = 2, we can
easily transform the variables from spherical polar to Cartesian. In this case, the theory does not
involve complex numbers anymore.

For the scalar field, consider the ansatz

Qiα = χiα(φ, θ)Q(r) (3.6)

11



By transformimg the coordinates from spherical to Cartesian.

χ = v


0
0
0
1

(eiφsinθ cosθ
)
= v


0
0
0
1

(x+ iy z
)
= v


0 0
0 0
0 0

x+ iy z

 (3.7)

We can write the ansatz for the scalar field as

Qa = raQ(r) (3.8)

After regrouping (see appendix E), the Lagrangian density becomes

L = −1

4
GaµνG

µνa − 1

2
DµQa(D

µQa)
∗ − 1

2
µ2Q2

a −
1

8
λ(Q2

a)
2 (3.9)

The covarient derivative can be written as

DuQa = ∂uQa + eεabcW
b
µQc (3.10)

We also need an ansatz for the vector field. We will take it to be

W a
µ = εµabrbW (r) (3.11)

where εµab is the Levi-Civita symbol if µ = 1, 2, 3, and ε4ab = 0.
Because of the ansatz, the Largrangian density is spherically symmetric. We can apply the

followings to simplify the Lagrangian density.
First, the transformation of coordinates

ra = (x, y, z) = (rcosφsinθ, rsinφsinθ, rcosθ) (3.12)

The derivative transforms as

∂xF (r) = cosφsinθ∂rF (r) (3.13.1)
∂yF (r) = sinφsinθ∂rF (r) (3.13.2)
∂zF (r) = cosθ∂rF (r) (3.13.3)

for arbitrary function F(r).
Eqn (3.14) and (3.15) immediately tell us

rara =r2 (3.14.1)
ra∂aF (r) =r∂rF (r) (3.14.2)

∂aF (r)∂aF (r) =(∂rF (r))
2 (3.14.3)

Note that the derivative of the coordinates is just

∂µra = δµa (3.15)

We also assume the system to be stationary, so

∂tQ(r) =0 (3.16.1)
∂tW (r) =0 (3.16.2)

Lastly, we will need this identity of Levi-Civita symbol

εabcεade = δbdδce − δbeδcd (3.17)

Now, we can expend and simplify the terms in the Lagrangian density.
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First, consider the field strength tensor term − 1
4G

a
µνG

µνa.

−1

4
GaµνG

µνa =− 1

4
(∂µW

a
ν − ∂νW a

µ )(∂
µW νa − ∂νWµa)

− e

2
εabc(∂µW

a
ν − ∂νW a

µ )W
µbW νc

− e2

4
εabcεadeW

b
µW

c
νW

µdW νe

(3.18)

It can be reduced to (see appendix C.1)

−1

4
GaµνG

µνa = −r2
(
dW

dr

)2

− 4rW
dW

dr
− 6W 2 − 2er2W 3 − 1

2
e2r4W 4 (3.19)

Next, consider the covarient derivative term − 1
2DµQiα(D

µQiα)
∗.

DµQiα(D
µQiα)

∗ =[∂µ(raQ(r)][∂µ(raQ(r)]

+ 2[∂µ(raQ(r))eεabcεµbfrfW (r)rcQ(r)]

+ e2εabcεadeεµbf ε
µdgrfrgrcreW (r)2Q(r)2

(3.20)

It can be reduced to (see appendix C.2)

−1

2
DµQiα(D

µQiα)
∗ = −1

2
r2
(
dQ

dr

)2

− rQdQ
dr
− 3

2
Q2 − 2er2WQ2 − e2r4W 2Q2 (3.21)

We also have the potential terms

−1

2
µ2Q2

a =
1

4
λF 2r2Q2 (3.22)

−1

8
λ(Q2

a)
2 = −1

8
λr4Q4 (3.23)

A constant term (vacuum energy) is added to the Lagrangian density so that the Lagrangian
is finite: − 1

8λF
4

So, the Lagrangian density becomes

L =− 1

4
GaµνG

µνa − 1

2
DµQiα(D

µQiα)
∗ − 1

2
µ2Q2

iα −
1

8
λ2(Q2

iα)
2 + C

=− r2
(
dW

dr

)2

− 4rW
dW

dr
− 6W 2 − 2er2W 3 − 1

2
e2r4W 4

− 1

2
r2
(
dQ

dr

)2

− rQdQ
dr
− 3

2
Q2 − 2er2WQ2 − e2r4W 2Q2

+
1

4
λF 2r2Q2 − 1

8
λr4Q4 − 1

8
λF 4

(3.24)

The Lagrangian is then

L =4π

∫ ∞
0

r2drL

=4π

∫ ∞
0

r2dr

[
−r2

(
dW

dr

)2

− 4rW
dW

dr
− 6W 2 − 2er2W 3 − 1

2
e2r4W 4

− 1

2
r2
(
dQ

dr

)2

− rQdQ
dr
− 3

2
Q2 − 2er2WQ2 − e2r4W 2Q2

+
1

4
λF 2r2Q2 − 1

8
λr4Q4 − 1

8
λF 4

]
(3.25)
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3.2 Euler-Lagrange Equation
Since the system is stationary, the energy of the system E = −L [1].

As in eqn 3.1 in ref [1], let’s introduce the following dimensionless parameters:

w =W/F 2e (3.26.1)

q =Q/F 2e (3.26.2)
x =eFr (3.26.3)

β =λ/e2 =M2
Q/M

2
W (3.26.4)

where MQ and MW are the mass of the associated scalar boson and vector gauge boson in the
Pati-Salam model respectively. Note that MW is not the mass of W boson in electroweak theory.

The energy of the system is then

E =
4πMW

e2

∫ ∞
0

x2dx

[
x2
(
dw

dx

)2

+ 4xw
dw

dx
+ 6w2 + 2x2w3 +

1

2
x4w4

+
1

2
x2
(
dq

dx

)2

+ xq
dq

dx
+

3

2
q2 ++2x2wq2 + x4w2q2

−1

4
βx2q2 +

1

8
βx4q4 +

1

8
β

] (3.27)

The mass of the monopole is given by the minima of E. So, we need to solve the E-L equations.

∂E

∂q
− ∂x

(
∂E

∂(∂xq)

)
= 0 (3.28.1)

∂E

∂w
− ∂x

(
∂E

∂(∂xw)

)
= 0 (3.28.2)

We need to evaluate ∂E
∂q , ∂x

(
∂E

∂(∂xq)

)
, ∂E∂w and ∂x

(
∂E

∂(∂xw)

)
.

∂E

∂q
=
4πMW

e2
x2(xq′ + 3q + 4x2qw + 2x4w2q − 1

2
βx2q +

1

2
βx4q3)

=
4πMW

e2
(x3q′ + 3x2q + 4x4qw + 2x6w2q − 1

2
βx4q +

1

2
βx6q3)

(3.29)

∂E

∂(∂xq)
=
4πMW

e2
x2(x2q′ + xq) =

4πMW

e2
(x4q′ + x3q)

∂x

(
∂E

∂(∂xq)

)
=
4πMW

e2
(5x3q′ + 3x2q + x4q′′)

(3.30)

∂E

∂w
=
4πMW

e2
x2(4xw′ + 12w + 6x2w2 + 2x4w3 + 2x2q2 + 2x4wq2)

=
4πMW

e2
(4x3w′ + 12x2w + 6x4w2 + 2x6w3 + 2x4q2 + 2x6wq2)

(3.31)

∂E

∂(∂xw)
=
4πMW

e2
x2(2x2w′ + 4xw) =

4πMW

e2
(2x4w′ + 4x3w)

∂x

(
∂E

∂(∂xw)

)
=
4πMW

e2
(12x3w′ + 2x4w′′ + 12x2w)

(3.32)

So, the E-L equation for q is

0 = −4x3q′ + 4x4qw + 2x6w2q − 1

2
βx4q +

1

2
βx6q3 − x4q′′ (3.33)

And the E-L equation for w is

0 = −8x3w′ + 6x4w2 + 2x6w3 + 2x4q2 + 2x6wq2 − 2x4w′′ (3.34)
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3.3 The mass of the monopole

Solving the equations numerically with NDSolve in Mathematica. 4 boundary conditions are
required to solve a system of 2 second-order differential equations.

According to page 92 of ref. [11], to avoid singularity, the boundary conditions at x = 0 are

q(0) = 0 (3.35.1)
w(0) = 0 (3.35.2)

In page 280 of ’t Hooft’s paper, it is shown that the boundary conditions at infinity are

Q(r) = F/r (3.36.1)

W (r) =
−1
er2

(3.36.2)

[1]

This is required such that the energy is finite (page 92 of [11]).

With the re-scaling presented in (3.26), the boundary conditions at infinity become

q(x) =1/x (3.37.1)

w(x) =− 1/x2 (3.37.2)

Re-scale q and w again so that the equations are easier to solve by shooting method.

q(x)→q(x)/x (3.38.1)

w(x)→w(x)/x2 (3.38.2)

After the re-scaling in (3.38), the boundary conditions at infinity becomes

q(x) =1 (3.39.1)
w(x) =− 1 (3.39.2)

However, these are not good boundary conditions for numerical methods. At x = 0, numerical
calculations will involve numbers divided by zero. So, we evaluate the BCs at x = 0.000001 instead.
This would not affect the result significantly if the value we pick is close enough to zero.

Mathematica is not good at solving equations with BCs at 2 ends. So, we are using shooting
method to find the value of q′(0.000001) and w′(0.000001) which gives the 2 BCs in (3.39).

The functions are very sensitive to the initial conditions. It is difficult to numerically solve
the function very accurately. We could find solutions that converge to 1 and -1 very quickly, but
then become unstable and blow up to infinity at large x. There are limits in precision due to the
approximation on the boundary conditions. It could not be improved by fine tuning the parameters.
So, when evaluating the integral, we replaced the "tail" of q(r) and w(r) by constant 1 and -1
respectively when the function is very close to that value. This would be a good approximation as
we know that the functions should converge.

Here are the plots of the solutions.
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Fig.2
The functions q(r) and w(r) for β = 0.1 (dotted curves), β = 1 (solid curves), and β = 10

(dashed curves).
The mass of the monopole is found to be (see Appendix D)

Mm =
4πMW

e2
C(β) (3.40)

where C(β) = 1.1062 for β = 0.1, C(β) = 1.2377 for β = 1, and C(β) = 1.4332 for β = 10.
This result agrees with the result in ref. [1]. C(β) = 1.1 for β = 0.1, and C(β) = 1.44 for β =

10 (the author noted that it maybe slight too large).

3.4 Magnetic charge
To find the total magnetic flux, we need the electromagnetic tensor Fµν . Here are the details from
’t Hooft (page 281 of ref. [1]).

Let’s propose that

Fµν =
1

|Q|
QaG

a
µν −

1

e|Q|3
εabcQa(DµQb)(DνQc) (3.41)

After a gauge rotation, the scalar field can be rotated to Qa = |Q|(0, 0, 1), then we have
Fµν = ∂µW

3
ν − ∂νW 3

µ .
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This satisfies the usual Maxwell equations everywhere except Qa = 0. From (3.41), combined
with (3.3) and (3.10), we get

QaG
a
µν = − F

er3
εµνara (3.42)

DuQa = ∂uQa + eεabcW
b
µQc = 0 (3.43)

So, the electromagnetic tensor becomes

Fµν = − 1

er3
εµνara (3.44)

In classical electromagnetism, the B-field is given by

Bi = −
1

2
εijkF

jk = ri/er
3 (3.45)

The total magnetic flux is then 4π/e. Magnetic charge g = 1/e.
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Chapter 4

Discussions

Recall the Dirac quantization condition qg = N/2. ’t Hooft suggested that the monopole found
having magnetic charge g = 1/e satisfies the Dirac’s condition qg = 1/2 with isospin 1/2 represen-
tation in SU(2) group describing particles with charges ± 1

2e (page 283 of ref. [1]). But in SO(3)
gauge theory, it has double the minimum magnetic charge.

However, recall that when we choose the embeded 2-sphere in the vacuum manifold at the
beginning of chapter 3, we chose the n = 2 case. This means a full SU(2) rotation actually wraps
around the 2-sphere twice (as SU(2) is a double cover of SO(3)). If the n = 1 case also gives
a soliton solution, that would give a monopole with half the magnetic charge but the minimum
electric charge allowed for such a monopole would be e. It is possible that there exist a family of
magnetic monopoles, with magnetic charge n

2e in SU(2) theory, if there are solutions for general n.
The mass of the monopole we found is about the Pati-Salam breaking scale. At least it is much

lower than SU(5) GUT scale. There are chances to be able to produce it in accelerators in the
future.

Mathematically, it is perfectly fine to have magnetic monopoles existing. However, there may
be other reasons prohibiting the existence of magnetic monopole.

There has been attempts to detect magnetic monopoles directly. In 1982, an experiment de-
tecting moving magnetic charge with a superconductive ring sucessfully detected a jump in current
by exactly the same amount that would be generated by a magnetic monopole passing through
the ring [12]. However, later experiments have not been able to reproduce the same result. So, it
is believed to be caused by other effects [3].

If magnetic monopoles existed in the history of our universe, they have to be formed before
inflation so that they are diluted to a very low density [3]. If they are formed after inflation, we
would be able to detect the relic radiation produced, and they would not have all annhilated [13].
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Appendix A

SU(4)× SU(2) generators

A.1 SU(4) generators

λ1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 λ2 =


0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 λ3 =


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0



λ4 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 λ5 =


0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

 λ6 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0



λ7 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 λ8 =
1√
3


1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0

 λ9 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0



λ10 =


0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

 λ11 =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 λ12 =


0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0



λ13 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 λ14 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 λ15 =
1√
6


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3


[14]

ti = λi ⊗ 12

A.2 SU(2) generators

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
[14]

t16 = 14 ⊗ σx t17 = 14 ⊗ σy t18 = 14 ⊗ σz
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Appendix B

Sab matrix and eigenvectors

B.1 SU(4)× SU(2)→ SU(3)× U(1)

In[113]:= Sigma1T = c  0 1
1 0



Sigma2T = c  0 I
-I 0



Sigma3T = c  1 0
0 -1



lumbda1 =

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

lumbda2 =

0 -I 0 0
I 0 0 0
0 0 0 0
0 0 0 0

lumbda3 =

1 0 0 0
0 -1 0 0
0 0 0 0
0 0 0 0

lumbda4 =

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

lumbda5 =

0 0 -I 0
0 0 0 0
I 0 0 0
0 0 0 0

lumbda6 =

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

lumbda7 =

0 0 0 0
0 0 -I 0
0 I 0 0
0 0 0 0

lumbda8 = 1  Sqrt[3]

1 0 0 0
0 1 0 0
0 0 -2 0
0 0 0 0

lumbda9 =

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

lumbda10 =

0 0 0 -I
0 0 0 0
0 0 0 0
I 0 0 0

lumbda11 =

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

lumbda12 =

0 0 0 0
0 0 0 -I
0 0 0 0
0 I 0 0

lumbda13 =

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

lumbda14 =

0 0 0 0
0 0 0 0
0 0 0 -I
0 0 I 0

lumbda15 = 1  Sqrt[6]

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -3

Out[113]= {{0, c}, {c, 0}}

Out[114]= {{0, ⅈ c}, {-ⅈ c, 0}}

Out[115]= {{c, 0}, {0, -c}}

Out[116]= {{0, 1, 0, 0}, {1, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}

Out[117]= {{0, -ⅈ, 0, 0}, {ⅈ, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}

Out[118]= {{1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}

Out[119]= {{0, 0, 1, 0}, {0, 0, 0, 0}, {1, 0, 0, 0}, {0, 0, 0, 0}}

Out[120]= {{0, 0, -ⅈ, 0}, {0, 0, 0, 0}, {ⅈ, 0, 0, 0}, {0, 0, 0, 0}}

Out[121]= {{0, 0, 0, 0}, {0, 0, 1, 0}, {0, 1, 0, 0}, {0, 0, 0, 0}}

Out[122]= {{0, 0, 0, 0}, {0, 0, -ⅈ, 0}, {0, ⅈ, 0, 0}, {0, 0, 0, 0}}

Out[123]= 
1

3
, 0, 0, 0, 0,

1

3
, 0, 0, 0, 0, -

2

3
, 0, {0, 0, 0, 0}

Out[124]= {{0, 0, 0, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, {1, 0, 0, 0}}

Out[125]= {{0, 0, 0, -ⅈ}, {0, 0, 0, 0}, {0, 0, 0, 0}, {ⅈ, 0, 0, 0}}

Out[126]= {{0, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 0, 0}, {0, 1, 0, 0}}

Out[127]= {{0, 0, 0, 0}, {0, 0, 0, -ⅈ}, {0, 0, 0, 0}, {0, ⅈ, 0, 0}}

Out[128]= {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}}

Out[129]= {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, -ⅈ}, {0, 0, ⅈ, 0}}

Out[130]= 
1

6
, 0, 0, 0, 0,

1

6
, 0, 0, 0, 0,

1

6
, 0, 0, 0, 0, -

3

2


2     Test4.nb
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In[131]:= VEV =

0 0
0 0
0 0
0 1

X[1] = lumbda1.VEV

X[2] = lumbda2.VEV

X[3] = lumbda3.VEV

X[4] = lumbda4.VEV

X[5] = lumbda5.VEV

X[6] = lumbda6.VEV

X[7] = lumbda7.VEV

X[8] = lumbda8.VEV

X[9] = lumbda9.VEV

X[10] = lumbda10.VEV

X[11] = lumbda11.VEV

X[12] = lumbda12.VEV

X[13] = lumbda13.VEV

X[14] = lumbda14.VEV

X[15] = lumbda15.VEV

X[16] = VEV.Sigma1T

X[17] = VEV.Sigma2T

X[18] = VEV.Sigma3T

Out[131]= {{0, 0}, {0, 0}, {0, 0}, {0, 1}}

Out[132]= {{0, 0}, {0, 0}, {0, 0}, {0, 0}}

Out[133]= {{0, 0}, {0, 0}, {0, 0}, {0, 0}}

Out[134]= {{0, 0}, {0, 0}, {0, 0}, {0, 0}}

Out[135]= {{0, 0}, {0, 0}, {0, 0}, {0, 0}}

Out[136]= {{0, 0}, {0, 0}, {0, 0}, {0, 0}}

Out[137]= {{0, 0}, {0, 0}, {0, 0}, {0, 0}}

Out[138]= {{0, 0}, {0, 0}, {0, 0}, {0, 0}}

Out[139]= {{0, 0}, {0, 0}, {0, 0}, {0, 0}}

Out[140]= {{0, 1}, {0, 0}, {0, 0}, {0, 0}}

Out[141]= {{0, -ⅈ}, {0, 0}, {0, 0}, {0, 0}}

Out[142]= {{0, 0}, {0, 1}, {0, 0}, {0, 0}}

Out[143]= {{0, 0}, {0, -ⅈ}, {0, 0}, {0, 0}}

Out[144]= {{0, 0}, {0, 0}, {0, 1}, {0, 0}}

Out[145]= {{0, 0}, {0, 0}, {0, -ⅈ}, {0, 0}}

Out[146]= {0, 0}, {0, 0}, {0, 0}, 0, -
3

2


Out[147]= {{0, 0}, {0, 0}, {0, 0}, {c, 0}}

Out[148]= {{0, 0}, {0, 0}, {0, 0}, {-ⅈ c, 0}}

Out[149]= {{0, 0}, {0, 0}, {0, 0}, {0, -c}}

Test4.nb     3

In[150]:=

G = Table[ConjugateTranspose[X[a]], {a, 1, 18}]

F = Table[X[b], {b, 1, 18}]

H = Table[Tr[G[[x]].F[[y]] + G[[y]].F[[x]]], {x, 1, 18}, {y, 1, 18}]

MatrixForm[H]

Out[150]= {{0, 0, 0, 0}, {0, 0, 0, 0}}, {{0, 0, 0, 0}, {0, 0, 0, 0}},

{{0, 0, 0, 0}, {0, 0, 0, 0}}, {{0, 0, 0, 0}, {0, 0, 0, 0}}, {{0, 0, 0, 0}, {0, 0, 0, 0}},

{{0, 0, 0, 0}, {0, 0, 0, 0}}, {{0, 0, 0, 0}, {0, 0, 0, 0}}, {{0, 0, 0, 0}, {0, 0, 0, 0}},

{{0, 0, 0, 0}, {1, 0, 0, 0}}, {{0, 0, 0, 0}, {ⅈ, 0, 0, 0}}, {{0, 0, 0, 0}, {0, 1, 0, 0}},

{{0, 0, 0, 0}, {0, ⅈ, 0, 0}}, {{0, 0, 0, 0}, {0, 0, 1, 0}}, {{0, 0, 0, 0}, {0, 0, ⅈ, 0}},

{0, 0, 0, 0}, 0, 0, 0, -
3

2
, {{0, 0, 0, Conjugate[c]}, {0, 0, 0, 0}},

{{0, 0, 0, ⅈ Conjugate[c]}, {0, 0, 0, 0}}, {{0, 0, 0, 0}, {0, 0, 0, -Conjugate[c]}}

Out[151]= {{0, 0}, {0, 0}, {0, 0}, {0, 0}}, {{0, 0}, {0, 0}, {0, 0}, {0, 0}},

{{0, 0}, {0, 0}, {0, 0}, {0, 0}}, {{0, 0}, {0, 0}, {0, 0}, {0, 0}},

{{0, 0}, {0, 0}, {0, 0}, {0, 0}}, {{0, 0}, {0, 0}, {0, 0}, {0, 0}},

{{0, 0}, {0, 0}, {0, 0}, {0, 0}}, {{0, 0}, {0, 0}, {0, 0}, {0, 0}},

{{0, 1}, {0, 0}, {0, 0}, {0, 0}}, {{0, -ⅈ}, {0, 0}, {0, 0}, {0, 0}},

{{0, 0}, {0, 1}, {0, 0}, {0, 0}}, {{0, 0}, {0, -ⅈ}, {0, 0}, {0, 0}},

{{0, 0}, {0, 0}, {0, 1}, {0, 0}}, {{0, 0}, {0, 0}, {0, -ⅈ}, {0, 0}},

{0, 0}, {0, 0}, {0, 0}, 0, -
3

2
, {{0, 0}, {0, 0}, {0, 0}, {c, 0}},

{{0, 0}, {0, 0}, {0, 0}, {-ⅈ c, 0}}, {{0, 0}, {0, 0}, {0, 0}, {0, -c}}

Out[152]= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0},

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0,
3

2
c +

3

2
Conjugate[c],

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 c Conjugate[c], 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 c Conjugate[c], 0},

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
3

2
c +

3

2
Conjugate[c], 0, 0, 2 c Conjugate[c]

4     Test4.nb

Out[153]//MatrixForm=

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 c Conjugate[c] 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 c Conjugate

0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

2
c + 3

2
Conjugate[c] 0 0

Out[ ]= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

0, 0, 0, 0, 0, 0, 0, 0,
1

2
, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0,
1

2
, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1

2
, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1

2
, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1

2
, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1

2
, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
3

4
, 0, 0,

3

2

2
,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1

2
, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1

2
, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

3

2

2
, 0, 0,

1

2
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Out[ ]= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

0, 0, 0, 0, 0, 0, 0, 0,
1

2
, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0,
1

2
, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1

2
, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1

2
, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1

2
, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1

2
, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 27, 0, 0, 3
3

2
,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1

2
, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1

2
, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3
3

2
, 0, 0,

1

2
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In[154]:= Eigensystem[H]

Out[154]= 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2 c Conjugate[c],

2 c Conjugate[c],
1

2
3 + 2 c Conjugate[c] - 3 + 2 c2 3 + 2 Conjugate[c]2 ,

1

2
3 + 2 c Conjugate[c] + 3 + 2 c2 3 + 2 Conjugate[c]2 ,

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0},

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

-
-3 + 2 c Conjugate[c] + 3 + 2 c2 3 + 2 Conjugate[c]2

6 c + Conjugate[c]
, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, -
-3 + 2 c Conjugate[c] - 3 + 2 c2 3 + 2 Conjugate[c]2

6 c + Conjugate[c]
, 0, 0, 1

In[ ]:=

In[ ]:=
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B.2 SU(2)× SU(2)→ U(1)

In[ ]:= Sigma1T =  0 1
1 0



Sigma2T =  0 I
-I 0



Sigma3T =  1 0
0 -1



Sigma1 =  0 1
1 0



Sigma2 =  0 -I
I 0



Sigma3 =  1 0
0 -1



Out[ ]= {{0, 1}, {1, 0}}

Out[ ]= {{0, ⅈ}, {-ⅈ, 0}}

Out[ ]= {{1, 0}, {0, -1}}

Out[ ]= {{0, 1}, {1, 0}}

Out[ ]= {{0, -ⅈ}, {ⅈ, 0}}

Out[ ]= {{1, 0}, {0, -1}}

In[ ]:= VEV =  0 0
0 1



X[1] = Sigma1.VEV

X[2] = Sigma2.VEV

X[3] = Sigma3.VEV

X[4] = VEV.Sigma1T

X[5] = VEV.Sigma2T

X[6] = VEV.Sigma3T

Out[ ]= {{0, 0}, {0, 1}}

Out[ ]= {{0, 1}, {0, 0}}

Out[ ]= {{0, -ⅈ}, {0, 0}}

Out[ ]= {{0, 0}, {0, -1}}

Out[ ]= {{0, 0}, {1, 0}}

Out[ ]= {{0, 0}, {-ⅈ, 0}}

Out[ ]= {{0, 0}, {0, -1}}

In[ ]:= G = Table[ConjugateTranspose[X[a]], {a, 1, 6}]

F = Table[X[b], {b, 1, 6}]

H = Table[Tr[G[[x]].F[[y]] + G[[y]].F[[x]]], {x, 1, 6}, {y, 1, 6}]

MatrixForm[H]

Out[ ]= {{{0, 0}, {1, 0}}, {{0, 0}, {ⅈ, 0}}, {{0, 0}, {0, -1}},

{{0, 1}, {0, 0}}, {{0, ⅈ}, {0, 0}}, {{0, 0}, {0, -1}}}

Out[ ]= {{{0, 1}, {0, 0}}, {{0, -ⅈ}, {0, 0}}, {{0, 0}, {0, -1}},

{{0, 0}, {1, 0}}, {{0, 0}, {-ⅈ, 0}}, {{0, 0}, {0, -1}}}

Out[ ]= {{2, 0, 0, 0, 0, 0}, {0, 2, 0, 0, 0, 0}, {0, 0, 2, 0, 0, 2},

{0, 0, 0, 2, 0, 0}, {0, 0, 0, 0, 2, 0}, {0, 0, 2, 0, 0, 2}}

Out[ ]//MatrixForm=

2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 2
0 0 0 2 0 0
0 0 0 0 2 0
0 0 2 0 0 2

In[ ]:= Eigensystem[H]

Out[ ]= {{4, 2, 2, 2, 2, 0}, {{0, 0, 1, 0, 0, 1}, {0, 0, 0, 0, 1, 0},

{0, 0, 0, 1, 0, 0}, {0, 1, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0}, {0, 0, -1, 0, 0, 1}}}

In[ ]:=

In[ ]:=

2     SU2SU2.nb
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Appendix C

Derivations of terms in the
Lagrangian

C.1 Field strength tensor term

−1

4
GaµνG

µνa =− 1

4
(∂µW

a
ν − ∂νW a

µ )(∂
µW νa − ∂νWµa)

− e

2
εabc(∂µW

a
ν − ∂νW a

µ )W
µbW νc

− e2

4
εabcεadeW

b
µW

c
νW

µdW νe

(C.1)

The first term

(∂µW
a
ν − ∂νW a

µ )(∂
µW νa − ∂νWµa)

=[∂µ(ενabrbW (r))− ∂ν(εµabrbW (r))]× [∂µ(ενacrcW (r))− ∂ν(εµacrcW (r))]

=[ενab∂µrbW (r) + ενabrb∂µW (r)− εµab∂νrbW (r)− εµabrb∂νW (r)]

× [ενac∂µrcW (r) + ενacrc∂
µW (r)− εµac∂νrcW (r)− εµacrc∂νW (r)]

=2× 2δbc(∂irbW (r) + rb∂iW (r))× (∂ircW (r) + rc∂iW (r))

− 2(δνµδbc − δνcδbµ)× (∂µrbW (r) + rb∂µW (r))× (∂νrcW (r) + rc∂
νW (r))

=4(δicW (r) + rc∂iW (r))× (δicW (r) + rc∂iW (r))

− 2(∂ircW (r) + rc∂iW (r))× (∂ircW (r) + rc∂iW (r))

+ 2(∂iriW (r) + ri∂iW (r))× (∂crcW (r) + rc∂cW (r))

=2(3W (r)2 + 2riW (r)∂iW (r) + r2(∂i(r))
2)

+ 2(3W (r) + ri∂iW (r))× (3W (r) + rc∂cW (r))

=2(3W (r)2 + 2rW (r)∂rW (r) + r2(∂r(r))
2)

+ 2(9W (r)2 + 6rW (r)∂rW (r) + r2(∂r(r))
2)

=24W (r)2 + 16rW (r)∂rW (r) + 4r2(∂rW (r))2

(C.2)
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The second term

εabc(∂µW
a
ν − ∂νW a

µ )W
µbW νc

=εabc[ενad(∂µrdW (r) + rd∂µW (r))− εµad(∂νrdW (r) + rd∂νW (r))]

× εµbeενcfrerfW (r)2

=εabc(δacδdf − δafδdc)[∂irdW (r) + rd∂iW (r)]εibererfW (r)2

− εabc(δabδde − δaeδdb)[∂irdW (r) + rd∂iW (r)]εicfrerfW (r)2

=[(δaiδce − δaeδci)(δacδdf − δafδdc) + (δaiδbf − δafδbi)(δabδde − δaeδdb)]
× [∂irdW (r) + rd∂iW (r)]rerfW (r)2

=[(δieδdf − δifδde − δieδdf + δefδid) + (δifδde − δieδdf − δifδde + δefδid)]

× [∂irdW (r) + rd∂iW (r)]rerfW (r)2

=− 2[∂freW (r) + re∂fW (r)]rerfW (r)2

+ 2[∂iriW (r) + ri∂iW (r)]r2W (r)2

=− 2[r2W (r) + r3∂rW (r)]W (r)2

+ 2[3W (r) + r∂rW (r)]r2W (r)2

=4r2W (r)3

(C.3)

The third term

εabcεadeW
b
µW

c
νW

µdW νe

=(δbdδce − δbeδcd)εibf εjcgεidhεjekrfrgrhrkW (r)4

=(δbdδce − δbeδcd)(δbdδfh − δbhδfd)(δceδgk − δckδge)rfrgrhrkW (r)4

=(3δceδfh − δceδfh − δceδfh + δehδcf )(δceδgk − δckδge)rfrgrhrkW (r)4

=(3δfhδgk − δfhδgk − δfhδgk + δkfδhg)rfrgrhrkW (r)4

=2r4W (r)4

(C.4)

Collecting the results, we have

−1

4
GaµνG

µνa = −r2
(
dW

dr

)2

− 4rW
dW

dr
− 6W 2 − 2er2W 3 − 1

2
e2r4W 4 (C.5)

C.2 Covarient derivative term
DµQiα(D

µQiα)
∗ =[∂µ(raQ(r)][∂µ(raQ(r)] + 2[∂µ(raQ(r))eεabcεµbfrfW (r)rcQ(r)]

+ e2εabcεadeεµbf ε
µdgrfrgrcreW (r)2Q(r)2

(C.6)

The first term

[∂µ(raQ(r)][∂µ(raQ(r)] =[(∂µQ(r))ra + (∂µra)Q(r)][(∂µQ(r))ra + (∂µra)Q(r)]

=(∂µQ(r))(∂µQ(r))rara + 2(∂µQ(r))ra(∂
µra)Q(r) + (∂µra)(∂

µra)Q(r)2

=− (∂rQ(r))2r2 − 2(∂iQ(r))raδiaQ(r)− δiaδiaQ(r)2

=− (∂rQ(r))2r2 − 2(∂rQ(r))rQ(r)− 3Q(r)2

(C.7)

The second term

∂µ(raQ(r))eεabcεµbfrfW (r)rcQ(r)

=− [(∂ira)Q(r) + (∂iQ(r))ra]e(δaiδcf − δafδci)rfrcW (r)Q(r)

=− [(∂iri)Q(r) + (∂iQ(r))ri]er
2W (r)Q(r) + [(∂crf )Q(r) + (∂cQ(r))rf )]erfrcW (r)Q(r)

=[−3Q(r)− r(∂rQ(r)) +Q(r) + r(∂rQ(r))]er2W (r)Q(r)

=− 2er2W (r)W (r)2

(C.8)

25



The third term

e2εabcεadeεµbf ε
µdgrfrgrcreW (r)2Q(r)2

=− e2(δbdδce − δbeδcd)(δbdδfg − δbgδfd)rfrgrcreW (r)2Q(r)2

=− e2(δbdδce − δbeδcd)(r2δbd − rdrb)rcreW (r)2Q(r)2

=− e2(3r2 − r2)r2W (r)2Q(r)2 + (r4 − r4)W (r)2Q(r)2

=− 2e2r4W (r)2Q(r)2

(C.9)

Collecting the results, we have

−1

2
DµQiα(D

µQiα)
∗ = −1

2
r2
(
dQ

dr

)2

− rQdQ
dr
− 3

2
Q2 − 2er2WQ2 − e2r4W 2Q2 (C.10)
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Appendix D

Mathematica Programmes -
Numerical solution

D.1 β = 0.1

In[104]:= a = 20

b = 0.1

c = 0.000001

h = 1.44633

k = -0.000000714377280381745998370575

Sol = NDSolve

-4 x^3 * q'[x]  x - q[x]  x^2 + 4 x * w[x] × q[x] + 2 x * w[x]^2 × q[x] - 1  2 * b * x^3 *

q[x] + 1  2 b * x^3 * q[x]^3 - x^4 * q''[x]  x - 2 q'[x]  x^2 + 2 q[x]  x^3 == 0,

-8 x^3 * w'[x]  x^2 - 2 w[x]  x^3 + 6 w[x]^2 + 2 w[x]^3 + 2 x^2 * q[x]^2 +

2 x^2 * w[x] × q[x]^2 - 2 x^4 w''[x]  x^2 - 4 w'[x]  x^3 + 6 w[x] / x^4 == 0,

q'[c] ⩵ h, q[c] == 0, w'[c] ⩵ k, w[c] == 0, {w, q}, {x, c, a}

Plot[{q[x] /. Sol}, {x, c, a}, PlotRange -> Full]

Plot[{w[x] /. Sol}, {x, c, a}, PlotRange -> Full]

Plot[{q'[x] /. Sol}, {x, c, a}, PlotRange -> Full]

Plot[{w'[x] /. Sol}, {x, c, a}, PlotRange -> Full]

Out[104]= 20

Out[105]= 0.1

Out[106]= 1. × 10-6

Out[107]= 1.44633

Out[108]= -7.1437728038174599837058 × 10-7

Out[109]= w → InterpolatingFunction Domain: 1.×10-6, 20.
Output: scalar

,

q → InterpolatingFunction Domain: 1.×10-6, 20.
Output: scalar



Out[110]=
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Out[111]=
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Out[112]=
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Out[113]=
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In[114]:= q0[x] = q[x] /. Sol

q1[x] = q'[x] /. Sol

w0[x] = w[x] /. Sol

w1[x] = w'[x] /. Sol

k1 = NIntegrate

x^2 x^2 * w1[x]  x^2 - 2 w0[x]  x^3^2 + 4 / x * w0[x] * w1[x]  x^2 - 2 w0[x]  x^3 +

6 w0[x]^2  x^4 + 2 w0[x]^3  x^4 + 1  2 x^-4 * w0[x]^4 +

1  2 x^2 * q1[x]  x - q0[x]  x^2^2 + q0[x] * q1[x]  x - q0[x]  x^2 +

3  2 q0[x]^2  x^2 + 2 x^-2 * w0[x] * q0[x]^2 + x^-2 * w0[x]^2 * q0[x]^2 -

1  4 b * q0[x]^2 + 1  8 b * q0[x]^4 + 1  8 b, {x, 0.000001, 18}

Out[114]= InterpolatingFunction Domain: 1.×10-6, 20.
Output: scalar

[x]

Out[115]= InterpolatingFunction Domain: 1.×10-6, 20.
Output: scalar

[x]

Out[116]= InterpolatingFunction Domain: 1.×10-6, 20.
Output: scalar

[x]

Out[117]= InterpolatingFunction Domain: 1.×10-6, 20.
Output: scalar

[x]

Out[118]= {1.07841}

In[119]:= q0[x] = 1

q1[x] = 0

w0[x] = -1

w1[x] = 0

k2 = NIntegrate

x^2 x^2 * w1[x]  x^2 - 2 w0[x]  x^3^2 + 4 / x * w0[x] * w1[x]  x^2 - 2 w0[x]  x^3 +

6 w0[x]^2  x^4 + 2 w0[x]^3  x^4 + 1  2 x^-4 * w0[x]^4 +

1  2 x^2 * q1[x]  x - q0[x]  x^2^2 + q0[x] * q1[x]  x - q0[x]  x^2 +

3  2 q0[x]^2  x^2 + 2 x^-2 * w0[x] * q0[x]^2 + x^-2 * w0[x]^2 * q0[x]^2 -

1  4 b * q0[x]^2 + 1  8 b * q0[x]^4 + 1  8 b, {x, 18, 1 000 000}

Out[119]= 1

Out[120]= 0

Out[121]= -1

Out[122]= 0

Out[123]= 0.0277773

In[124]:= k3 = k1 + k2

Out[124]= {1.10619}
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D.2 β = 1

In[146]:= a = 20

b = 1

c = 0.000001

h = 2.19544259333844

k = -0.0000010227161293549

Sol = NDSolve

-4 x^3 * q'[x]  x - q[x]  x^2 + 4 x * w[x] × q[x] + 2 x * w[x]^2 × q[x] - 1  2 * b * x^3 *

q[x] + 1  2 b * x^3 * q[x]^3 - x^4 * q''[x]  x - 2 q'[x]  x^2 + 2 q[x]  x^3 == 0,

-8 x^3 * w'[x]  x^2 - 2 w[x]  x^3 + 6 w[x]^2 + 2 w[x]^3 + 2 x^2 * q[x]^2 +

2 x^2 * w[x] × q[x]^2 - 2 x^4 w''[x]  x^2 - 4 w'[x]  x^3 + 6 w[x] / x^4 == 0,

q'[c] ⩵ h, q[c] == 0, w'[c] ⩵ k, w[c] == 0, {w, q}, {x, c, a}

Plot[{q[x] /. Sol}, {x, c, a}, PlotRange -> Full]

Plot[{w[x] /. Sol}, {x, c, a}, PlotRange -> Full]

Plot[{q'[x] /. Sol}, {x, c, a}, PlotRange -> Full]

Plot[{w'[x] /. Sol}, {x, c, a}, PlotRange -> Full]

Out[146]= 20

Out[147]= 1

Out[148]= 1. × 10-6

Out[149]= 2.19544

Out[150]= -1.02272 × 10-6

Out[151]= w → InterpolatingFunction Domain: 1.×10-6, 20.
Output: scalar

,

q → InterpolatingFunction Domain: 1.×10-6, 20.
Output: scalar
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In[ ]:= q0[x] = q[x] /. Sol

q1[x] = q'[x] /. Sol

w0[x] = w[x] /. Sol

w1[x] = w'[x] /. Sol

k1 = NIntegrate

x^2 x^2 * w1[x]  x^2 - 2 w0[x]  x^3^2 + 4 / x * w0[x] * w1[x]  x^2 - 2 w0[x]  x^3 +

6 w0[x]^2  x^4 + 2 w0[x]^3  x^4 + 1  2 x^-4 * w0[x]^4 +

1  2 x^2 * q1[x]  x - q0[x]  x^2^2 + q0[x] * q1[x]  x - q0[x]  x^2 +

3  2 q0[x]^2  x^2 + 2 x^-2 * w0[x] * q0[x]^2 + x^-2 * w0[x]^2 * q0[x]^2 -

1  4 b * q0[x]^2 + 1  8 b * q0[x]^4 + 1  8 b, {x, 0.000001, 20}

Out[ ]= InterpolatingFunction Domain: 1.×10-6, 32.
Output: scalar

[x]

Out[ ]= InterpolatingFunction Domain: 1.×10-6, 32.
Output: scalar

[x]

Out[ ]= InterpolatingFunction Domain: 1.×10-6, 32.
Output: scalar

[x]

Out[ ]= InterpolatingFunction Domain: 1.×10-6, 32.
Output: scalar

[x]

Out[ ]= {1.2127}

In[ ]:=

q0[x] = 1

q1[x] = 0

w0[x] = -1

w1[x] = 0

k2 = NIntegrate

x^2 x^2 * w1[x]  x^2 - 2 w0[x]  x^3^2 + 4 / x * w0[x] * w1[x]  x^2 - 2 w0[x]  x^3 +

6 w0[x]^2  x^4 + 2 w0[x]^3  x^4 + 1  2 x^-4 * w0[x]^4 +

1  2 x^2 * q1[x]  x - q0[x]  x^2^2 + q0[x] * q1[x]  x - q0[x]  x^2 +

3  2 q0[x]^2  x^2 + 2 x^-2 * w0[x] * q0[x]^2 + x^-2 * w0[x]^2 * q0[x]^2 -

1  4 b * q0[x]^2 + 1  8 b * q0[x]^4 + 1  8 b, {x, 20, 1 000 000}

Out[ ]= 1

Out[ ]= 0

Out[ ]= -1

Out[ ]= 0

Out[ ]= 0.0249995

In[ ]:= k3 = k1 + k2

Out[ ]= {1.2377}
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D.3 β = 10

In[125]:= a = 10

b = 10

c = 0.000001

h = 4.3628479920

k = -0.0000016318645585234

Sol = NDSolve

-4 x^3 * q'[x]  x - q[x]  x^2 + 4 x * w[x] × q[x] + 2 x * w[x]^2 × q[x] - 1  2 * b * x^3 *

q[x] + 1  2 b * x^3 * q[x]^3 - x^4 * q''[x]  x - 2 q'[x]  x^2 + 2 q[x]  x^3 == 0,

-8 x^3 * w'[x]  x^2 - 2 w[x]  x^3 + 6 w[x]^2 + 2 w[x]^3 + 2 x^2 * q[x]^2 +

2 x^2 * w[x] × q[x]^2 - 2 x^4 w''[x]  x^2 - 4 w'[x]  x^3 + 6 w[x] / x^4 == 0,

q'[c] ⩵ h, q[c] == 0, w'[c] ⩵ k, w[c] == 0, {w, q}, {x, c, a}

Plot[{q[x] /. Sol}, {x, c, a}, PlotRange -> Full]

Plot[{w[x] /. Sol}, {x, c, a}, PlotRange -> Full]

Plot[{q'[x] /. Sol}, {x, c, a}, PlotRange -> Full]

Plot[{w'[x] /. Sol}, {x, c, a}, PlotRange -> Full]

Out[125]= 10

Out[126]= 10

Out[127]= 1. × 10-6

Out[128]= 4.36285

Out[129]= -1.63186 × 10-6

Out[130]= w → InterpolatingFunction Domain: 1.×10-6, 10.
Output: scalar

,

q → InterpolatingFunction Domain: 1.×10-6, 10.
Output: scalar
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In[135]:= q0[x] = q[x] /. Sol

q1[x] = q'[x] /. Sol

w0[x] = w[x] /. Sol

w1[x] = w'[x] /. Sol

k1 = NIntegrate

x^2 x^2 * w1[x]  x^2 - 2 w0[x]  x^3^2 + 4 / x * w0[x] * w1[x]  x^2 - 2 w0[x]  x^3 +

6 w0[x]^2  x^4 + 2 w0[x]^3  x^4 + 1  2 x^-4 * w0[x]^4 +

1  2 x^2 * q1[x]  x - q0[x]  x^2^2 + q0[x] * q1[x]  x - q0[x]  x^2 +

3  2 q0[x]^2  x^2 + 2 x^-2 * w0[x] * q0[x]^2 + x^-2 * w0[x]^2 * q0[x]^2 -

1  4 b * q0[x]^2 + 1  8 b * q0[x]^4 + 1  8 b, {x, 0.000001, 8.5}

Out[135]= InterpolatingFunction Domain: 1.×10-6, 10.
Output: scalar

[x]

Out[136]= InterpolatingFunction Domain: 1.×10-6, 10.
Output: scalar

[x]

Out[137]= InterpolatingFunction Domain: 1.×10-6, 10.
Output: scalar

[x]

Out[138]= InterpolatingFunction Domain: 1.×10-6, 10.
Output: scalar

[x]

Out[139]= {1.37431}

In[140]:= q0[x] = 1

q1[x] = 0

w0[x] = -1

w1[x] = 0

k2 = NIntegrate

x^2 x^2 * w1[x]  x^2 - 2 w0[x]  x^3^2 + 4 / x * w0[x] * w1[x]  x^2 - 2 w0[x]  x^3 +

6 w0[x]^2  x^4 + 2 w0[x]^3  x^4 + 1  2 x^-4 * w0[x]^4 +

1  2 x^2 * q1[x]  x - q0[x]  x^2^2 + q0[x] * q1[x]  x - q0[x]  x^2 +

3  2 q0[x]^2  x^2 + 2 x^-2 * w0[x] * q0[x]^2 + x^-2 * w0[x]^2 * q0[x]^2 -

1  4 b * q0[x]^2 + 1  8 b * q0[x]^4 + 1  8 b, {x, 8.5, 1 000 000}

Out[140]= 1

Out[141]= 0

Out[142]= -1

Out[143]= 0

Out[144]= 0.058823

In[145]:= k3 = k1 + k2

Out[145]= {1.43313}
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Appendix E

Regrouping the terms of scalar field

First, we can ignore the SU(4) part for the scalar field as

(
0 0 0 1

)
0
0
0
1

 = 1 (E.1)

For the SU(2) part, it would become much simpler to work in SO(3) representation instead.
It is obvious that (

x+ iy z
)(x− iy

z

)
=
(
x y z

)xy
z

 = r2 (E.2)

So,
QiαQiα = QaQa (E.3)

We also can write the covarient derivative in SO(3) representation. The covarient derivative in
SO(3) is given by

DµQa =∂µ(raQ(r)) + e

 0 −W3µ W2µ

W3µ 0 −W1µ

−W2µ W1µ 0

xy
z

Q(r)

=∂µ(raQ(r)) + eεabcW
b
µrcQ(r)

=∂µQa + eεabcW
b
µQc

(E.4)

It is valid to replace the covarient derivative of SU(2) with the expression in (E.4) because
SU(2) and SO(3) are just different representations of 3-d rotations, which are equivalent. (x, y, z)
rotated by SO(3) matrix would give the same result as (x + iy, z) rotated by SU(2) matrix with
same parameters. The partial derivative terms would contract similarly as in (E.2).
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