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1 Introduction

For QCD scattering problems, e.g. for quarks and gluons, if the t-channel exchanging momentum becomes high
enough (−t� Λ2

QCD), they are non-perturbative [7][8]. This is especially the case when the scattering angle is small,

1/θ2 = |s/(−t)| � 1. This limit in the literature is also called Regge limit. Although perturbative expansion in
QCD Regge limit scattering is not viable, we have BFKL framework [1][13] that offers an iterative calculation of
expansion order by order and thus provides the building block for resuming high-energy Logarithm to all orders. [7]
and [8] have applied BFKL formalism to two-to-two partonic scattering amplitude, and managed to resum infrared
singular or infrared-renormalized amplitude on next leading logarithm accuracy, cf. (3.36) in [8] and (3.18) in [7].

Figure 1: (a): Wave function diagram; (b): Scattering amplitude. ([8]Fig.2 & 3.).

However, there is still some part of the amplitude we can not do resum following this formalism, as one will see
below.

For partonic scattering amplitude in Regge limit, one can split the amplitude M(s, t) into to odd and even part
according to its symmetry of swapping s and u, s↔ u:

M(±)(s, t) =
1

2
(M(s, t)±M(u, t)). (1.1)

[6] further decomposes these amplitudes into real and imaginary coefficients.
We define Tk, k = 1, 2, 3, 4 to be the colour-charge operator with parton k, (see (b) in Figure 1). With

Ts = T1 + T2 = −T3 −T4

Tu = T1 + T3 = −T2 −T4

Tt = T1 + T4 = −T2 −T3 (1.2)

And

T2
s−u ≡

T2
s −T2

u

2
. (1.3)

Also for future reference (e.g. η = C1/C2)

C1 = 2CA −T2
t ,

C2 = CA −T2
t , (1.4)

where CA is in the gluon Regge trajectory : αg(t) = αs
π CAα

(1)
g (t) + O

(
α2
s

)
(see argument below (1.3) in [8]). The

imaginary part of reduced even amplitude is given in [8] as

M(+)
NLL ' iπ

[
1

2ε

αs
π

+O
(
α2
sL
)]

T2
s−uMtree (1.5)
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where αs is the coupling constant, and the signature even logarithms is wrote as L ≡ 1
2

(
log −s−i0−t + log −u−i0−t

)
. All

loop order expansion αlsL
l−1 lies in O

(
α2
sL
)
, which we expand as

M̂(+)
NLL

(
s

−t

)
=

∞∑
l=1

(αs
π

)l
Ll−1M̂(+,l)

NLL . (1.6)

As a consequence of BFKL evolution[8], when the order is growing, the ladder graph structure becomes manifest

(see (a) in Figure 1). The loop expansion of the reduced even amplitude M̂(+)
NLL is calculated from integrating the

free momentum k of the wave function Ω(p, k) as [8]

M̂(+)
NLL

(
s

−t

)
= −iπ

∫
[Dk]

p2

k2(p− k)2
Ω(p, k)T2

s−uM
(tree)
ij→ij , (1.7)

where [Dk] ≡ π
B0

(
µ2

4πe−γE

)ε
d2−2εk

(2π)2−2ε and B0(ε) = eεγE Γ2(1−ε)Γ(1+ε)
Γ(1−2ε) from dimensional regularization. There are

singularities in M̂(+)
NLL

(
s
−t

)
which come from the integral, though the integrand Ω is finite[8]. One way of factorizing

the singular part and the finite part M̂(+)
NLL

(
s
−t

)
is to split the integrand Ω to soft and hard components proposed

in [8]. The wave function Ω(p, k) can be decomposed as:

Ω(p, k) = Ωs(p, k) + Ωh(p, k), (1.8)

according to the criteria that the hard part got vanished in the soft limit: one of the external momenta tends to
zero, i.e. limk→0 Ωh(p, k) = limk→p Ωh(p, k) = 0. Substituting the splitting of wave function (1.8) into (1.7),

M̂(+)
NLL

(
s

−t

)
= M̂(+)

NLL,s

(
s

−t

)
+ M̂(+)

NLL,h

(
s

−t

)
. (1.9)

With this splitting, there is no singularity when integrating Ωh, and the corresponding hard part M̂(+)
NLL,h

(
s
−t

)
in

(1.9) is finite. Thus as one may see in (3.39) of [8], the hard part of the infrared-renormalized amplitude H(+)
NLL,h

coincide with M̂(+)
NLL,h

H(+)
NLL,h = M̂(+)

NLL,h, (1.10)

and we won’t distinguish them here.

And all the singularities lie in the integral of soft Ωs and thus in M̂(+)
NLL,s

(
s
−t

)
. Moreover, one can do resumming

for the singular and finite part of M̂(+)
NLL,s

(
s
−t

)
[7][8], expressing them to a analytic functions valid at all orders.

As for M̂(+)
NLL,h

(
s
−t

)
, however, there is no general expression of M̂(+)

NLL,h

(
s
−t

)
. But it has mathematical structures,

which we will explain below, that enable us propose an ansatz that it may be expanded to all order via some finite
terms of the order expansion of closed string tree level sphere integral.

As computed in (5.19) of [8], e.g.,

M̂(+,3)
NLL,h =

iπ

3!

{
3ζ3

4
C1C2

}
T2
s−uM(tree ),

M̂(+,5)
NLL,h =

iπ

5!

{
−5ζ5

2
C2

1C
2
2 +

45ζ5

2
C1C

3
2

}
T2
s−uM(tree),

M̂(+)
NLL,h

(
s
−t

)
has the number-theoretic properties that all the multiple zeta values are single valued (SVMZV)

without any even zeta nunmber. For details of SVMZV, see [4][11][19]. In addition [8], l-loop M̂(+,l)
NLL,h

(
s
−t

)
contains

weight-l SVMZV or the product of SVMZVs whose total weight is l. With this we call M̂(+,l)
NLL,h

(
s
−t

)
is of uniform
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weight. So M̂(+,l)
NLL,h

(
s
−t

)
is of single-valued and uniform weight. Five-point tree level closed string amplitude also

share the same properties (see the term in the bracket in (1.11) here or (6.24) in [18]):

M(1, 2, 3, 4, 5) = AtS0 (1 + 2ζ3M3 + 2ζ5M5...) AYM , (1.11)

where in string theory, α is the coupling constant and M3 is of O(α3), and M5 is of O(α5), etc.
That’s why we made an ansatz that the single-valued 5-point string disk amplitude could be the basis to expand

the hard part of two-to-two partonic scattering amplitude in Regge limit. The rest of the paper is organised as
follows: In Section 2, we introduce how to do single value map on harmonic poly-logarithms (HPL) or multiple
poly-logarithms (MPL) with illuminative examples; in Section 3 we describe motivic single value map directly acting
on multiple zeta values; Subsequently, Section 4 and Section 5 give examples, from baby model to complicated case,
on deriving tree-level closed string amplitude from open string amplitude via single value map; In Section 6, we
detailed state how we boil the ansatz down to equations, and find the inconsistency in solving the equation set; In
Section 7, we briefly conclude the thesis by stating the result we have found, and describe how to further continue
our study.

2 Single value map

2.1 Words and algebra

The single value map is more conveniently understood via alphabet perspective. We will first define the shuffle
product and then state how to use it to construct a single value map. After that, some easy example will help to
illustrate the mathematics.

Suppose we letters in alphabet: a, b, c, d... ∈ C. The concatenation of letters gives us words, such as a, ab, abc ∈ C∗.
Meanwhile, introducing addition ”+”, which operates on two words by just adding them together as common
addition, we could construct polynomials as ab+ cba+ dabb. Restricting the coefficients in rational number Q, one
could construct a Q free algebra Q 〈C〉 (also denoted as Q 〈a, b, c, ...〉) [14]. Note that this algebra contains empty
word ε as unit element.

Definition 2.1. The inner product or say, the duality, of words, is [14]

(u | v) = δvu, u, v ∈ C∗.

Definition 2.2. The right residual of word p w.r.t. q is defined via the inner product[14]

(p . q|z) = (p|qz) = δqzp ∀z ∈ C∗.

Example 2.1. The most important example at this moment is

pw . p = w (2.1)

Here is the detail of (2.1):

(pw . p|z) = (pw|pz) = δpzpw ∀z ∈ C∗. (2.2)

The above equation vanishes unless z = w. So

pw . p = w. (2.3)

2.2 Lexicographic order and Lyndon word

For this topic, we need to introduce an ordering for words.
Suppose we have a set of letters or an ordering, e.g., alphabet ordering (a < b < c < d < ... < x < y < z). Given

two words u, v, u = u1, u2..., un, v = v1, v2..., vn,
1. when m = n, the number of word contained are the same, we will say v > u if read from left to right,

u1 = v1, u2 = v2, ...ui−1 = vi−1 and ui < vi;
2. when m 6= n, we will first enlarge the shorter one, say u, by inserting n−m smallest (smaller than any letter)

”blank” letters in the end of u and thus u is the same length with v. Then performing the first step again, we should
get the relation between u and v.

With the above Lexicographic order,
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Definition 2.3. w is an Lyndon word, if for any splitting of w: w = uv and u, v 6= ∅, we have w < vu.

We should also introduce the Lie bracket of the Lyndon word l:

Definition 2.4. Factorizing the longest Lyndon word u in l = vu, the lie bracket [l] is [14]

[l] = l for length (l) = 1,

[l] = [v, u].

Example 2.2. Here are some simple examples of lie bracket (a < b)

[a] = a

[ab] = ab− ba
[ababb] = [[ab] , [abb]] = [[ab] , [abb]] = [[a, b] , [[a, b] , b]] .

A polynomial f is some linear combination of words and can be expanded as

f =
∑
w∈C∗

(f | w)w. (2.4)

To do the expansion, we need to introduce the shuffle product.

2.3 Shuffle product and word expansion

Consider words u and v ∈ C∗ with construction u = u1u2...un, v = v1v2...vm.

Definition 2.5. The shuffle of u and v, u III v, is the sum of all permutations of the letters in u and v which
preserves the original word orderings, i.e., the letter order u1, u2, ..., un ∈ u will not change in the result of the shuffle
and so will v′s.

Example 2.3.

a III bc = abc+ bac+ bca.

Note: the shuffle product is commutative and associative, (S.2.3 in[2])

u III v = v III u

(u III v) III w = u III (v III w).

Before doing the Lyndon decomposition, we shall first introduce some basic concepts. Recall the expansion of
polynomial for words (2.4).

Definition 2.6. The degree of f is defined by the maximum length of w which makes (f |w) 6= 0.

Example 2.4. If f = ab, the degree is 2. If f = ab+ abb, the degree is 3.

We denote the set of all Lyndon words of length less than the degree of f as Ld. The decomposition of f takes
the form [14]

f =

n∑
i=0

Ai III lIIIimax, (2.5)

where lmax is the greatest word in Ld ( e.q.(13) in [14]), and n is picked case by case, i.e., the length of lIII nmax , may
not transcend Ld. This is because one may arrive at vanishing Ak for k > j if the length of lIII jmax already exceeds
the degree of f . We shall also introduce the basic differential formula here. Recalling right residue (2.1), for shuffle
product we have [14]

(f III g) . p = (f . p) III g + f III (g . p).
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Three words getting shuffled case:

(f III g III h) . p = (f III g . p) III h+ f III g III (h . p)

= ((f . p) III g + f III (g . p)) III h+ f III g III (h . p)

= g III h III (f . p) + f III h III (g . p) + f III g III (h . p).

One can prove by induction that

(f1 III f2... III fn) . p =
n∑
i=1

f1 III f2 III ...(fi . p)... III fn. (2.6)

(2.6) shows that

l III m
max . lmax = m l III m−1

max .

Now we can do the right residue on f in (2.4). For instance,

f1 = f . lmax =
n∑
i=1

iAi III l III i−1
max (2.7)

f2 = f . l2max =
n∑
i=2

i(i− 1)Ai III l III i−2
max , (2.8)

one can easily generate to the case when lmax becomes [lmax].
Here the Ai is obtained via right residual of Lie bracket of lmax and will not contain lmax. Define L′d = Ld\ {lmax}.

We can further decompose the Ai via l′max ∈ L′d, where l′max is the greatest word in L′d. Examples 2.5 and 2.6 are
given in the next Section 2.4.

2.4 Lyndon decomposition

In this section, we will decompose word to Lyndon word. Every word can be expressed by a combination of Lyndon
Word [11]. This is a really powerful result as Lyndon decomposition can express some poly-logarithms with a fixed
value to something we know. Moreover, it also simplifies the result of single value map, which can be seen below.

With preparation in 2.3, we are able to do Lyndon decomposition. We will use the list (2.9) (given in [14]) to
decompose words that appear in MZV’s.

{0,00001,0001,00011,001,00101,0011,00111,01,01011,011,0111,01111,1} (2.9)

Let’s see some examples: (the ”bold front” numbers are letters.)

Example 2.5. We will be following the process described at the end of Section 2.3. Let’s look at Lyndon word list
(2.9) from right to left (the greatest to the smallest), we can first assume:

10 = A2 III 1 III 2 +A1 III 1 +A0.

We derive the expansion coefficient as follows:

10 . [1] = 10 . 1 = 0 = 2A2 III 1 +A1.

0 . 1 = 0 = 2A2

So

A2 = 0

A1 = 0,

and A0 = −01.

To sum up:

10 = −01 + 0 III 1. (2.10)
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End of calculation.

Example 2.6. For 100, from calculation in example 2.5, we may not have too many 1′s in our assumption, as n
in 1III n should not exceed the number of 1 in the word we want to expand. Looking at list (2.9) from right to left,
and we may conjecture that

100 = A1 III 1 +A0. (2.11)

Then

100 . [1] = 00 = A1. (2.12)

Now we further decompose A1. A1is of length 2. Apart from 1, the greatest Lyndon word for length 2 is 01.
However, notice that A1 in (2.12) does not have any 1 or 01. So we may not use 01 to expand A1. Further
observation shows that what is left on the list (2.9) for length 2 is Lyndon word 0. As there are two 0’s in A1, we
can conjecture that

A1 = A21 III 0 III 2 +A11 III 0 +A01. (2.13)

We derive the coefficients A21, A11, A01 here:

A1 . 0 = 00 . 0 = 0 = 2A21 III 0 +A11, (2.14)

0 . 0 = 1 = 2A21. (2.15)

So

A21 =
1

2
. (2.16)

Since A21 is already a number, we can omit the shuffle as,

const III w = const× w.

Substituting (2.16) into (2.14), A11 = 0, A01 = 0, so in (2.11)

A1 = A210 III 0 =
1

2
0 III 0 . (2.17)

One can arrive at

A0 = −010− 001, (2.18)

via expanding equation (2.11), and make both side equal.
With (2.11) and (2.17) (2.18),

100 =
1

2
0 III 0 III 1− 010− 001. (2.19)

Further proceed: decomposing A0. Reading the list (2.9) from right to left, the greatest word for length three
containing only one 1 is 01, so

A0 = A10 III 01 +A00 (2.20)

As 001 is already a Lyndon, we don’t need to do any thing for this. So decompose A0 only need decomposing 010

010 . [01] = 0.

After fixing the constant term, 010 reads

010 = 0 III 01− 2× 001. (2.21)

Substitute (2.21) into (2.19),

100 =
1

2
0 III 0 III 1− 0 III 01 + 001. (2.22)

End of calculation.
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2.5 Single value map

Single value map on words is defined in [19]. For u, v ∈ C∗

sv w =
∑
uv=w

u III ṽ. (2.23)

Note: here we have used a different convention from [19], in order to be compatible with the result with
PolyLogTool [11].

Some note about the notation: Tilde means the reversal of word while bar means the complex conjugate of words
which corresponds to the complex conjugate of MZVs.(see below). The single value map is linear [11] (S.9.1).

Assuming that we only have 0 and 1 in the alphabet C, we could have:

Example 2.7.

sv01 = III 0̃1 + 0 III 1̃ + III 01. (2.24)

sv001 = III 100 + 0 III 10 + 00 III 1 + 001 III (2.25)

Although we have this map on words, our ultimate purpose is to map them back to multiple poly-logarithms
and then MZVs.

The multiple poly-logarithms is defined iteratively via integral below.

G(0; z) = 1,

G (0;w; z) = G (0; a1a2a3 . . . an; z) =

∫ z

0

dt

t− a1
G (0; a2a3 . . . an; t) , (2.26)

where the second argument a1a2...an is a word, and others are number or variable. The remarkable duality is that
they have a one-to-one correspondence with the word in w [11] (S.4.2).

w ⇔ G (0;w; z) . (2.27)

Note also that [11],

a III b⇔ G(0; a; z)G(0; b; z). (2.28)

So from (2.23) and (2.28),

Gsv(0;w; z) =
∑
uv=w

G(0;u; z)G(0; ṽ; z̄). (2.29)

Example 2.8. From (2.24) and (2.25),

Gsv(01; z) = G(0; 01; z) +G(0; 0; z)G(0; 1; z) +G(0; 10; z), (2.30)

Gsv(001; z) = G(0; 001; z) +G(0; 0; z)G(0; 10; z) +G(0; 00; z)G(0; 1; z) +G(0; 100; z). (2.31)

Note: we have used: empty word ε ⇔ G(0; z) = 1. One can also directly take single value map on multiple
poly-logarithms. this time the sv map is not only linear but also preserves multiplicity, i.e. svG(0;w; z)G(0;u; z) =
svG(0;w; z)svG(0;u; z).

There are also some important definitions that we shall list here:

Definition 2.7. Harmonic polylogarithms (HPL)

H(0 . . . 01︸ ︷︷ ︸
n1

0 . . . 01︸ ︷︷ ︸
n2

· · · 0 . . . 01︸ ︷︷ ︸
ne

; z) ≡ (−1)eG(0; 0 . . . 01︸ ︷︷ ︸
n1

0 . . . 01︸ ︷︷ ︸
n2

· · · 0 . . . 01︸ ︷︷ ︸
ne

; z). (2.32)

Definition 2.8. Definition of mulit-zeta value (MZV):

ζn1,n2,...,ne ≡ (−1)eG(0; 0 . . . 01︸ ︷︷ ︸
n1

0 . . . 01︸ ︷︷ ︸
n2

· · · 0 . . . 01︸ ︷︷ ︸
ne

; 1) = H(0 . . . 01︸ ︷︷ ︸
n1

0 . . . 01︸ ︷︷ ︸
n2

· · · 0 . . . 01︸ ︷︷ ︸
ne

; 1). (2.33)
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2.6 Single valued map of ζ2 and ζ3

With equation (2.10), (2.30) and also the correspondence (2.28) between words and poly-logarithms, we can write
our Gsv(01; z) as

Gsv(01; z) = G(0; 01; z) +G(0; 0; z)G(0; 1; z)−G(0; 01; z) +G(0; 0; z)G(0; 1; z)

Gsv(01; z) = G(0; 0; z)G(0; 1; z) +G(0; 0; z)G(0; 1; z) (2.34)

If we want to know what’s going on for the MZV, we have to set z, z̄ → 1. This process has some subtleties that we
should state here. (e.q.(3.2) in [11])

lim
z→1

G(0; 0; z) = lim
z→1

ln(z) = 0. (2.35)

With (2.28),

G(0; 0, ..., 0︸ ︷︷ ︸
n

; 1) = 0, for n ≥ 1. (2.36)

G(0; 1; 1) =

∫ 1

0

dt

t− 1
diverges. (2.37)

Note, however, we can renormalize G(0; 1; 1) as G(0; 1; 1) = 0 (section3.3 in [10]).
Substituting (2.36)(2.37) into (2.34),

Gsv(01; 1) = 0. (2.38)

With (2.33)

svζ2 = 0. (2.39)

End of calculation

Let’s go to Gsv(001, z). Substitute (2.22) (2.10) into (2.31)

Gsv(001; z) = G(0; 001; z) +G(0; 0; z) (−G(0; 01; z) +G(0; 0; z)G(0; 1; z)) +G(0; 00; z)G(0; 1; z.)

+ G(0; 00; z)G(0; 1; z)−G(0; 0; z)G(0; 01; z) +G(0; 001; z)

When z, z̄ → 1,

Gsv(001; 1) = 2G(0; 001; 1)− 2G(0; 0; 1)G(0; 01; 1) + 4G(0; 00; z)G(0; 1; z). (2.40)

With (2.33),

svζ3 = 2ζ3. (2.41)

End of calculation

A more general proof of single valued single zeta value sv ζi will be given in the motivic single value map (see
Example 3.1).

Remark 2.1. These are just very elementary example of doing single value map in alphabet perspective. If we go to
a word of length of 4 and higher, i.e. 0010, 0011 etc, an auxiliary y-alphabet is included to do single value map in
a sense of series expansion. See section 3.3 in [10] for more details. The next section will give a motivic version of
single value map.
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3 Single valued map in motivic contest

There is another effective way to construct a single value map directly on MZV’s. To perform this, we may upgrade
the MZVs to motivic version ζm... . There is a detailed description in section 3.2 in [5], but, in a word, we can view
ζm... and ζ... as the same in doing single value map.

3.1 Duality

The ordinary MZVs span a rational vector space

Z = Q 〈ζ2, ζ3, ζ5, ...〉 , (3.1)

with basis and dimension conjectured in Table 1.
Introducing a new alphabet:

fi ∈ F , i ∈ 2n+ 1, n ≥ 1, (3.2)

F together with f2, the similar basis space structure is also manifest in Table 2 for space HMT+ ∼= U , where

U = Q 〈F〉 ⊗Q Q [f2] . (3.3)

So Brown conjectured that they are not only similar but isomorphic (see the argument from (3.3) to (3.8) in [5] for
more details):

Z ∼= HMT+ . (3.4)

Note: in Brown’s original notation U = Q 〈F〉 ⊗Q Q [f2], but U ∼= HMT+ . We just use HMT+ here for simplicity.

Weight N 1 2 3 4 5 6 7 8 ...

Basis for ∅ ζ(2) ζ(3) ζ(2)2 ζ(5) ζ(3)2 ζ(7) ζ(3, 5) ...
ZN ζ(3)ζ(2) ζ(2)3 ζ(5)ζ(2) ζ(3)ζ(5) ...

ζ(3)ζ(2)2 ζ(3)2ζ(2) ...
ζ(2)4 ...

dimVN 0 1 1 1 2 2 3 4 ...

Table 1: Conjectural basis of vector space spanned by MZVs [5].

Weight N 1 2 3 4 5 6 7 8

∅ f2 f3 f2
2 f5 f3IIIf3 f7 f5f3

Basis for f3f2 f3
2 f5f2 f3IIIf5

HMT+N f3f
2
2 f3IIIf3f2

f4
2

dim 0 1 1 1 2 2 3 4

Table 2: Basis for vector space spanned by F [5].

Remark 3.1. Note also that: one may find in Table 1,2, the shuffle product for fi basis corresponds to two zeta value
basis times together, except for f2 or ζ2. The difference between f2 or ζ2 from others is that f2 or ζ2 is viewed as a
constant[5].

Why we introduce the space HMT+? Because when a general ordinary MZVs G(a0; a1, a2, ..., an; an+1), which
span a ring R, are upgraded into Gm(a0; a1, a2, ..., an; an+1), the Gm(a0; a1, a2, ..., an; an+1)’s expand a space H which
is isomorphic to H/(ζm2 H)⊗Q Q[ζm2 ]. One can see that H/(ζm2 H)⊗Q Q[ζm2 ] is similar to (3.3), and indeed H can be
embedded into HMT+ . (Section 3.2 of [5]). Note also that there is also a ring homomorphic from H to R spanned
by G(a0; a1, a2, ..., an; an+1) [5].

11



Moreover, denoting the space of sum of module of weight less than or equal to N as H≤N = ⊕≤NH and
HMT+≤N = ⊕≤NHMT+ , H≤N can be mapped into HMT+≤N (U≤N ) via an normalized isomorphic trivialization φ as
([5], [18]):

φ : H≤N −→ HMT+≤N (U≤N )

ζm2 7→ f2

ζmi 7→ fi for i = 2k + 1, k = 1, 2, 3, ...

Conclusion: so this means that given a specific weight N , one can say that

H≤N ∼= HMT+≤N ∼= Z≤N , (3.5)

where the last ∼= we have used (3.4). So we can make the duality that ζm... ⇔ ζ... ⇔ fi...fj .
The relation of all above spaces can be summarize in Figure 2.

Figure 2: The relation for all the spaces mentioned in Subsection 3.1

3.2 Motivic single value map

Knowing that any structure in ζm... will be inherited ζ... is not enough. Doing Motivic Single Value Map requires also
first decomposing a motivic MZV to Motivic Basis as in Table 2. Luckily, [5] gives us a very detailed description on
how to map ζm. .. to fi...fj . See definition 4.3 4.4 and 4.6, also example 4.7 and Section 6 in [5]. We will just list
what we will use here, which are given in [18].

φ
(
ζm5,3,3

)
= −5

2
f5 (f3IIIf3) +

4

7
f5f

3
2 −

6

5
f7f

2
2 − 45f9f2

φ
(
ζm6,4,1,1

)
=

1799

18
f9f3 − 32f7f3f2 +

1133

16
f7f5 + 29f5f7 − 11f2

5 f2 −
16

5
f5f3f

2
2

+
1

3
f3 (f3 III f3 III f3)− 799

72
f3f9 + 10f3f7f2 −

1

5
f3f5f

2
2 −

36

35
f2

3 f
3
2

φ
(
ζm5,5,3

)
= 25f2

5 f3 − 10f9f
2
2 −

275

2
f11f2

φ
(
ζm7,3,3

)
= 30f2

5 f3 − 7f7 (f3 III f3) +
32

35
f7f

3
2 −

56

5
f9f

2
2 −

407

2
f11f2
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With these examples, we are able to introduce the motivic single value map for fi ∈ F c.f. (3.2).
The single value map is quite the same as (2.23). However, there is no bar, (see e.q.(7.3) in [4]):

svw =
∑
uv=w

u III ṽ. for fi ∈ F (3.6)

This is meaningful, because fi ∈ F is directly related to MZVs. When we convert multi poly-logarithm to MZV’s,
we take z → 1, so there is no difference between z or z̄.

Example 3.1.

svf2 = 0;

svfi = fi + f̃i = 2fi for i = 2k + 1, k = 1, 2, 3..., (3.7)

where the the reversal of a single word f̃i = fi. When we go back to MZVs, this becomes:

svζ2 = 0;

svζi = 2ζi for i = 2k + 1, k = 1, 2, 3..., (3.8)

Some more example is given in section 7.2 of [4]
We will construct more complicated motivic single value map in Section 5.2. So far we have complete our

introduction of single value map. Next, we will go into some specific example in string theory.

4 A baby model for single value map in four-points amplitude

It is proved that the single value map bridges the disk integral for open string tree-level amplitude and sphere integral
for closed string tree-level amplitude in string scattering [19]. The core of doing this is to calculate single-valued
MZVs in the expression. We will give a very simple example svZ4pt = J4pt to illustrate how this works. Consider
the scattering of n massless particles. Choose a frame where

∑n
i=1 ki = 0 and k2

i = 0. We then define the kinematic
factor as [18][19]

sij := 2αki · kj = sji, sij ∈ R, (4.1)

with

si,i = 0,
n∑
i=1

sij = 0 ∀ j = 1, 2, . . . , n. (4.2)

Note in high energy k2
i = 0, so sij = 2αki · kj , sij = 2αki · kj are equivalent.

Define Beta function:

B(x, y) :=

∫ 1

0
dt tx−1(1− t)y−1 =

Γ(x)Γ(y)

Γ(x+ y)
, (4.3)

and C function:

C(a, b) :=

∫
d2z |z|2a−2|1− z|2b−2 =

πΓ(a)Γ(b)Γ(c)

Γ(1− a)Γ(1− b)Γ(1− c)
, (4.4)

where we have applied the convention:d2z = dxdy. For more details, see proof of (4.3) and (4.4) in Section 6
Appendix of [9]. The 4 point disk Z4pt and 4 point sphere integral J4pt for a specific choice of kinematic factors
read:[19]

Z4pt :=

∫ 1

0

dz

z
zs12(1− z)s23 (4.5)

J4pt :=
1

π

∫
C

d2z

zz(1− z)
|z|2s12 |1− z|2s23 . (4.6)

We will now try to expand Z4pt and J4pt:

Z4pt =

∫ 1

0

dz

z
zs12(1− z)s23

=

∫ 1

0
dzzs12−1(1− z)1+s23−1.

(4.7)
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Comparing (4.7) with (4.3), we get

Z4pt =
Γ(s12)Γ(s23 + 1)

Γ(1 + s12 + s23)

=
1

s12

Γ(s12 + 1)Γ(s23 + 1)

Γ(1 + s12 + s23)

=
1

s12
exp[ln Γ(s12 + 1) + ln Γ(s23 + 1)− ln Γ(1 + s12 + s23)]

(4.8)

Using the identity log Γ(1 + x) = −γx+
∑∞

k=2
ζ(k)
k (−x)k, we further get

Z4pt =
1

s12
exp

[
−γ(s12 + s23 − (s12 + s23)) +

∞∑
k=2

ζ(k)

k
(−1)k

[
sk12 + sk23 − (s12 + s23)k

]]

=
1

s12
exp

[ ∞∑
k=2

ζ(k)

k
(−1)k

[
sk12 + sk23 − (s12 + s23)k

]] (4.9)

So

Z4pt =
1

s12
exp

[ ∞∑
k=2

ζ(k)

k
(−1)k

[
sk12 + sk23 − (s12 + s23)k

]]
(4.10)

Now let’s take a look at J4pt. We want J4pt to have similar form as C(a, b) (4.4).

J4pt =
1

π

∫
C

d2z

zz(1− z)
|z|2s12 |1− z|2s23

=
1

π

∫
C

d2z |z|2s12−2|1− z|2s23−2(1− z). (4.11)

We may change the integrand to some integral with the use of the definition of Gamma function
|z|2a−2 = 1

Γ(1−a)

∫∞
0 dt t−ae−|z|

2t, |1−z|2b−2 = 1
Γ(1−b)

∫∞
0 duu−be−|1−z|

2u. For convenience, we will set s12 = a s23 = b.

J4pt =
1

π

∫
d2zdudt

Γ(1− a)Γ(1− b)
t−au−be−|z|

2te−|1−z|
2u(1− z) (4.12)

If we take z = x+ iy, we have

J4pt =
1

π

∫
dxdydudt

Γ(1− a)Γ(1− b)
t−au−be−(t+u)(x2+y2)+2xu−u(1− z)

=
1

π

∫
dxdydudt

Γ(1− a)Γ(1− b)
t−au−b exp

(
−(t+ u)

[(
x− u

t+ u

)2

+ y2

]
− u+

u2

t+ u

)
(1− x− iy)

=
1

π

∫
dxdydudt

Γ(1− a)Γ(1− b)
t−au−b exp

(
−(t+ u)

[(
x− u

t+ u

)2

+ y2

]
− u+

u2

t+ u

)
(1− u

t+ u
−
(
x− u

t+ u

)
− iy)

=
1

π

∫
dxdydudt

Γ(1− a)Γ(1− b)
t−au−b exp

(
−(t+ u)

[(
x− u

t+ u

)2

+ y2

]
− u+

u2

t+ u

)
(

t

t+ u
−
(
x− u

t+ u

)
− iy).

(4.13)

The purpose of the above is to cook a vanishing integral like
∫

dx
(
x− u

t+u

)
e−(t+u)(x− u

t+u)
2

= 0,
∫

dy ye−(t+u)y2 = 0

and also Gaussian integral
∫

dx e−(t+u)(x− u
t+u)

2

=
√

π
t+u ,

∫
dy e−(t+u)y2 =

√
π
t+u .

So

J4pt =
1

π

∫
dxdydudt

Γ(1− a)Γ(1− b)
t−au−b exp

(
−(t+ u)

[(
x− u

t+ u

)2

+ y2

]
− u+

u2

t+ u

)
t

t+ u
,

=

∫
dudt

Γ(1− a)Γ(1− b)
t−au−b exp

(
−u+

u2

t+ u

)
t

(t+ u)2
,

=

∫
dudt

Γ(1− a)Γ(1− b)
t−au−b exp

(
− ut

t+ u

)
t

(t+ u)2
.

(4.14)
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We then change (t, u) → (α, β) with t = αβ, u = α(1 − β),α ∈ [0,∞) and β ∈ [0, 1]. The absolute value for the
jacobian determinant is ∣∣∣∣∣

[
∂t
∂α

∂t
∂β

∂u
∂α

∂u
∂β

]∣∣∣∣∣ =

∣∣∣∣[ β α
(1− β) −α

]∣∣∣∣ = | − α| = α.

So

J4pt =
1

Γ(1− a)Γ(1− b)

∫ ∞
0

dα

∫ 1

0
dβ αα−aβ−aα−b(1− β)−be−β(1−β)ααβ

α2
. (4.15)

Note the integral inside J4pt which we denote A, can be modified as:

A =

∫ ∞
0

dα αα−aα−b
α

α2
e−β(1−β)α,

=

∫ ∞
0

dα α−a−be−β(1−β)α,

= (β(1− β))a+b−1

∫ ∞
0

dαβ(1− β) (αβ(1− β))−a−be−β(1−β)α,

= (β(1− β))a+b−1

∫ ∞
0

dαβ(1− β) (αβ(1− β))1−a−b−1e−β(1−β)α,

= (β(1− β))a+b−1Γ(1− a− b).

(4.16)

So

J4pt =
Γ(1− a− b)

Γ(1− a)Γ(1− b)

∫ 1

0
dβ β1−a(1− β)−b(β(1− β))a+b−1,

=
Γ(1− a− b)

Γ(1− a)Γ(1− b)

∫ 1

0
dβ βb+1−1(1− β)a−1,

=
Γ(1− a− b)Γ(1 + b)Γ(a)

Γ(1− a)Γ(1− b)Γ(1 + a+ b)
.

(4.17)

Note: if we have c = −a− b then

J4pt =
Γ(1 + c)Γ(1 + b)Γ(a)

Γ(1− a)Γ(1− b)Γ(1− c)
. (4.18)

From momentum conservation, k1 +k2 +k3 +k4 = 0, we have k2
4 = 0 = 2(k1 ·k2 +k1 ·k3 +k2 ·k3), so s12 +s13 +s23 = 0.

Thus, the kinematic factor has the correspondence with a, b, c in (4.18). So we write the kinematic factors s12 = a
s23 = b, and then follow the same step of (4.9). We get

J4pt =
Γ(1 + s13)Γ(1 + s23)Γ(s12)

Γ(1− s12)Γ(1− s23)Γ(1− s13)
,

=
1

s12

Γ(1 + s13)Γ(1 + s23)Γ(1 + s12)

Γ(1− s12)Γ(1− s23)Γ(1− s13)
,

=
1

s12
exp

[
−γ(s12 + s23 + s13 + s12 + s23 + s13) +

∞∑
k=2

ζ(k)

k

(
(−1)k(s12

k + s23
k + s13

k)− (s12
k + s23

k + s13
k)
)]

,

=
1

s12
exp

[ ∞∑
k=1

ζ(2k + 1)

2k + 1

(
(−1)(s12

2k+1 + s23
2k+1 + s13

2k+1)− (s12
2k+1 + s23

2k+1 + s13
2k+1)

)]
,

=
1

s12
exp

[ ∞∑
k=1

ζ(2k + 1)

2k + 1

(
−2(s12

2k+1 + s23
2k+1 + s13

2k+1)
)]

,

=
1

s12
exp

[ ∞∑
k=1

ζ(2k + 1)

2k + 1

(
−2(s12

2k+1 + s23
2k+1 − (s12 + s23)2k+1)

)]
.

(4.19)
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So

J4pt =
1

s12
exp

[ ∞∑
k=1

ζ(2k + 1)

2k + 1

(
−2(s12

2k+1 + s23
2k+1 − (s12 + s23)2k+1)

)]
. (4.20)

As we know, the sv map for Riemann zeta values is[19]:

.ζsv(2k) = 0, ζsv(2k + 1) = 2ζ(2k + 1) (4.21)

So form (4.10) and (4.21)

sv Z4pt =
1

s12
exp

[
sv

∞∑
k=2

ζ(k)

k
(−1)k

[
sk12 + sk23 − (s12 + s23)k

]]
,

=
1

s12
exp

[ ∞∑
k=1

2ζ(2k + 1)

2k + 1
(−1)

[
s2k+1

12 + s2k+1
23 − (s12 + s23)2k+1

]]
.

(4.22)

Compare (4.22) with (4.20),
sv Z4pt = J4pt. (4.23)

For those who may have the interest, there is a general proof of svZ = J in section 3.2 and section 3.3 of [19].

5 Single value map for 5 points

5.1 Hypergeometric function and scattering amplitude

The five-point tree-level open string scattering amplitude and tree-level closed string scattering amplitude is cal-
culated in [18]. Here we would show how the 5-point disk amplitude and the 6-point are related via the single
value map. Before we proceed, we would first introduce some formula related to hypergeometric function[12]. A
hypergeometric function of parameter a1...ap, b1, ...bq is defined as

Definition 5.1.

pFq

(
a1, a2, . . . , ap
b1, b2, . . . , bq

; z

)
=

∞∑
n=0

(a1)n (a2)n · · · (ap)n
(b1)n (b2)n · · · (bq)n

· z
n

n!
. (5.1)

where (a)n means (a)n := a(a+ 1)(a+ 2) · · · (a+ n− 1) and (a)0 = 1.

We could also have an integral representation: for Re c > Re b > 0, hypergeometric function

2F1

(
a, b
c

; z

)
=

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt. (5.2)

And the recursion relation:

p+1Fq+1

(
a1, a2, . . . , ap, ap+1

b1, b2, . . . , bq, bq+1
; z

)
=

Γ (bq+1)

Γ (ap+1) Γ (bq+1 − ap+1)

∫ 1

0
tap+1−1(1− t)bq+1−ap+1−1

pFq

(
a1, a2, . . . , ap
b1, b2, . . . , bq

; zt

)
dt, (5.3)

for Re bq+1 > Re ap+1 > 0.
Let’s go back to our disk integral. A general disk integral with colour indices τ and ρ is given by [19]

Z(τ | ρ) :=

∫
−∞≤zτ(1)≤zτ(2)≤...≤zτ(n)≤∞

dz1dz2 . . . dzn
volSL2(R)

(−1)n−3
∏

1≤i<j≤n |zi − zj |
sij

zρ(1),ρ(2)zρ(2),ρ(3) · · · zρ(n−1),ρ(n)zρ(n),ρ(1)
, (5.4)
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where n is the number of external points. To fix the gauge freedom volSL2(R), we have to set zτ(1) = 0, zτ(n−1) =
1, zτ(n) =∞ and also inserting |(zτ(1) − zτ(n−1))(zτ(1) − zτ(n))(zτ(n−1) − zτ(n))| in the numerator. So

Z(1, 2, 3, 4, 5|1, 2, 5, 3, 4)

= lim
z5→∞

∫
0≤z2≤z3≤1

dz2dz3

|(0− 1)(0− z5)(1− z5)|
(
zs122 zs133 |0− 1|s14 |z2 − z3|s23 |z2 − 1|s24 |z3 − 1|s34
|z1 − z5|s15 |z2 − z5|s25 |z3 − z5|s35 |1− z5|s45

)
(−z2)(z2 − z5)(z5 − z3)(z3 − 1)(1− 0)

=

∫ 1

0
dz3

∫ z3

0
dz2
∞2zs122 zs13

3 (z3 − z2)s23(1− z2)s24(1− z3)s34∞s15+s25+s35+s45

(z2)∞2(z3 − 1)(1− 0)
. (5.5)

Note that from identity for Mandelstam variables (4.2), ∞s15+s25+s35+s45 =∞0 = 1, so there is no divergent in the
integrand. With this,

Z(1, 2, 3, 4, 5 | 1, 2, 5, 3, 4) =

∫ 1

0
dz3

∫ z3

0
dz2

zs122 zs133 (z3 − z2)s23 (1− z2)s24 (1− z3)s34

z2 (z3 − 1)

= −
∫ 1

0
dz3

∫ 1

0
z3du

us12zs123 zs133 zs233 (1− u)s23 (1− z3u)s24 (1− z3)s34

z3u (1− z3)
,

(5.6)

where for the second equation, we have changed the variable z2 → u : z2 = z3u, trying to construct an integration
of hyper geometrical function like the one in (5.2). With this in mind,

Z(1, 2, 3, 4, 5 | 1, 2, 5, 3, 4) = −
∫ 1

0
dz3

∫ 1

0
duzs12+s13+s23

3 (1− z3)s34−1us12−1(1− u)s23(1− uz3)s24 ,

= −
∫ 1

0
dz3 z

s12+s13+s23
3 (1− z3)s34−1

∫ 1

0
du us12−1(1− u)s23(1− uz3)s24 .

(5.7)

From observation, b = s12 c = s23 + s12 + 1, so we write:

Z(1, 2, 3, 4, 5 | 1, 2, 5, 3, 4) = −
∫ 1

0
dz3 z

s12+s13+s23
3 (1− z3)s34−1 Γ(s12)Γ(s23 + 1)

Γ(s23 + s12 + 1)
2F1

(
−s24, s12

s12 + s23 + 1
; z3

)
. (5.8)

Then comparing (5.8) with the recursive relation of hyper geometric function (5.3), we have a3 = s12 + s13 +
s23 + 1, b2 = s12 + s13 + s23 + s34 + 1. So

Z(1, 2, 3, 4, 5 | 1, 2, 5, 3, 4) = −Γ(s12)Γ(s23 + 1)Γ(s12 + s13 + s23 + 1)Γ(s34)

Γ(s23 + s12 + 1)Γ(s12 + s13 + s23 + s34 + 1)

× 3F2

(
−s24, s12, s12 + s13 + s23 + 1

s12 + s23 + 1, s12 + s13 + s23 + s34 + 1
; z3

)
.

(5.9)

End of calculation

We may use the above five-point open amplitude. But currently the five-point open amplitude we are working
on is in [18]:

Definition 5.2.

A(1, . . . , N) =
∑

σ∈SN−3

AYM (1, 2σ, . . . , (N − 2)σ, N − 1, N)F σ(1,...,N) (sij) (5.10)

where σ the permutation group element of SN−2[18]. E.g.

F
(23...N−2)
(1,...,N) (sij) = (−1)N−3

∫ N−2

zi<zi+1

N−2∏
j=2

dzj

(∏
i<l

|zil|sil
)

[N/2]∏
k=2

k−1∑
m=1

smk
zmk

 N−2∏
k=[N/2]+1

N−1∑
n=k+1

skn
zkn

 , (5.11)

and other permutations are just swapping indices.
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For five points amplitude, according to (5.10), one may have

A(1, 2, 3, 4, 5) = AYM (1, 2, 3, 4, 5)F
(23)
(1,2,3,4,5) +AYM (1, 3, 2, 4, 5)F

(32)
(1,2,3,4,5)

A(1, 3, 2, 4, 5) = A(1, 2, 3, 4, 5)|2⇐⇒ 3.
(5.12)

Although (5.11) and (5.4) are different, one may arrive at similar integral expression for F
(23)
(1,2,3,4,5) and F

(32)
(1,2,3,4,5) via

(5.11) and Euler or Selberg integrals[18]. Below integrals are just as (5.7).

F
(23)
(1,2,3,4,5) = s12s34

∫ 1

0
dx

∫ 1

0
dyxs45ys12−1(1− x)s34−1(1− y)s23(1− xy)s24 , (5.13)

F
(32)
(1,2,3,4,5) = s13s24

∫ 1

0
dx

∫ 1

0
dyxs45ys12(1− x)s34(1− y)s23(1− xy)s24−1. (5.14)

From procedure (5.7) to (5.9), we are able to arrive at
results

F
(32)
(1,2,3,4,5) =

Γ (1 + s12) Γ (1 + s23) Γ (1 + s34) Γ (1 + s45)

Γ (1 + s12 + s23) Γ (1 + s34 + s45)
3F2

[
−s24, s12, 1 + s45

1 + s12 + s23, 1 + s34 + s45
; 1

]
, (5.15)

F
(32)
(1,2,3,4,5) = s13s24

Γ (1 + s12) Γ (1 + s23) Γ (1 + s34) Γ (1 + s45)

Γ (2 + s12 + s23) Γ (2 + s34 + s45)
3F2

[
1− s24, 1 + s12, 1 + s45

2 + s12 + s23, 2 + s34 + s45
; 1

]
. (5.16)

So with (5.15)(5.16)(5.12), we have an analytic 5 point disk amplitude A(1, 2, 3, 4, 5) and A(1, 3, 2, 4, 5).

A(1, 2, 3, 4, 5) = AYM (1, 2, 3, 4, 5)Γ(1+s12)Γ(1+s23)Γ(1+s34)Γ(1+s45)
Γ(1+s12+s23)Γ(1+s34+s45) 3F2

[
−s24, s12, 1 + s45

1 + s12 + s23, 1 + s34 + s45
; 1

]
+AYM (1, 3, 2, 4, 5)s13s24

Γ(1+s12)Γ(1+s23)Γ(1+s34)Γ(1+s45)
Γ(2+s12+s23)Γ(2+s34+s45) 3F2

[
1− s24, 1 + s12, 1 + s45

2 + s12 + s23, 2 + s34 + s45
; 1

]
,

A(1, 3, 2, 4, 5) = A(1, 2, 3, 4, 5)|2⇐⇒ 3.

(5.17)

One can have a more compact form (useful in the next subsection):

A5pt =

(
A(1, 2, 3, 4, 5)
A(1, 3, 2, 4, 5)

)
=

(
F

(23)
(1,2,3,4,5) F

(32)
(1,2,3,4,5)

F
(23)
(1,3,2,4,5) F

(32)
(1,3,2,4,5)

)(
AYM (1, 2, 3, 4, 5)
AYM (1, 3, 2, 4, 5)

)
. (5.18)

End of results

In principle, performing single value map on amplitude A(1, 2, 3, 4, 5),A(1, 3, 2, 4, 5) is a problem of svF
(23)
(1,2,3,4,5) and

svF
(32)
(1,2,3,4,5). To do so, we need a formula as log Γ(1 +x) = −γx+

∑∞
k=2

ζ(k)
k (−x)k in four point case, making MZVs

manifest. Unfortunately, we don’t have one for hypergeometric function. But there is an ”intriguing observation”
given in [18], which we will mention in next subsection.

5.2 Single value map on five-point disk amplitude

The 5 point single-valued open string tree-level scattering amplitude may appear to be a basis to expand hard part of
a 2 to 2 partonic scattering amplitude in Regge limit, which is the problem we want to study in this paper. There is
another advantage of doing the single value map: one may only compute the 5 point disk integral in string theory and
the do the single value map to obtain a spherical one without calculating the complicated spherical integral. Let’s
now continue our calculation.We have calculated in Subsection 5.1, the compact form of five-point disk amplitude
A5pt (5.18). The ”intriguing observation” is that the compact form can be expanded as:

A5pt = PQ : exp

∑
n≥1

ζ2n+1M2n+1

 : AYM , (5.19)

in which MZVs are manifest. Note: AYM = (AYM (1, 2, 3, 4, 5), AYM (1, 3, 2, 4, 5))T is an irrelevant constant vector of

single value map. The rest ofA5pt in (5.19) has three main part we should focus: P, Q and : exp
{∑

n≥1 ζ2n+1M2n+1

}
:.
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Each is a 2 × 2 matrix and the ”normal order” we mean put the greatest index of M in the front. The expansion
below will be better illustrate the above description.

: exp

∑
n≥1

ζ2n+1M2n+1

 := 1 + ζ3M3 + ζ5M5 + ζ2
3M2

3 + ζ7M7 + ζ3ζ5M5M3..., (5.20)

P = 1 +
∑
n≥1

ζn2 P2n,

Q = 1 + Q8 + Q9 + Q10 + Q11 + Q13 + ..., (5.21)

The detailed value of Q is given in [18].
The single value map or sv in this chapter are the motivic version described in Section 3. We should mention

here that the motivic single value map acting on specify MZV will also preserve multiplication:

sv ζn1,n2,...,nkζm1,m2,...,ml = sv ζn1,n2,...,nk sv ζm1,m2,...,ml . (5.22)

So the single value map on A is

sv A5pt = (sv P) (sv Q)

sv : exp

∑
n≥1

ζ2n+1M2n+1

 :

 AYM . (5.23)

In the below calculation, we will just omit AYM , but will recover it in the very last end.

5.3 Single value map on P Q and the Exponential term

Single valued P to all orders:

As P part only contains 1 and multiples of ζ2, the single valued P is unit matrix 1.

sv P = 1 +
∑
n≥1

sv ζn2 P2n = 1 (5.24)

Single valued Exponential term to order 11:

sv : exp

∑
n≥1

ζ2n+1M2n+1

 : = 1 + 2M3ζ3 + 2M5ζ5 + 2M3.M3ζ
2
3 + 2M7ζ7 + 4ζ3ζ5M5.M3

+
4

3
M3.M3.M3ζ

3
3 + 2M9ζ9 + 4ζ3ζ7M7.M3 + 2M5.M5ζ

2
5 + 2M11ζ11

+ 4ζ2
3ζ5M5.M3.M3 +O(12). (5.25)

Calculations of sv Q to order 11

The most non-trivial bit of calculation is the single value map on Q where some complicated MZVs are presented.
We will first give the result of the single value map and then state the details on how to get it.

Calculation of svQ8:

Q8 =
1

5
ζ5,3 [M5,M3] ,

sv Q8 =
1

5
(sv ζ5,3) [M5,M3] = −2ζ3ζ5 [M5,M3] . (5.26)
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Here as one may see, we have to do the single value map on ζ5,3. As we described in Subsection 3.1, there is a
one-to-one correspondence between ζm... ↔ ζ... ↔ fi...fj . So from [5] e.q. (6.2),

φ
(
ζm5,3
)

= −5f5f3

svφ
(
ζm5,3
)

= −5 III f3f5 − 5f5 III f3 − 5f5f3 III

= −5× (2f3f5 + 2f5f3)

= −10f3 III f5 (5.27)

From Subsection 3.1, we know that (5.27) has already encoded the information for svζ5,3. Also from Remark 3.1,
the shuffle of words in F corresponds to the produce of two MZVs:f3 III f5 ↔ ζ3ζ5, so

svζ5,3 = −10ζ3ζ5. (5.28)

End of calculation of svQ8:

Calculation of svQ9:

Q9 = 0, so svQ9 = 0. (5.29)

End of calculation of svQ9

Calculation of svQ10:

Q10 =

{
3

14
ζ2

5 +
1

14
ζ7,3

}
[M7,M3] ,

sv Q10 =

{
3

14

(
sv ζ2

5

)
+

1

14
(sv ζ7,3)

}
[M7,M3] ,

=

{
12

14
ζ2

5 −
(

12

14
ζ2

5 + 2ζ3ζ7

)}
[M7,M3] ,

= −2ζ3ζ7 [M7,M3] . (5.30)

The detailed calculation of single valued ζ7,3 is given here. From [5] e.q. (6.3),

φ
(
ζm7,3
)

= −14f7f3 − 6f5f5.

svf7f3 = III f3f7 + f7 III f3 + f7f3 III = 2(f3f7 + f7f3) = 2f3 III f7,

Similarly svf5f5 = 2(f5f5 + f5f5) = 2f5 III f5.

So

svφ
(
ζm7,3
)

= −28f7 III f3 − 12f5 III f5,

svζ7,3 = −28ζ7ζ3 − 12ζ2
5 (5.31)

End of calculation of Q10

If we encounter some more sv ζn,m in the subsequent calculation, we will only offer the result directly.
Calculation of svQ11:

Q11 =

{
9ζ2ζ9 +

6

25
ζ2

2ζ7 −
4

35
ζ3

2ζ5 +
1

5
ζ5,3,3

}
[M3, [M5,M3]] , (5.32)

As all the first 3 terms have ζ2 which vanishes after the map, we will only have

sv Q11 =
1

5
sv ζ5,3,3 [M3, [M5.M3]] . (5.33)
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As given in e.q.(4.28) in [18],

φ
(
ζm5,3,3

)
= −5

2
f5 (f3IIIf3) +

4

7
f5f

3
2 −

6

5
f7f

2
2 − 45f9f2, (5.34)

Here we have f2 in or expression. As it corresponds to ζ2, we will have sv...f2... = 0, (see below).

sv

(
−5

2
f5 (f3IIIf3) +

4

7
f5f

3
2 −

6

5
f7f

2
2 − 45f9f2

)
= sv

(
−5

2
f5 (f3IIIf3)

)
,

= −10 (f3f3f5 + f3f5f3 + 2f5f3f3) ,

= −5f5 III f3 III f3 − 5f5 (f3 III f3) . (5.35)

The first term in (5.35) is easily identified with ζ5ζ
2
3 .

The second term will go into the 2Q11. See below. We just copy equation (5.35) and add those ...f2... terms
back which we have erased due to sv map.

sv

(
−5

2
f5 (f3IIIf3)

)
= −5f5 III f3 III f3 − 5f5 (f3 III f3) + 2

(
4

7
f5f

3
2 −

6

5
f7f

2
2 − 45f9f2

)
− 2

(
4

7
f5f

3
2 −

6

5
f7f

2
2 − 45f9f2

)
.

(5.36)

As we know in subsection 3.1, the trivialization φ is an isomorphism.
We can consider the inversion map φ−1 to get MZVs expression based on (5.36). φ−1(f2) = ζm2 , φ

−1(fi) =
ζmi , for i = 2k + 1, k = 1, 2, 3, .... We also have

φ−1(−5

2
f5 (f3IIIf3) +

4

7
f5f

3
2 −

6

5
f7f

2
2 − 45f9f2) = ζm5,3,3. (5.37)

So one may see what we want to do in (5.36): we try to cook an MZV part in Q11 (something we know already).
As you can see the last 4 terms on the first line of (5.36), they are just like 2×(5.34).

All in all, we have,

svζm5,3,3 = −5ζm5 ζ
m
3 ζ

m
3 + 2ζm5,3,3 −

8

7
ζm5 (ζm2 )3 +

12

5
ζm7 (ζm2 )2 + 90ζm9 ζ

m
2 . (5.38)

The first term comes from f5 III f3 III f3. And the second term comes from the rest of the first line of (5.36). The
second line of (5.36) corresponds to the last 3 terms of (5.38).

The procedure for Q12 and Q13 are almost the same, except that there is a special term in Q13 that needs special
care. Multiplying (5.38) by 1

5 , we have

sv
1

5
ζm5,3,3 = −ζm5 ζm3 ζm3 +

2

5
ζm5,3,3 −

8

35
ζm5 (ζm2 )3 +

12

25
ζm7 (ζm2 )2 + 18ζm9 ζ

m
2 . (5.39)

Compare (5.32) and (5.39),

sv Q11 =
1

5
sv ζ5,3,3 [M3, [M5.M3]] ,

= 2Q11 − ζm5 ζm3 ζm3 [M3, [M5.M3]] . (5.40)

End of calculation of Q11

Calculation of svA5pt, 11th order.
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Now we can expand our svA5pt to order 11: substituting (5.24),(5.25),(5.30)(5.40), we have

svA5pt = sv P sv (1 + Q8 + Q9 + Q10 + Q11) : exp

∑
n≥1

svζ2n+1M2n+1

 :,

=


(1− 2ζ3ζ5 [M5,M3]− 2ζ3ζ7 [M7,M3] + 2Q11 − ζm5 ζm3 ζm3 [M3, [M5.M3]])× 1 + 2M3ζ3 + 2M5ζ5 + 2M3 ·M3ζ

2
3 + 2M7ζ7 + 4ζ3ζ5M5 ·M3

+ 4
3M3 ·M3 ·M3ζ

3
3 + 2M9ζ9 + 4ζ3ζ7M7 ·M3 + 2M5 ·M5ζ

2
5

+ 4ζ2
3ζ5M5 ·M3 ·M3 + 2M11ζ11


 ,

=


1 + 2M3ζ3 + 2M5ζ5 + 2M3 ·M3ζ

2
3 + 2M7ζ7 + 2ζ3ζ5 {M5,M3}

+
4

3
M3 ·M3 ·M3ζ

3
3 + 2M9ζ9 + 2ζ3ζ7 {M7,M3}+ 2M5 ·M5ζ

2
5 + 2Q11

−4ζ3ζ5 [M5,M3] M3ζ3 − ζ5ζ3ζ3 [M3, [M5.M3]] + 4ζ2
3ζ5M5 ·M3 ·M3 + 2M11ζ11

 ,

=


1 + 2M3ζ3 + 2M5ζ5 + 2M3 ·M3ζ

2
3 + 2M7ζ7 + 2ζ3ζ5 {M5,M3}

+
4

3
M3 ·M3 ·M3ζ

3
3 + 2M9ζ9 + 2ζ3ζ7 {M7,M3}+ 2M5 ·M5ζ

2
5 + 2Q11

4ζ3ζ5M3M5M3ζ3 + 2M11ζ11 − ζ5ζ3ζ3 {2M3M5M3 −M3M3M5 −M5M3M3}

 ,

=


1 + 2M3ζ3 + 2M5ζ5 + 2M3 ·M3ζ

2
3 + 2M7ζ7 + 2ζ3ζ5 {M5,M3}

+
4

3
M3 ·M3 ·M3ζ

3
3 + 2M9ζ9 + 2ζ3ζ7 {M7,M3}+ 2M5 ·M5ζ

2
5 + 2Q11

2M11ζ11 + ζ5ζ3ζ3 {2M3M5M3 + M3M3M5 + M5M3M3}

 ,

=


1 + 2M3ζ3 + 2M5ζ5 + 2M2

3ζ
2
3 + 2M7ζ7 + 2ζ3ζ5 {M5,M3}

+
4

3
M3 ·M3 ·M3ζ

3
3 + 2M9ζ9 + 2ζ3ζ7 {M7,M3}+ 2M5 ·M5ζ

2
5

+2M11ζ11 + 2Q11 + ζ5ζ3ζ3 {M3, {M5,M3}}

 . (5.41)

End of calculation of svA5pt to 11th order

Calculation of svA5pt, 12th order.

Calculation of sv Q12.
Data of Q12 is from e.q.(3.17) in [18].

Q12 =

{
2

9
ζ5ζ7 +

1

27
ζ9,3

}
[M9,M3]

+
48

691

{
18

35
ζ3

2ζ
2
3 +

1

5
ζ2

2ζ3ζ5 − 10ζ2ζ3ζ7 −
7

2
ζ2ζ

2
5 −

3

5
ζ2

2ζ5,3 − 3ζ2ζ7,3

− 1

12
ζ4

3 −
467

108
ζ5ζ7 +

799

72
ζ3ζ9 +

2665

648
ζ9,3 + ζ6,4,1,1

}
{[M9,M3]− 3 [M7,M5]} .

(5.42)

Cancelling those with ζ2, we have

svQ12 = sv


{

2

9
ζ5ζ7 +

1

27
ζ9,3

}
[M9,M3] +

48

691

{
− 1

12
ζ4

3 −
467

108
ζ5ζ7 +

799

72
ζ3ζ9 +

2665

648
ζ9,3 + ζ6,4,1,1

}
{[M9,M3]− 3 [M7,M5]}

 . (5.43)

We then do the sv map on zeta values with odd subscript and also on ζ9,3 whose trivialization map value is from
(4.35) in [18]. We won’t give too much information on svζ9,3 here as one could easily do it when referencing to (4.35)
in [18] and the previous method for doing svζ5,3 and svζ7,3.

svQ12 =



{
8

9
ζ5ζ7 +

1

27
(−42ζ5ζ7 − 54ζ3ζ9)

}
[M9,M3] +

48

691

{
−4

3
ζ4

3 −
467

27
ζ5ζ7 +

799

18
ζ3ζ9 +

2665

648
(−42ζ5ζ7 − 54ζ3ζ9) + svζ6,4,1,1

}
{[M9,M3]− 3 [M7,M5]}

 (5.44)
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Now we do sv map on ζm6,4,1,1, Following the same procedure in calculation of Q10 or Q11, we first have from [18]
(4.35):

φ
(
ζm6,4,1,1

)
=

1799

18
f9f3 − 32f7f3f2 +

1133

16
f7f5 + 29f5f7 − 11f2

5 f2 −
16

5
f5f3f

2
2

+
1

3
f3 (f3 III f3 III f3)− 799

72
f3f9 + 10f3f7f2 −

1

5
f3f5f

2
2 −

36

35
f2

3 f
3
2 .

(5.45)

When we ignore all the ζ2 terms and make all the words shuffled, we have

svφ
(
ζm6,4,1,1

)
=

1799

9
f9 III f3 +

1133

8
f7 III f5 + 29× 2f5 III f7

+
4

3
f3 III f3 III f3 III f3 −

799

36
f3 III f9.

(5.46)

Doing inverse map of trivialization and also making the correspondence of ζm... ↔ ζ..., we have

sv (ζ6,4,1,1) =
1799

9
ζ9ζ3 +

1133

8
ζ7ζ5 + 29× 2ζ5ζ7

+
4

3
ζ3ζ3ζ3ζ3 −

799

36
ζ3ζ9.

(5.47)

Substituting (5.47) into (5.44), we have

svQ12 = 2[M5,M7]ζ5ζ7 + 2[M3,M9]ζ3ζ9. (5.48)

End of calculation of svQ12

Expanding : exp
{∑

n≥1 ζ2n+1M2n+1

}
: to 12th order, we can then have svA5pt to 12th order:

svA5pt = sv (1 + Q8 + Q9 + Q10 + Q11 + Q12) : exp

∑
n≥1

ζ2n+1M2n+1

 :,

= ...O(11) +
2

3
M4

3ζ
4
3 + 4M7M5ζ5ζ7 + 4M9M3ζ3ζ9 + svQ12 +O(13),

= ...O(11) +
2

3
M4

3ζ
4
3 + 4M7M5ζ5ζ7 + 4M9M3ζ3ζ9 + 2[M5,M7]ζ5ζ7 + 2[M3,M9]ζ3ζ9 +O(13),

= ...O(11) +
2

3
M4

3ζ
4
3 + 2 {M5,M7} ζ5ζ7 + 2 {M3,M9} ζ3ζ9 +O(13).

(5.49)

End of calculation of svA5pt to 12th order

Calculation of svA5pt, 13th order.

Calculation of svQ13

Q13 =

{
11

4
ζ2ζ11 −

2

35
ζ2

2ζ9 −
16

245
ζ3

2ζ7 −
3

35
ζ5,5,3 +

1

14
ζ7,3,3

}
[M3, [M7,M3]] ,

+

{
11

2
ζ2ζ11 +

2

5
ζ2

2ζ9 +
1

5
ζ5ζ5,3 +

1

25
ζ5,5,3

}
[M5, [M5,M3]] .

(5.50)

Again, erasing all the ζ2 bits, we have

sv Q13 =

{
− 3

35
sv ζ5,5,3 +

1

14
sv ζ7,3,3

}
[M3, [M7,M3]]

+

{
1

5
svζ5svζ5,3 + sv

1

25
ζ5,5,3

}
[M5, [M5,M3]] .

(5.51)
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We obtain trivialization data for φ
(
ζm5,5,3

)
and φ

(
ζm7,3,3

)
from e.q.(4.42) in [18].

φ
(
ζm5,5,3

)
= 25f2

5 f3 − 10f9f
2
2 −

275

2
f11f2 (5.52)

Erasing f2 bits in the trivialization and performing motivic sv map based on equation (3.6):

svφ
(
ζm5,5,3

)
= 25 svf2

5 f3

= 25
(
4f3f

2
5 + 2f5f3f5 + 2f2

5 f3

) (5.53)

Observing (5.52), we will modify (5.53) as:

svφ
(
ζm5,5,3

)
= 25

(
2(f3f5 III f5) + 2f2

5 f3

)
− 2

(
10f9f

2
2 +

275

2
f11f2

)
+ 2

(
10f9f

2
2 +

275

2
f11f2

)
. (5.54)

This is the reconstruction for MZV ζ5,5,3 of Q13. One may take a look at context around (5.36) and (5.37) for more
details on how we reconstruct Q11. From inverse trivialization and equations (5.52)(5.54),

svζm5,5,3 = 2ζm5,5,3 + φ−1(50f3f5 III f5)− 2(10ζm9 (ζm2 )2 +
275

2
ζm11ζ

m
2 ). (5.55)

φ−1(50f3f5 III f5) is a highly non-trivial term that we should illustrate below. Next we go to trivialization of ζ7,3,3:

φ
(
ζm7,3,3

)
= 30f2

5 f3 − 7f7 (f3 III f3) +
32

35
f7f

3
2 −

56

5
f9f

2
2 −

407

2
f11f2. (5.56)

Again eliminating f2 bits and doing sv map based on (3.6):

svφ
(
ζm7,3,3

)
= 30

(
2 (f3f5 III f5) + 2f2

5 f3

)
− 14

(
4f7f

2
3 + f2

3 f7 + f3f7f3

)
,

= 30
(
2 (f3f5 III f5) + 2f2

5 f3

)
− 14 (f7 (f3 III f3) + f3 III f3 III f7)

+2

(
32

35
f7f

3
2 −

56

5
f9f

2
2 −

407

2
f11f2

)
− 2

(
32

35
f7f

3
2 −

56

5
f9f

2
2 −

407

2
f11f2

)
, (5.57)

where the last equation is the reconstruction of ζm7,3,3 in Q13. So looking at (5.56) and (5.57), we have

svζm7,3,3 = 2ζm7,3,3 + ζm7 (ζm3 )2 + 60φ−1(f3f5 III f5)− 2

(
32

35
ζm7 (ζm2 )3 − 56

5
ζm9 (ζm2 )2 − 407

2
ζm11ζ

m
2

)
. (5.58)

With svζ5,3 (5.28) which we have calculated earlier, also (5.55), (5.58) and the duality between ζm... and ζ..., we are
able to write:

sv Q13 =





− 3

35
× 2 ζ5,5,3 +

1

14
× 2 ζ7,3,3

− 3× 2

35

(
10ζ9ζ

2
2 +

275

2
ζ11ζ2

)
− 1

14
× 2

(
32

35
ζ7ζ

3
2 −

56

5
ζ9ζ

2
2 −

407

2
ζ11ζ2

)
− 3

35
× 50 φ−1 (f3f5 III f5)− 1

14
× 14ζ3

3ζ7 +
60

14
φ−1 (f3f5 III f5)


×

[M3, [M7,M3]] +{
−4ζ2

5ζ3 + 2× 1

25
ζ5,5,3 +

1

25
× 2

(
10ζ9ζ

2
2 +

275

2
ζ11ζ2

)
+

1

25
× 50 φ−1 (f3f5 III f5)

}
×

[M5, [M5,M3]]


,(5.59)

=




− 3

35
× 2 ζ5,5,3 +

1

14
× 2 ζ7,3,3

− 4

35
ζ9ζ

2
2 −

32

245
ζ7ζ

3
2 +

11

2
ζ11ζ2

− 1

14
× 14ζ2

3ζ7


[M3, [M7,M3]]

+

{
−4ζ2

5ζ3 + 2× 1

25
ζ5,5,3 +

4

5
ζ9ζ

2
2 + 11ζ11ζ2 +

1

25
× 50 φ−1 (f3f5 III f5)

}
×

[M5, [M5,M3]]


. (5.60)
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The φ−1 (f3f5 III f5) seems weird. Although it gets cancelled in the coefficient of [M3, [M7,M3]], it still remains in
[M5, [M5,M3]]. It’s not a bad news, as comparing (5.50) we may need this to reconstruct 2

5ζ5,3ζ5 so as to recover
2Q13. Next we will try to see what exactly φ−1 (f3f5 III f5) is mapping to.

At length N = 13 the basis (c.f. Table 1) for motivic MZVs reads ([18] (4.44)):

ξ13 = a1ζ
m
7,3,3 + a2ζ

m
5,5,3 + a3ζ

m
13 + a4ζ

m
7,3ζ

m
3 + a5ζ

m
5,3ζ

m
5 + a6ζ

m
7 (ζm3 )2

+a7 (ζm5 )2 ζm3 + a8ζ
m
5,3,3ζ

m
2 + a9ζ

m
5,3ζ

m
3 ζ

m
2 + a10ζ

m
11ζ

m
2 + a11ζ

m
5 (ζm3 )2 ζm2

+a12 (ζm3 )3 (ζm2 )2 + a13ζ
m
9 (ζm2 )2 + a14ζ

m
7 (ζm2 )3 + a15ζ

m
5 (ζm2 )4 + a16ζ

m
3 (ζm2 )5 , (5.61)

where the coefficients are given by derivatives in (5.62) acting on the trivialisation φ (ξ13). For more details, see
(4.24) and (4.24) in [18] also 4.1 in [3]. We gave a detailed example in (5.64) to illustrate how it works.

D1 =
1

14
[∂3, [∂7, ∂3]] , D2 =

1

25
[∂5, [∂5, ∂3]]− 3

35
[∂3, [∂7, ∂3]] , D3 = ∂13,

D4 =
1

14
[∂7, ∂3] ∂3, D5 =

1

5
∂5 [∂5, ∂3] , D6 =

1

2
∂7∂

2
3 , D7 =

3

14
[∂7, ∂3] ∂3 +

1

2
∂2

5∂3,

D8 =
1

5
c2 [∂3, [∂5, ∂3]] , D9 =

1

5
c2 [∂5, ∂3] ∂3,

D10 = c2∂11 +
11

2
[∂5, [∂5, ∂3]] +

11

4
[∂3, [∂7, ∂3]] , D11 =

1

2
c2∂5∂

2
3 , D12 =

1

6
c2

2∂
3
3 ,

D13 = c2
2∂9 + 9c2 [∂3, [∂5, ∂3]] +

2

5
[∂5, [∂5, ∂3]]− 2

35
[∂3, [∂7, ∂3]] ,

D14 = c3
2∂7 +

6

25
c2 [∂3, [∂5, ∂3]]− 16

245
[∂3, [∂7, ∂3]] ,

D15 = c4
2∂5 −

4

25
c2 [∂3, [∂5, ∂3]] , D16 = c5

2∂3, (5.62)

where the derivatives in (5.62) are defined as [5] [18]:

∂2n+1 (fi1 . . . fir) =

{
fi2 . . . fir , i1 = 2n+ 1
0, otherwise .

(5.63)

Let’s return to φ−1 (f3f5 III f5). We already have a word f3f5 III f5. So in order to reconstruct ζ5,3ζ5, we let D5

act on it:

D5 (f3f5 III f5) =
1

5
∂5 [∂5, ∂3] (f3f5 III f5) =

1

5
(∂5∂5∂3 (f3f5 III f5)− ∂5∂3∂5 (f3f5 III f5)) ,

=
1

5
(∂5∂5 (∂3f3f5 III f5) + ∂5∂5 (f3f5 III ∂3f5)− ∂5∂3 (∂5f3f5 III f5)− ∂5∂3 (f3f5 III ∂5f5)) ,

=
1

5
(∂5∂5 (∂3f3f5 III f5)− ∂5∂3 (f3f5 III ∂5f5)) ,

=
1

5
(∂5∂5 (f5 III f5)− ∂5∂3 (f3f5)) ,

=
1

5
(∂5 (∂5f5 III f5) + ∂5 (f5 III ∂5f5)− 1) ,

=
1

5
(∂5f5 + ∂5f5 − 1) =

1

5
. (5.64)

So

f3f5 III f5 → . . .
1

5
ζ5,3ζ5 . . . . (5.65)

One may notice that there are . . . in (5.65). We can not exclude the possibility that other coefficients are non-zero.

D2 =
1

25
[∂5, [∂5, ∂3]] , D7 =

3

14
[∂7, ∂3] ∂3 +

1

2
∂2

5∂3,

D10 = c2∂11 +
11

2
[∂5, [∂5, ∂3]] +

11

4
[∂3, [∂7, ∂3]] ,

D13 = c2
2∂9 + 9c2 [∂3, [∂5, ∂3]] +

2

5
[∂5, [∂5, ∂3]]− 2

35
[∂3, [∂7, ∂3]] . (5.66)
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What we get is:

D2 (f3f5 III f5) = 0, D7 (f3f5 III f5) = 1, D10 (f3f5 III f5) = 0, D13 (f3f5 III f5) = 0. (5.67)

So with (5.67), by comparing equation (5.62) (5.61),

a7 = 1. (5.68)

So (5.65) becomes:

f3f5 III f5 →
1

5
ζ5,3ζ5 + ζ2

5ζ3 (5.69)

Plugging (5.69) into (5.60), one exactly obtains 2
5ζ5,3ζ5 and thus 2Q13:

svQ13 =


− 3

35
× 2 ζ5,5,3 +

1

14
× 2 ζ7,3,3

− 4

35
ζ9ζ

2
2 −

32

245
ζ7ζ

3
2 +

11

2
ζ11ζ2

− 1

14
× 14ζ2

3ζ7


[M3, [M7,M3]]

+

{
−4ζ2

5ζ3 + 2× 1

25
ζ5,5,3 +

4

5
ζ9ζ

2
2 + 11ζ11ζ2 +

2

5
ζ5,3ζ5 + 2ζ2

5ζ3

}
[M5, [M5,M3]] .

= 2Q13 − ζ2
3ζ7 [M3, [M7,M3]]− 2ζ2

5ζ3 [M5, [M5,M3]] . (5.70)

End of calculation of svQ13

We then expand : exp
{∑

n≥1 ζ2n+1M2n+1

}
: to order 13. The single value map on A5pt reads:

sv (1 + Q8 + Q9 + Q10 + Q11 + Q12 + Q13) : exp

∑
n≥1

ζ2n+1M2n+1

 :,

= . . .+O(12) + 2Q13 − ζ2
3ζ7 [M3, [M7,M3]]− 2ζ3ζ

2
5 [M5, [M5,M3]] +

+4M7M
2
3ζ

2
3ζ7 + 2M13ζ13 + svQ8 × 2ζ5M5 + svQ10 × 2ζ3M3 +O(14),

= . . .+O(12) + 2Q13 − ζ2
3ζ7 [M3, [M7,M3]]− 2ζ2

5ζ3 [M5, [M5,M3]] + 4M2
5M3ζ3ζ

2
5

+4M7M
2
3ζ

2
3ζ7 + 2M13ζ13 + (−2ζ3ζ5 [M5,M3])× 2ζ5M5 + (−2ζ3ζ7 [M7,M3])× 2ζ3M3 +O(14),

= . . .+O(12) + 2Q13 + 2ζ2
5ζ3

{
M2

5,M3

}
+ ζ2

3ζ7 {M3, {M7,M3}}+ 2M13ζ13 +O(14). (5.71)

End of calculation of A5pt, 13th order

Final result:

svA5pt =

(
1 + 2M3ζ3 + 2M5ζ5 + 2M2

3ζ
2
3 + 2M7ζ7 + 2ζ3ζ5 {M5,M3}+

4

3
M3 ·M3 ·M3ζ

3
3 + 2M9ζ9

+2ζ3ζ7 {M7,M3}+ 2M5 ·M5ζ
2
5 + 2M11ζ11 + 2Q11 + ζ5ζ3ζ3 {M3, {M5,M3}}

2

3
M4

3ζ
4
3

+2 {M5,M7} ζ5ζ7 + 2 {M3,M9} ζ3ζ92Q13 + 2ζ2
5ζ3

{
M2

5,M3

}
+ ζ2

3ζ7 {M3, {M7,M3}}
+2M13ζ13 +O(14)) AYM . (5.72)

This coincides with single-valued and uniform weighted part of five-point spherical integral (6.24) in [18]. A more
compact form reads:

svA5pt = FAYM . (5.73)

Finally, the result useful in our paper is

F =

(
1 + 2M3ζ3 + 2M5ζ5 + 2M2

3ζ
2
3 + 2M7ζ7 + 2ζ3ζ5 {M5,M3}+

4

3
M3 ·M3 ·M3ζ

3
3 + 2M9ζ9

+2ζ3ζ7 {M7,M3}+ 2M5 ·M5ζ
2
5 + 2M11ζ11 + 2Q11 + ζ5ζ3ζ3 {M3, {M5,M3}}

2

3
M4

3ζ
4
3

+2 {M5,M7} ζ5ζ7 + 2 {M3,M9} ζ3ζ92Q13 + 2ζ2
5ζ3

{
M2

5,M3

}
+ ζ2

3ζ7 {M3, {M7,M3}}
+2M13ζ13 +O(14)) . (5.74)
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6 Expanding hard part of scattering amplitude with single-valued string five-
point tree-level disk amplitude

We would first introduce some basic information of polynomial analysing as used in this Section. Then we are going
to describe how we cook equations by matching coupling constant weight by weight and η = −C1/C2(see (1.4))
order by order. After this, we are going to partially solve the equation set. Some discussion will be given based on
the result we have.

6.1 Polynomial and ideal

Denote a polynomial ring as P. Introducing an variable ordering: x1 < x2 < . . . < xn, we will give some basic
concept of polynomials,[15][20]. We define a term t in the ring P:

Term: t = B(c1, c2, . . . , cn)xc11 x
c2
2 . . . xcnn ,

where B(c1, c2, . . . , cn) is the coefficient of xc11 x
c2
2 . . . xcnn depending on the power of each variable. A more compact

form would be as

t = B(c)xc,

where c = (c1, c2, ..., cn) and xc = xc11 x
c2
2 . . . xcnn .

A polynomial F is defined as,

Polynomial: F =
∑
c

B(c)xc.

Since we have the ordered variable x1 < x2 < ... < xn, we can introduce the leading variables of F .

Leading Variable LV (F ) = The greatest variable w.r.t. Lexicographic order (see def. in Section 2.2). (6.1)

With the leading variable of F , we are able to define the class of F .

Class of F CL(F ) = The subscript of the greatest variable w.r.t. Lexicographic order. (6.2)

The ’power’ of a variable in a term t is called ’degree’.

The degree of term t w.r.t.xr DG(t, xr) = The power of xr in term t.

A polynomial F contains some terms, F = t1 + t2 + ...+ tm, and each term ti has a degree DGi for a given xr.
The degree of xr for F is thus defined as the maximum degree for a term t in F could have for xr.

The degree of F w.r.t. xr DG(F, xr) = max {DG(t, xr), for t ∈ F} . (6.3)

As we have defined leading variable (6.1) and also the degree of a polynomial F (6.3), we can define leading degree
for F as

The leading degree of F LDG(F ) = DG(F,LV (F )). (6.4)

So far as we have introduced leading degree (6.4) and class of F (6.2), we could ask what is the coefficient of

x
LDG(F )
CL(F ) in F , which is also called the initial of F :

Leading coefficient of F (initial of F ) INI(F ) = Coefficient[F, x
LDG(F )
CL(F ) ].

Example 6.1. F1 = 3x5
1x

3
2x

2
3 + x6

1x2 + 1
2x

3
3 then CL(F ) = 3. LV (F1) = x3, DG(F1, x2) = 3, LDG(F1) =

3, INI(F1) = 1
2 .
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As we know from linear algebra that 1, x, x2, x3, ...xn−1 form a basis of n-dim vector space. Here suppose we have a
polynomial set F = {F1, F2, ..., Fl}. It also forms a basis. We can use some polynomials in ring P to construct ideal
generated by F denoted as 〈F〉:

〈F 〉 := {P1F1 + P2F2 + ...PnFn : ∀P1, P2, ..., Pl ∈ P} . (6.5)

Note: the solution structure of ideal and the original polynomial set reads[15][20]:

Zero(〈F〉) = Zero(F). (6.6)

For the spirit of elimination, one may see the importance of an ideal: we could modify the polynomial, and see if
there is a possibility of eliminating some Fi. If so, this can simplify the equations without losing any information on
zeros.

On the other hand, the ideal of F can also extend our polynomial set to more complicated ones. However, there is
a interesting extension: if ∃Q1, Q2...Qn ∈ P s.t. Q1F1 +Q2F2 + ...QnFn = 1, then Zero(F) = ∅,[15]. This conclusion
is from Hilbert’s Nullstellensatz.

Hilbert’s Nullstellensatz:[15][20],

Zero(F) = ∅, iff 1 ∈ 〈F〉 . (6.7)

Remark 6.1. Why 1 ∈ 〈F〉 means there is no solution? As we mentioned in (6.6), Zero(〈F〉) = Zero(F), so 1 ∈ 〈F〉
means that we can reduce the polynomial ideal

〈F〉 =
〈
1, F ′1, ...F

′
m

〉
= 〈1〉 (6.8)

where the second equation, we have changed our generator in the ideal of 〈F〉 and make a ′1′ by action Q1F1 +
Q2F2 + ...QnFn = 1 for Q1, Q2...Qn ∈ P. The last equation comes from that all the polynomials in P is in the ideal
〈1〉. And clearly Zero(〈1〉) = ∅. Thus, Zero(F) = Zero(〈F〉) = Zero(〈1〉) = ∅.

So far we have completed a very brief introduction of polynomial analysis. Let’s expand the hard part (6.11) of
two-to-two partonic scattering amplitude in Regge limit with the single-valued five-point string disk amplitude.(5.72)

6.2 Solving ansatz

As we have seen that the single value map would change the disk amplitude to spherical one. Now we will try to
consider the single-valued uniform-weighted five-point tree-level closed string amplitude(e.q.(6.24) [18]) as a basis to
expand the hard part of 2→ 2 parton scattering amplitude in Regge limit which is also single-valued and of uniform
weight (see e.q.(5.19) in[8]). For the mathematical details, see introduction 1.

6.2.1 Setting up equations

The spirit here is that we only match the part that are single-valued uniform-weighted, e.g. F in (5.72). Other
constant part or common part,e.g. AYM in single-valued disk amplitude or iπ (irrational an imaginary bit) and
T2
s−uM(tree ) in (6.11) will NOT be included in our equations. In below (RHS part), one may see that there is also

an overall colour factor Ck−1
2 which will also be excluded in M̂(+,l)

NLL,h

RHS
M̂(+,l)

NLL,h’s are integrated from the hard part of the wave function Ωh(see (1.8)), which is derived order by order
via BFKL equation:[8]

d

dL
Ωh(p, k) =

αsB0(ε)

π
ĤΩh(p, k), (6.9)

where the hamiltonian Ĥ reads,

Ĥ =
(
2CA −T2

t

)
Ĥi +

(
CA −T2

t

)
Ĥm,

= C1Ĥi + C2Ĥm. (6.10)
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So we can have M̂(+,l)
NLL,h’s expressed in terms of C1, C2 ((5.19) in [8]):

M̂(+,1)
NLL,h = 0,

M̂(+,2)
NLL,h = 0,

M̂(+,3)
NLL,h =

iπ

3!

{
3ζ3

4
C1C2

}
T2
s−uM(tree ),

M̂(+,4)
NLL,h = 0,

M̂(+,5)
NLL,h =

iπ

5!

{
−5ζ5

2
C2

1C
2
2 +

45ζ5

2
C1C

3
2

}
T2
s−uM(tree ),

M̂(+,6)
NLL,h =

iπ

6!

{
39ζ2

3

16
C3

1C
2
2 −

45ζ2
3

2
C2

1C
3
2 +

225ζ2
3

2
C1C

4
2

}
T2
s−uM(tree ),

M̂(+,7)
NLL,h =

iπ

7!

{
−2135ζ

256
C4

1C
2
2 +

30135ζ

256
C3

1C
3
2 −

20111ζ7

32
C2

1C
4
2 +

6111ζ7

4
C1C

5
2

}
T2
s−uM(tree ),

M̂(+,8)
NLL,h =

iπ

8!

{
611ζ3ζ5

32
C5

1C
2
2 −

643ζ3ζ5

2
C4

1C
3
2 +

8597ζ3ζ5

4
C3

1C
4
2 − 7086ζ3ζ5C

2
1C

5
2 + 13230ζ3ζ5C1C

6
2

}
×

T2
s−uM(tree ).

(6.11)

where for definition of colour factor C1 and C2, (see (1.4)).

The superscript (+, l) for M̂(+,l)
NLL,h denotes the l loops order, or also the lth weight of αs. One can easily see what

we mean from below equation:

M̂(+)
NLL

(
s

−t

)
=

∞∑
l=1

(αs
π

)l
Ll−1M̂(+,l)

NLL . (6.12)

We make some further modification before obtaining weight matching equations.

We first ignore iπ (irrational and imaginary bit) and T2
s−uM(tree ). These are the common part of M̂(+,l)

NLL and
are not possible to be expanded by F in (5.74). Then what is left is the dimensionful expression in the curly bracket

in M̂(+,l)
NLL which contain colour factors C1, C2. We then divide the curly bracket terms in M̂(+,l)

NLL by C l−1
2 to make

them dimensionless. What we get are

M(1)
h = 0,

M(2)
h = 0,

M(3)
h =

1

3!

{
3ζ3

4

C1

C2

}
,

M(4)
h = 0,

M(5)
h =

1

5!

{
−5ζ5

2

(
C1

C2

)2

+
45ζ5

2

C1

C2

}
,

M(6)
h =

1

6!

{
39ζ2

3

16

(
C1

C2

)3

− 45ζ2
3

2

(
C1

C2

)2

+
225ζ2

3

2

C1

C2

}
,

M(7)
h =

1

7!

{
−2135ζ7

256

(
C1

C2

)4

+
30135ζ7

256

(
C1

C2

)3

− 20111ζ7

32

(
C1

C2

)2

+
6111ζ7

4

C1

C2

}

M(8)
h =

1

8!

{
611ζ3ζ5

32

(
C1

C2

)5

− 643ζ3ζ5

2

(
C1

C2

)4

+
8597ζ3ζ5

4

(
C1

C2

)3

− 7086ζ3ζ5

(
C1

C2

)2

+ 13230ζ3ζ5
C1

C2

}
.

(6.13)

We observe that all odd or even power of C1
C2

shares the same sign separately. We then set η = −C1
C2

. After
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factorizing an overall minus sign, we have all the rest bits positive definite (See below).

H[0] = 0,

H[1] = 0,

H[2] = 0,

H[3] = − 3

4× 3!
ζ3η,

H[4] = 0,

H[5] = − 5

2× 5!
ζ5η(η + 9),

H[6] = − 3

16× 6!
ζ2

3η
(
13η2 + 120η + 600

)
,

H[7] = − 7

256× 7!
ζ7η
(
305η3 + 4305η2 + 22984η + 55872

)
,

H[8] = − 1

32× 8!
ζ3ζ5η

(
611η4 + 10288η3 + 68776η2 + 226752η + 423360

)
,

H[9] = − 1

4096× 9!
η
[
192ζ3

3

(
199η5 + 3816η4 + 29958η3 + 123892η2 + 265776η + 411264

)
,

+ ζ9

(
262143η5 + 5135424η4 + 41853124η3 + 181984832η2 + 446510272η + 589248000

)]
,

. . . (6.14)

where the i index in H[i] denotes the weight of αs (See (6.12)), and weight 0 is assumed to vanish. Now we have
complete setting equations on the right hand side.

LHS
For the five-point single valued disk amplitude we have just calculated (5.72), we will only use the 2× 2 matrix

part F while the AYM is not of our interest. We substitute each Mi(sjk) into F (sourced from [16]) where Mi is
of α weight i. This is because each entry in Mi has i sjk’s multiplying together, and each sjk has α of weight one
(recall our definition of sij in (4.1)). This is also the case for Qm which is of α weight m.

So we now get an expression for F of α weighting from 0 to 13.

F =

(
1 + 2M3ζ3 + 2M5ζ5 + 2M2

3ζ
2
3 + 2M7ζ7 + 2ζ3ζ5 {M5,M3}+

4

3
M3 ·M3 ·M3ζ

3
3 + 2M9ζ9

+2ζ3ζ7 {M7,M3}+ 2M5 ·M5ζ
2
5 + 2M11ζ11 + 2Q11 + ζ5ζ3ζ3 {M3, {M5,M3}}+

2

3
M4

3ζ
4
3

+2 {M5,M7} ζ5ζ7 + 2 {M3,M9} ζ3ζ9 + 2Q13 + 2ζ2
5ζ3

{
M2

5,M3

}
+ ζ2

3ζ7 {M3, {M7,M3}}
+2M13ζ13 +O(14)) . (6.15)

Remark 6.2. Note that in (6.15), the weight can be easily seen from the subscript of M by adding subscripts together,
e.g.

{
M2

5,M3

}
has α of weight 13, (5× 2 + 3). This information is also stored in ζ subscripts, e.g. ζ2

5ζ3 corresponds
to the term of weight 13.

As we see in (6.15), each weight of α is distinguished clearly, for example 2M2
3ζ

2
3 is of weight 6; 2ζ3ζ5 {M5,M3}

is of weight 8; ζ2
3ζ7 {M3, {M7,M3}}, 13, etc. We will denote a general one as

Fk(ζ[...]) =

(
F k1 (ζ[...]) F k2 (ζ[...])

F k3 (ζ[...]) F k4 (ζ[...])

)
× ζ[...], (6.16)

for α of weight k, and a ζ configuration ζ[...], (e.g. ζ3, ζ3ζ5, ζ
4
3 ... etc).

Here k is the sum of all the subscripts of ζ configuration. For example

Example 6.2.

F13(ζ2
5ζ3) =

( {
M2

5,M3

}
1,1

{
M2

5,M3

}
1,2{

M2
5,M3

}
2,1

{
M2

5,M3

}
2,2

)
× ζ2

5ζ3. (6.17)

30



We set all dynamic variables sjk in F as:

Definition 6.1. si(i+1) ≡ si (s51 = s15 ≡ s5) and

si = α(ai + biη), (6.18)

where ai, bi are rational numbers because we are expanding (6.14) in which numerical coefficients are all rational.
Note: the α in si = α(ai + biη) is suppressed in actual calculation as we know which weight we are working on (see
Remark 6.2).

We have now make the η manifest in F. As one may find in (6.11), the hard amplitudes are just functions,
while the single-valued disk amplitude is a two by two matrix F (6.15). With this observation we make use of all
four entries of F as basis and expand the corresponding function in (6.14). To do so, one may need four rational
coefficients A1, A2, A3, A4 as defined in (6.19) as a linear rational function of η:

Ai = Ai0 +Ai1η. (6.19)

We take each entry F ki (ζ[...]) in (6.16), (e.g.
{
M2

5,M3

}
i,j

in example 6.2) to be a basis for the coefficient of ζ[...]

configuration at weight k, i.e.,(
A1F

k
1 (ζ[...]) +A2F

k
2 (ζ[...]) +A3F

k
3 (ζ[...]) +A4F

k
4 (ζ[...])

)
ζ[...]. (6.20)

The corresponding coefficient for a given ζ[...] configuration (at given α weight) on RHS (6.14) should equal to
(6.20) on the LHS. The equation building process in this paragraph can be summarised as follows:(

A1F
k
1 (ζ[...]) +A2F

k
2 (ζ[...]) +A3F

k
3 (ζ[...]) +A4F

k
4 (ζ[...])

)
= Coefficients[H[k], ζ[...]]. (6.21)

Remark 6.3. Here we have used an implicit correspondence that the expression at given weight k of αs in partonic
scattering should be the same as weight k of α in string scattering.

And with the above weight matching equation, we are able to arrive at a polynomial of variable η in both sides.
We further match the coefficients of η at given order m:

O
[(
A1F

k
1 (ζ[...]) +A2F

k
2 (ζ[...]) +A3F

k
3 (ζ[...]) +A4F

k
4 (ζ[...])

)
, {ηm}

]
= O

[
Coefficients[H[k], ζ[...]], {ηm}

]
(6.22)

With Ak = Ak0 + Ak1η for k = 1, 2, 3, 4 and also 5 kinematic ansatz si = ai + biη for i = 1, 2, 3, 4, 5, (see(6.18)),
we will get a equation set of 18 variables a1, a2, a3, a4, a5, b1, b2, b3, b4, b5, A10, A20, A30, A40, A11, A21, A31, A41. The
equation structure is as in Table 3, where E#1(η#2) means the equation of O(α,#1) for O(η,#2).

O(α, 0): E0(η0) E0(η1)

O(α, 3): E3(η0) E3(η1) E3(η2) E3(η3) E3(η4)

O(α, 5): E5(η0) E5(η1) E5(η2) E5(η3) E5(η4) E5(η5) E5(η6)

O(α, 6): E6(η0) E6(η1) E6(η2) E6(η3) E6(η4) E6(η5) E6(η6) E6(η7)

O(α, 7): E7(η0) E7(η1) E7(η2) E7(η3) E7(η4) E7(η5) E7(η6) E7(η7) E7(η8)

O(α, 8): E8(η0) E8(η1) E8(η2) E8(η3) E8(η4) E8(η5) E8(η6) E8(η7) E8(η8) E8(η9)

ζ33O(α, 9): E9(η0) E9(η1) E9(η2) E9(η3) E9(η4) E9(η5) E9(η6) E9(η7) E9(η8) E9(η9) E9(η10)

ζ9O(α, 9): E9(η0)′ E9(η1)′ E9(η2)′ E9(η3)′ E9(η4)′ E9(η5)′ E9(η6)′ E9(η7)′ E9(η8)′ E9(η9)′ E9(η10)′

Table 3: The red group (with variables A, a′s) and orange group (with variables A, b′s) are of rank 3 w.r.t A′s individually.
Variables A, a, b′s are coupled in homogeneous equations for subleading order of η, (green group), subsubleading order of η,
(black group), and subsubsubleading order of η, (gray group). Red, orange groups, together with the E3(η3) are of rank 7.
Adding the inhomogeneous one E3(η1), one can finally determine all the A′s with respect to a′s and b′s.
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I will list some simple equations here:

E0(η0) = A10 +A40 = 0, (6.23)

E0(η1) = A11 +A41 = 0, (6.24)

E3(η0) = −2(a3
2A20 + a2

2a3(2A20 −A40) + a2
1(A20a3 − a3A30 + a2(A20 −A40)− a3A40 +A10(a3 − a5)−A20a5)

−a4(A10a3(a3 + a4) +A40a5(a4 + a5) +A20(a3 − a5)(a3 + a4 + a5)) + a1(A20a
2
3 − a2

3A30 +

2a3A30a4 + a2
2(2A20 −A40)− a2

3A40 + 2a3a4A40 + 2a3A30a5 + 2a3A40a5 −A20a
2
5 +

a2(2A10a3 + 3A20a3 − a3A30 − 2a3A40 + 2a4A40 −A20a5) +A10(a2
3 − a2

5))−
a2(A40(a2

3 − 2a3a5 − 2a4a5) +A20(−a2
3 + a3a4 + a2

4 + a4a5 + a2
5))) = 0, (6.25)

E3(η4) = (−A11b
2
1b3 +A31b

2
1b3 − 2A11b1b2b3 +

A31b1b2b3 −A11b1b
2
3 +A31b1b

2
3 − 2A31b1b3b4 +A11b

2
3b4 +A11b3b

2
4 +A11b

2
1b5 − 2A31b1b3b5 +A11b1b

2
5 −

A21(b1 + b2 − b4)(b2 + b3 − b5)(b1 + b2 + b3 + b4 + b5) +A41(b22b3 + b21(b2 + b3) + b4b5(b4 + b5) +

b2(b23 − 2b3b5 − 2b4b5) + b1(b22 + 2b2(b3 − b4) + b3(b3 − 2(b4 + b5))))) = 0. (6.26)

We can make some observations of the equations:
1.all the variables in red ones of the first column of Table 3 are a′s and A′i0s;
2.all the variables in orange ones of the greatest η order of Table 3 are b′s and A′i1s.
3. all the equations are linear in A′s.
Pick the first 3 or 4 equations in red sector, say E0(η0) ,E3(η0),E5(η0), or adding E6(η0). We have solutions

(6.27) for Ai0. With this the rest of equations of red sector is automatically satisfied which was checked up to α
weight 12. This shows that the red sector is of rank 3. Here is the solution of Ai0:

A20 = −
A10

(
(−a3 + a5) a4

2 + (a3 − a5) (a1 + a2 − a5) a4 + a5 a1 (a2 + a3 − a5)
)

(a4 + a5) (a2 + a3 − a5) (a1 + a2 − a4)
,

A30 =
((a2 a4 + a3 (a4 + a5)) a1 + a2 a5 (a3 + a4))A10

a1 a3 (a4 + a5)
, (6.27)

A40 = −A10.

With (6.27), we are able to eliminate 3 capital A′s by expressing them via A10 and other a′s and b′s.

Remark 6.4. It is excited to find such structure as we want to solve only 18 (finite) variables (see our setting for Ai and
si). If the red sector is of infinite rank (each equation itself is independent of others), we would need infinite variables
which is not viable. We can now mention our expectation of the whole equation set Table 3: all of them are of rank 18.
If we are able to find 18 independent equations and solve a1, a2, a3, a4, a5, b1, b2, b3, b4, b5, A10, A20, A30, A40, A11, A21,
A31, A41, the rest of all the equations will automatically be satisfied! Unfortunately, we don’t seem to have such
beautiful structure and solution here. See below.

For orange sector, we also use the first 3 or 4 equations, say E0(η1), E3(η4),E5(η6) , or adding E6(η7), to solve
and thus have solution (6.29). Equations in orange sector are also of rank 3, i.e. the rest of the equation in orange
sector are automatically satisfied. Here is the solution of Ai1:

A21 = −
A11

(
(−b3 + b5) b4

2 + (b3 − b5) (b1 + b2 − b5) b4 + b5 b1 (b2 + b3 − b5)
)

(b4 + b5) (b2 + b3 − b5) (b1 + b2 − b4)

A31 =
((b3 (b4 + b5) + b2 b4) b1 + b2 b5 (b3 + b4))A11

b1 b3 (b4 + b5)
, (6.28)

A41 = −A11.

So we are able to eliminate another 3 capital A′s by expressing them via A11 and other a′s and b′s in (6.29).
We can further use the homogeneous E3(η3) in subleading green sector, to eliminate one capital A. This is

because when we substituting all the current solutions (6.27) (6.28) into (6.29) (see below), the only remaining
variables are A10 and A11. So then, E3(η3) becomes A10f(a,b) + A11g(a,b) = 0, and thus, the eliminating A10 or
A11.
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So adding E3(η3), we have eliminated seven capital A′s(combining (6.27)(6.29)(6.30)).

E3(η3) = A20b
3
2 + 2a1A21b

2
2 + 2A21a3b

2
2 − a1A41b

2
2 − a3A41b

2
2 + 2A20b1b

2
2 −A40b1b

2
2 + 2A20b3b

2
2 −A40b3b

2
2 +A20b

2
1b2

−A40b
2
1b2 +A20b

2
3b2 −A40b

2
3b2 −A20b

2
4b2 −A20b

2
5b2 + 2a1A21b1b2 + 3A21a3b1b2 − a3A31b1b2 − 2a1A41b1b2

............

2A40b1b3b5 + 2A21a4b4b5 − 2a4A41b4b5 + 2A21a5b4b5 − 2A41a5b4b5 +A11(
a1b

2
3 − a4b23 + 2a1b1b3 + 2a1b2b3 − 2a4b4b3 − a1b25 + a3

(
b21 + 2(b2 + b3)b1 − b4(2b3 + b4)

)
− 2a1b1b5−

a5b1(b1 + 2b5)) + a2
(
(2A11 −A31)b1b3 −A41

(
b21 + 2(b2 + b3 − b4)b1 + b23 + 2b2b3 − 2b3b5 − 2b4b5

)
+

A21

(
b21 + (4b2 + 3b3 − b5)b1 + 3b22 + b23 − b24 − b25 + 4b2b3 − b3b4 − b4b5

))
= 0 (6.29)

A11 =
−A10b1b3(b1 + b2 − b4)(b4 + b5)(b5 − b2 − b3)(a1(((a3 − a5)a4 + ...+ (a3 − a5)a5)(−b3 + b5)a1a3)a2)

((a1 + a2 − a4)...(−b3 + b5)b1(b1 − b4)b3)a3)
. (6.30)

Could we further use homogeneous equations in green sector, black sector and gray sector to eliminate the rest one
capital A? No we can’t. It is not because that the current solutions for A′s (all other 7 A’s expressed by A10) make
them already identities, but the remaining one A, say A10 already become an overall factor of those homogeneous.
See example 6.3. If we solve them w.r.t. A10, we will get zero for all capital A′s which contradicts our assumptions.
And the vanishing solution won’t satisfy inhomogeneous equations e.g. E3(η1) (6.32).

Example 6.3. Here is what we get when we substituting (6.27)(6.29)(6.30) into remaining homogeneous equations

E5(η6) =
A10 × (h(a, b))

t(a, b)
= 0, E3(η3) =

A10 × (h′(a, b))

t′(a, b)
= 0, (6.31)

where a = (a1, a2, a3, a4, a5), b = (b1, b2, b3, b4, b5), h, h′, t, t′ are just functions of a, b.

So we cannot pursue further with inhomogeneous equations to eliminate all A’s. And we should now make use
of those inhomogeneous ones.

E3(η1) = 1/8 + 2(−(a32A21) +A11a
2
3a4 +A21a

2
3a4 +A11a3a

2
4 +A21a3a

2
4 −A21a

2
4a5 + a24A41a5 −A21a4a

2
5 +

a4A41a
2
5 −A10a

2
3b1 −A20a

2
3b1 + a23A30b1 − 2a3A30a4b1 + a23A40b1 − 2a3a4A40b1 − 2a3A30a5b1

.....................

a2(a23A41 − 2a4A41a5 +A21(−a23 + a3a4 + a24 + a4a5 + a25)− 2a4A40b1 +A20a5b1 +A20a4b3 − 2A40a5b3

+2A20a4b4 +A20a5b4 − 2A40a5b4 +A20a4b5 − 2a4A40b5 + 2A20a5b5 + a3(−2A41a5

−2A10b1 − 3A20b1 +A30b1 + 2A40b1 − 4A20b2 + 2A40b2 − 2A20b3 + 2A40b3 +A20b4 − 2A40b5))) = 0. (6.32)

We combine {
E0(η0),E3(η0),E5(η0),E0(η1),E3(η4),E5(η6),E3(η3),E3(η1)

}
. (6.33)

And eliminate all A′s and express them with a′s, b′s, e.g. {A10(a,b), A20(a,b)...A41(a,b)}. These lead to some really
interesting expression. After the submission of {A10(a,b), A20(a,b)...A41(a,b)}. We have a′s decouple with b′s in
ζ3 related equations:

E6(η1)|A(a,b) for ζ2
3 ; E9(η1)|A(a,b) for ζ3

3 ; E12(η1)|A(a,b) for ζ4
3 .

E6(η1)|A(a,b) = (−4 a2 − 4 a5) a1
2 +

(
−4 a2

2 + 8 a2 a4 + (8 a4 + 8 a5) a3 − 4 a5
2
)
a1 − 4 a2

2a3

+
(
−4 a3

2 + 8 a3 a5 + 8 a4 a5
)
a2 − 4 a3

2a4 − 4 a3 a4
2 − 4 a4

2a5 − 4 a4 a5
2 + 5 = 0,

E9(η1)|A(a,b) =
(
−80 a2

2 − 80 a5 a2 − 80 a5
2
)
a1

4 +
(
−160 a2

3 + (320 a4 − 80 a5) a2
2

+
(
(320 a4 + 160 a5) a3 + 160 a4 a5 − 80 a5

2
)
a2 + 320 a5

(
a3 (a4 + a5)− 1/2 a5

2
))
a1

3

+..............

− 2 a4 a5) a2 − 80 a3
4a4

2 − 160 a3
3a4

3 +
(
−80 a4

4 − 80 a4
3a5 − 80 a4

2a5
2
)
a3

2

−80 a4
3a5 (a4 + a5) a3 − 80 a4

4a5
2 − 160 a4

3a5
3 − 80 a4

2a5
4 + 51 = 0, (6.34)

E12(η1)|A(a,b) = −(a2 + a5)(a22 + a25)a61 + (−3a42 + (6a4 − 2a5)a32 + ((6a4 + 2a5)a3 +

4a4a5 − 2a25)a22 + ((8a4a5 + 4a25)a3 + 2a25(a4 − a5))a2 + 6a25(a4 + a5)a3 − 3a45)a51

.........

(−3a54 − a44a5 − a34a25)a43 + (−a64 − 2a54a5 − 2a44a
2
5)a33 + (−a64a5 − 2a54a

2
5 −

2a44a
3
5 − a34a45)a23 − a44a25(a4 + a5)2a3 − a64a35 − 3a54a

4
5 − 3a44a

5
5 − a34a65 + 119429640 = 0. (6.35)

We can proceed with these three equations and see what happens.
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6.2.2 Evidence that the ansatz should be generalised

Here are the equations we have used:

Figure 3: The yellow denote the equations we have used, including some automatically satisfied.

Although E6(η1)|A(a,b), E9(η1)|A(a,b), E12(η1)|A(a,b) for ζ4
3 , get decoupled with b′s, they don’t yield a solution. As

they are all polynomials of (a1, a2, a3, a4, a5), we can construct the polynomial ideal (see (6.5)) to study the property
of zeros. In another words, we use all the possible polynomials P1, P2, P3 with variables a1, a2, a3, a4, a5 to make the
set of PE6(η1)|A(a,b) + P2E9(η1)|A(a,b) + P3E12(η1)|A(a,b):〈

E6(η1)|A(a,b),E9(η1)|A(a,b),E12(η1)|A(a,b)

〉
. (6.36)

Unfortunately we have (from PolynomialIdeal in Maple, Solve in Mathematica and Singular)

1 ∈
〈
E6(η1)|A(a,b),E9(η1)|A(a,b),E12(η1)|A(a,b)

〉
, (6.37)

which according to (6.7)that there is not solution.
So E6(η1)|A(a,b),E9(η1)|A(a,b),E12(η1)|A(a,b) are inconsistent polynomial equations and will not yield common zeros.
This is the evidence showing that our ansatz of expanding hard part of scattering amplitude with single-valued string
5-point disk amplitude needs further generalization.

7 Conclusion and discussion

We have found that in tree-level string scattering, spherical integral in four-point closed string scattering amplitude
to all order can be derived via the single value map of disk integral in four-point open string scattering amplitude.
Furthermore, we find that the single valued uniform weighted matrix part of five-point closed string scattering
amplitude to 13 order can be derived via single value map of the matrix part of the disk integral for five-point open
string scattering amplitude. On the process of deriving these, we have detailed studied single value map and relevant
operations.

We make an ansatz that single-valued five-point open string scattering amplitude could be the basis to expand the
hard part of two-to-two partonic scattering amplitude in Regge limit and set up equations to solve the coefficients.
We eventually find that there is inconsistency in the solution which may lead to generalizing the ansatz.

For future arrangement, although we find that E6(η1)|A(a,b),E9(η1)|A(a,b),E12(η1)|A(a,b) do not have common
zeros, we still need to further check before getting into generalization of ansatz. One immediate step, based on current
observation, is to directly check the consistency of first column of blue sector without solving any variable in advance.
As in remark 6.4, we need 18 equations of 18 rank to solve a1, a2, a3, a4, a5, b1, b2, b3, b4, b5, A10, A20, A30, A40,A11, A21,
A31,A41. The inhomogeneous blue sector has a great possibility that the equations we pick here are of different rank
(unlike those cf. red sector, orange sector), but may also result in inconsistent equations. So one may get more
persuasive result from further analysis on this sector. However, there is a technical problem in blue sector. As
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one get in deeper in blue sector, i.e. second column and third column, equation become extremely long and a PC
with 24GB RAM will not able to handle this using Maple, Mathematica or Singular. As most of the cluster is not
supporting these software, we may, in the future, try to make C++ code to make the equation analysing available
on super computer.

If the above analysis in blue sector confirms with current finding, we may consider adding another five point
spherical amplitude. As in (5.12), we only consider string disk amplitude A(1, 2, 3, 4, 5) and A(1, 3, 2, 4, 5) so far. We
could consider other permutations of 1, 2, 3, 4, 5 in A: A(p1, p2, p3, p4, p5). If the resulting closed string amplitude
for A(p1, p2, p3, p4, p5) after the single value map also has uniform weight properties, we may add it to our ansatz by
setting Bi = Bi0 + ηBi1 and also sk = ck + ηbk for this new closed string scattering amplitude basis. If all five-point
amplitudes do not work, we may consider six-point further. Furthermore, to greatly speed up the analysing and
solving polynomial equations, we may also systematically study and apply finite field method [15][17] in the future.
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