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Abstract

The Causal Set programme is an approach to quantum gravity. It maintains that

nature is fundamentally discrete and that all spacetime events are related (or not)

through causality. This work provides a brief review of this approach: starting by

showing how these two axioms fully define the geometry, moving to the kinematic

construction of a causal set; and how it develops dynamically; to the origin of

the family of Benincasa-Dowker-Glaser actions. The final aim of this project is

to study the behaviour of such an action in the continuum. Benincasa and Dowker

postulate that in the continuum limit, the mean discrete action tends to the expected

Einstein-Hilbert term plus boundary terms due to the geometry of the spacetime.

This conjecture is successfully verified for a four-dimensional slab embedded in flat

Minkowski spacetime. A second interest of this thesis is to confirm an unjustified

assumption regarding the boundary of support of a scalar field made by Belenchia et

al. when investigating the continuum limit of the four-dimensional causal set scalar

d’Alembertian.
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“As for me, I am tormented with an everlasting itch for things remote. I love to

sail forbidden seas, and land on barbarous coasts.”

Herman Melville in Moby-Dick; or, The Whale
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Chapter 1

Introduction

1.1 Quantum Gravity

Since the development of Quantum Mechanics and the theory of General Relativity,

numerous attempts have been made toward developing a theory of Quantum Gravity,

that is, a framework within which gravity can be described quantum mechanically.

It is often described as a major constituent of a grander Theory of Everything. Still,

although it would be elegant and satisfactory to have, there is no a priori apparent

reason for why this should be the case.

Ever since these two theories were proposed in the early 20th century, they have

revolutionised the understanding of the universe and, in many ways, given new

perspectives. The former describes the quantum world and interactions between

the many elementary particles of which the universe is made up. On the other

hand, the latter explains physics on the largest of scales: from planet formation and

galaxy mechanics to the evolution of the universe itself. The impact of these two

theories cannot be understated: together with Thermodynamics, they have acted as

the bedrock to most, if not all, of current physics. Although so much has been built

up in some shape or form from these theories, each has shortcomings.

While quantum mechanics is the current best theory for particle physics and goes

1



a long way in explaining the intricacies of the Standard Model, it fails to provide a

good theory for gravity. Similarly, general relativity is the current best theory for

gravity. Still, one can find problems built within it: amongst others, singularities

appear when analysed at small scales, such as at the Big Bang or inside black holes.

Nevertheless, Einstein’s field equations,

Gµν = 8πTµν , (1.1)

couple spacetime, an idea from general relativity through the Einstein tensor Gµν , to

matter, described quantum mechanically through the energy-momentum tensor Tµν .

This equality suggests some link between the two theories may exist, providing a

clear motivation for the study of a theory for quantum gravity.

Several difficulties arise when trying to unify the two. The former’s framework

is discrete and probabilistic: asking a question does not result in a binary answer;

it results in an amplitude from which the probability of a given process happening

may be calculated. The latter is continuous and deterministic: events are just points

connected by worldlines. These differences make it remarkably difficult to create a

correspondence between the two, as the same questions cannot always be posed

when questioning reality. Nevertheless, plenty have tried.

The many approaches proposed differ significantly: when looking at loop quan-

tum gravity [4] compared to string theory [5], this becomes most apparent. A lack

of coherence and agreement on the fundamental principles may be traced to a deficit

in experimental support. Contrary to the past, where experiments hinted at the di-

rection to take and so somewhat guided the theory, research is near blind this time

around. The study of quantum gravity remains heavily theoretical with a plethora

of approaches.

Despite this lack of suggestions, another major problem in the current under-

standing of physics gives an even bigger reason to look for a unified theory: infinities
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appear. Should the origin of these singularities not be physical objects but mathe-

matical artefacts, it suggests the theories are incomplete.

1.2 Problems Arising in the Continuum

The fact that general relativity is built upon a continuous Lorentzian manifold does

not necessarily mean that a continuous manifold must be fundamental. Nevertheless,

one may want to find more reasons to disregard it as a fundamental aspect of the

theory. In the present understanding of physics, three infinities appear: quantum

mechanics and general relativity have one each, while the third is due to quantum

gravity proper [6].

In quantum mechanics, or better in what is used to deal with it relativistically,

Quantum Field Theory, infinities appear when length scales are taken to be arbi-

trarily small (i.e. energy scales to be arbitrarily large), this is symbolised by Z = ∞.

For a renormalisable theory, the problem is solved through renormalisation, that is,

by redefining the Lagrangian using a finite number of counter-terms to absorb all

these divergent terms [7]. However, gravity appears to be non-renormalisable as all

the divergences cannot be absorbed using a finite number of counter-terms [8, 9, 10].

This issue could be solved by imposing a physical cutoff limit on the energy scale,

essentially fixing a lower bound for distances.

In general relativity, the infinities are evident, and Rαβγδ = ∞ symbolises them.

There exist regions of infinite curvature, such as those inside a black hole’s event

horizon, in what, if not, would be a perfectly regular spacetime manifold. When the

radius around these singularities is taken to be on arbitrarily small scales is when

these infinities are faced [11]. There are compelling arguments for these objects to

exist after the successful detection of gravitational waves by LIGO-Virgo in 2015,

followed by infrared detection in 2019 [12, 13]. However, the infinite tidal forces

that general relativity predicts are believed to be unphysical. These tidal forces
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are thought to a manifestation of the breaking down of the theory at the quantum

scale, in the immediate vicinity of the singularity, justified by the fact that general

relativity is not a quantum theory. For similar reasons, it fails in the very early

universe.

Last but not least, the final infinity appears in quantum gravity, symbolised by

SBH = ∞. It is the infinite entropy of the black hole, appearing when counting the

number of degrees of freedom of the event horizon [14]. However, Stephen Hawking’s

black hole entropy formula gives a finite answer, suggesting the complete picture is

yet to be found [11, 15].

The origin and character of these infinities give some hints as to what a theory

of quantum gravity should look like: it should be able to recover both quantum field

theory and general relativity in the classical limits and round them off by describing

the smallest-scale physics. There also are further suggestions as to why a Theory of

Everything may be lurking out there: the different interpretations of reality of the

two theories indicate something is missing, and the fact they both break down in

specific regimes suggests they are not the fundamental answer. Most importantly

for Causal Set Theory, the nature of these divergences infers that there might be a

minimum length scale, a discreteness scale, built into nature beyond which physics

is no longer applicable. This construction directly contradicts general relativity and

quantum field theory, but may it be the answer we have long been looking for?
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Chapter 2

Causal Set Theory

In addition to the difficulties described earlier, on the path to constructing a theory

for quantum gravity, many crossroads are reached and one must pick a direction

each time. Some of these questions, as described by Rafael Sorkin [16], include:

(a) the sum-over-histories framework or the “observable and state-vector” approach;

(b) relative probabilities or absolute ones; and (c) a differentiable manifold or a

discrete underlying structure?

With these forks in mind and the conclusions drawn from the divergences, a

theory with discreteness at its very core was developed.

2.1 Origins

The idea that space may be discrete is not novel: it can be traced back to Riemann

in recent times and even further to Zeno. The former, in his inaugural lecture that

laid down the foundations of geometry and curvature, said [17]:

“The question of the validity of the presuppositions of geometry in the in-

finitely small hangs together with the question of the inner ground of the

metric relationships of space. In connection with the latter question. . .

the above remark applies, that for a discrete manifold, the principle of its
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metric relationships is already contained in the concept of the manifold

itself, whereas for a continuous manifold, it must come from somewhere

else. Therefore, either the reality which underlies physical space must

form a discrete manifold or else the basis of its metric relationships should

be sought for outside it.”

Here Riemann essentially wonders what exactly it is about continuous space that

allows us to discuss measurable things such as lengths, areas, etc. He contrasts

the origin of these in a discrete manifold, where they are inherently built in, to a

continuous manifold where the metric structure must be sourced from elsewhere.

Over a century later, Einstein, after having already adopted Riemann’s notion of a

continuum in general relativity, doubted whether this idea could persist [18]:

“In any case, it seems to me that the alternative continuum-discontinuum

is a genuine alternative; i.e. there is no compromise here. In [a discon-

tinuum] theory there cannot be space and time, only numbers. It will be

especially difficult to elicit something like a spatio-temporal quasi-order

from such a schema. I can not picture to myself how the axiomatic frame-

work of such a physics could look. But I hold it as altogether possible

that developments will lead there.”

Einstein shines a light on the importance of causal order and how difficult it would

be to derive it purely from an algebraic scheme. However, causal set theory pre-

cisely incorporates this ordering by construction: it and discreteness are the inherent

components of the theory.

Order + Number = Geometry

We may now appreciate how the full geometry of spacetime can be recovered from

these two notions alone. According to general relativity, each four-dimensional

spacetime point can be fully defined using ten numbers due to the ten indepen-

dent components of the Einstein tensor, Gµν .
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Nine of these numbers may be found just from knowing how light propagates

through spacetime. Let us consider the lightcone and notice how it can be defined

in causal terms [19]. Taking the event at the origin as a reference point, it can be

said that those events on or inside the future cone are influenced by the starting

element, while it is influenced by those in its past light cone. These spacetime events

are said to be causally related to the reference event. Then, all those outside the

cone are said to be causally unrelated to the original point. Simply using this idea

of causality, a causal order (or lack thereof in the latter case) has been defined.

Similarly, one can work backwards: from the causal order of spacetime events, the

light cones of spacetime events can be recovered, and from these, it is possible to

retrieve nine of the ten numbers.

Formally, a theorem by Hawking, King, McCarthy [20] and Malament [21], re-

ferred to as the “HKMM” theorem by Surya [22]:

Theorem 1 (HKMM). If there exists a chronological bijection fb between two d-

dimensional spacetimes which are both future and past distinguishing, then these

spacetimes are conformally isometric when d > 2.

Where the future and past distinguishing spacetimes are those in which, for

all events p in the spacetime, its chronological past and future J± (p) is unique.

Thus, if J± (p) = J± (p) =⇒ p = q. Levichev subsequently showed that this

statement is equivalent for causal instead of chronological ordering [23]. These two

results highlight how if two spacetimes possess identical causal structure, they are

conformally isometric.

The metric has then been recovered up to a conformal rescaling factor, so the

missing piece of information is given by encoding the volume of spacetime. In the

context of discrete order, the number of discrete elements can be equated to the

volume simply by counting them as there will be finitely many. One may appreciate

how this notion of discreteness follows naturally from a theory with causality at

heart; all this can be done without relying on any extra outside information. In the
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context of a continuous manifold, counting would have resulted in an uncountably

infinite large number of elements [19]. Thus leading to the need for an externally-

sourced volume element of the form, dV =
√−g d4x.

Clearly, the geometry of spacetime has now been fully defined, having found all

ten numbers. R. Sorkin’s famous slogan encapsulates this idea:

Order + Number = Geometry . (2.1)

The Discreteness Scale

When discussing a discrete theory, it is imperative to address the scale at which this

discreteness takes place. One established approach in defining this is through the

black hole horizon entropy [19], some careful considerations lead the length scale to

be defined as:

lP =

√
8πGℏ
c3

, (2.2)

which is precisely the Planck length. The size of these elements suggests why we

have not experienced the granularity of spacetime; it is just too small for current

technology to detect. Assuming that each fundamental volume, V ∼ l4, contains

exactly one spacetime event, then one cubic centimetre for one second would contain

∼ 10139 elements, an enormous number. It should also be noted that in the classical

limit (ℏ → 0), l → 0 and so the recovery of the continuum as expected.

Phenomenology

Causal set theory has also had an important phenomenological success. Recent con-

siderable advances in astronomical observations have shed light on the value of the

cosmological constant Λ. The seemingly correct agreement between the experimen-

tal measurement and the theoretical prediction of the order of magnitude of Λ [19],

has obviously been an enormous success for causal sets.

In this theory, the discrete manifolds are made up from a random Poisson pro-
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cess known as “sprinkling”, described in section 2.5. This random process implies

that Λ must fluctuate around its target, expected, value. The magnitude of these

fluctuations decreases in time like
√
N where N is the relevant number of ancestors

(see section 2.2) of a causal set element at a given cosmological epoch [19]. The

target value has been suggested to be zero, with these fluctuations just being an

artefact of the statistical process. This leads to the proposed relation [24]:

Λ ∼ 1√
N

. (2.3)

For the observable universe (to date) N ∼ 10240, and so Λ ∼ 10−120 which is in agree-

ment with observations [19]. This prediction, however, still remains purely heuristic

until a complete Quantum Causal Set Dynamics (see section 2.8) is formulated.

2.2 Definitions

Let us start with the most important definition to our project.

Definition 2.1. A causal set (or causet for short) is defined to be a locally finite

partial order (poset) whose order is governed by causal order. Formally, it is a

pair (C,⪯) made up of a set, C, together with a partial order relation, ⪯, with the

following properties:

1. Reflexivity: ∀x ∈ C, x ⪯ x;

2. Transitivity: ∀x, y, z ∈ C, x ⪯ y ⪯ z =⇒ x ⪯ z;

3. Acylicity: ∀x, y ∈ C, x ⪯ y ⪯ x =⇒ x = y;

4. Local finiteness: ∀x, y ∈ C, |I (x, y)| < ∞, where we have that the set

I (x, y) := {z ∈ C | x ⪯ z ⪯ y} is an order interval and |S| is the cardinality

of a set S.
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We will say that, given x ⪯ y, then x precedes y.

The above four properties give the complete structure of the causet. Reflexivity

is the most intuitive; it means that all elements of the causet precede or are equal to

themselves. Transitivity means that if X and Y are causally related, and Y is also

causally related to Z. Then, there exists a causal relation between X and Z (even

just by moving through Y). Acylicity means there can be no closed loops. This can

be seen by considering a causal set {x, y, z, w ∈ C | x ≺ y ≺ z ≺ x, x ≺ w} that is,

a loop of x, y, z connected to a final element w through x. From the point of view

of w, by transitivity, each of the three elements in the loop precedes it, becoming

indistinguishable. This indistinguishability does not allow one to define notions

such as distance, and so it becomes impossible to build up a Lorentzian manifold

from the causet. Finally, local finiteness is the condition through which spacetime

discreteness enters the picture. In a continuous spacetime, any causal interval will

contain an uncountably infinite number of events, and so by not allowing this, notion

of discreteness has been introduced.

Several other notions are also to be introduced, these will become useful in later

sections and chapters:

• If x ⪯ y but x ̸= y, we say x ≺ y where ≺ is known as a strict causal relation

given by an irreflexive relation.

• If x ⪯̸ y and y ⪯̸ x, the elements are unrelated, we say x||y.

• If x ≺ y then x is an ancestor of y, likewise y is a descendant of x.

• If x ≺ y and n (x, y) := |I (x, y)| − 2 = 0, we say there is a link between the

two elements. Links are the irreducible elements of a causet; we say x ≺ ∗y.

• Given an element x ∈ C, we define the set of all its past nearest neighbours as

the first past layer. In general the i-th past layer is given by the set of y ∈ C

such that y ≺ x and n (x, y) = i − 1. Similarly, this may be repeated for the

future layers.
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• If ∀x, y ∈ C ′ ⊂ C there exists a relation between them, that is, either x ⪯ y or

y ⪯ x, then C ′ is a linearly ordered subset, a chain.

• If ∀x, y ∈ C ′ ⊂ C there does not exist a relation, that is, x||y, then C ′ is a

totally unordered subset, an antichain.

• A chain is a path if all the relations between adjacent elements are a link.

• A path between x, y is maximal if it has maximal cardinality between all

possible paths, and respectively for minimal. These maximal chains are the

causet analogue of timelike geodesics in the continuum.

2.3 Representations

Causets can be represented by “Hasse” diagrams, originally used to visualise posets.

Hasse diagrams ignore all connections which are not links, ≺ ∗, the transitivity

property can be used to deduce all other relations. If we have x ≺ ∗y then we draw

x below y such that causal order flows upwards, with a line in between to represent

the link, as seen on Fig. 2.1(a). This in contrast to directed graphs in which all

relations are explicitly shown, see Fig. 2.1(b). Let us consider an example, for a

causet (C,⪯) with the following relations:

C = {x, y, z, w} ,

x ⪯ x , x ⪯ z , x ⪯ w ,

y ⪯ y , y ⪯ z , y ⪯ w ,

z ⪯ z , z ⪯ w ,

w ⪯ w ,

(2.4)

which satisfies the four axioms of causets. It is shown diagrammatically in Fig 2.1.
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(b)(a)
𝑥

𝑧

𝑦

𝑤

𝑥

𝑧

𝑦

𝑤

Figure 2.1: Hasse and directed graphs as representations for a causal set C. (a) A
Hasse diagram for the causal set, only links are shown. (b) The directed graph of
the causal set, with all relations explicitly shown and where arrows represent causal
order.

2.4 Embeddings

A major issue with introducing discreteness is that it must be possible to recover the

continuum from it, as required by the prior considerations regarding what a theory

of quantum gravity should look like. We must then ask ourselves what we require

to claim that a spacetime (M, g) is an appropriate approximation of the underlying

causet (C,⪯). First of all, the notion of a faithful embedding is needed [22]:

Definition 2.2. An embedding of a causet (C,⪯) into a Lorentzian manifold (M, g)

is a map:

f : C → M , (2.5)

such that the causal structure is preserved, that is, for causally related elements:

x ⪯ y ∈ C ⇐⇒ f (x) ⪯ f (y) ∈ M , (2.6)

i.e. there exists a future directed causal curve connecting them. Similarly, if there
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is no relation between two elements, they will be spacelike separated.

Definition 2.3. A faithful embedding is an embedding for which there is a map:

f : C → M , (2.7)

such that f (C) is uniformly distributed in (M, g) at density ρ, with respect to the

volume measure on M.

The thinking is then restricted to scales over which the variation of the geometry

on the manifold is much larger than the embedding scale. With this, there is the

Hauptvermutung, or fundamental conjecture, of causal set theory [19]:

Conjecture 2.1 (Hauptvermutung). If a causet (C,⪯) can be faithfully embedded

with density ρ into two distinct Lorentzian manifolds (M, g), (M′, g′) then the two

manifolds are “approximately isometric”.

What is very important to notice is the use of the word “approximately”; this is as

on scales smaller than the discreteness scale, there no longer is a faithful embedding,

consequently the two manifolds may differ at the Planckian scale.

2.5 Sprinklings

Having discussed the faithful embedding of a causet into a manifold, it must be

possible to reverse the process. Having also reached the realisation that not all

causets may be easily embedded into Lorentzian manifolds, the thinking is restricted

to those which can. This is done by reversing the method, that is, producing a causet

from a causal Lorentzian manifold, achieved through a random process known as

sprinkling.

When deciding what random process to turn to, the manifold’s properties and

the causet’s requirements must be considered. The spacetime is known to possess
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Lorentz invariance by construction, and this property must persist. That is, the

causet should not choose a particular direction in spacetime.

Should the choice be made to place points in a uniform lattice, they would naively

appear to be equally spaced. However, as soon as a Lorentz transform is performed

(for instance, a boost), the spacing will lose its uniformity, and statistically, they

will differ. This is not a Lorentz invariant choice and as such must be discarded [19].

A second approach is to use a random Poisson distribution to place the points,

this does in fact lead to a Lorentz invariant formalism [22].

The Poisson Process

A Poisson process is just a limiting case of a binomial process, Br [25]. Let us

consider a continuous manifold, M, and divide it into n equal cells. Each cell has

volume Vn = V
n
, where V = vol (M). A point is then independently placed in each

such cell with probability pn. The expected number of points in R then is:

⟨N⟩ = pnn = ρV , (2.8)

where ρ = ⟨N⟩
V

is the density of points.

The limiting case is to be considered n → ∞, i.e. the continuum. For a general

number of points N = k, the binomial probability of placing k points in n cells of

the lattice is given by:

P (k) = (1− pn)
n−k pkn

(
n

k

)
, (2.9)

after some manipulation; and by using µ = ρV :

P (k) =
n!

(n− k)! nk

(
1− µ

n

)n µ

k!

k (
1− µ

n

)−k

. (2.10)
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As continuum limit is being considered, the following limits are taken into account:

lim
n→∞

n!

(n− k)! nk
= 1 , (2.11)

lim
n→∞

(
1− µ

n

)n
= e−µ , (2.12)

lim
n→∞

(
1− µ

n

)−k

= 1 . (2.13)

Reassembling everything, the continuum limits recovers the promised Poisson dis-

tribution:

P (k) =
(ρV )k e−ρV

k!
. (2.14)

Precisely, this is the probability of a causet, C, having k points in a volume V with

density ρ.

It has been shown that this framework is Lorentz invariant, as required [26]. This

is given by the fact that, although points will change position and coordinates under

a Lorentz transform, their macroscopic distribution will hold. And so, statistically,

they will be indistinguishable. This property holds due to the fact that the Poisson

distribution is based upon Lorentz invariant quantities: V is constant regardless of

the frame of reference, and so is the expected number of points ⟨N⟩ = ρV . This

may produce a causet, as seen in Fig. 2.2 for 600 elements sprinkled in a finite causal

interval in (1 + 1)-dimensional Minkwoski spacetime.

After sprinkling, the causal relations between points are imposed using the orig-

inal manifold’s causal order, i.e. light cones. It is then said that a causet C is

well-approximated by a spacetime (M, g) if it could have been generated with rel-

atively high probability by a sprinkling process. It should be noted how this is a

kinematical process of producing a causet, dynamically the story will be different;

see Sec. 2.8.
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FIG. 3. Example sprinkle of 600 events into an Alexandrov
subset of 1 + 1 dimensional flat spacetime. To analyse the
effects of the past infinity, we observe the events that are
sprinkled in a reduced region Ui, from the entire region i = 0
(no reduction) up to i = 5 (smallest observation region, black
shade). One possible maximal path (timelike geodesic, see
section III G) is shown by a thick (red) line that connects the
past-most to the future-most event.

A. Outline of the simulations

We conducted the simulations with MATLAB R2018a
code and utilized the Viking high performance computing
cluster of the University of York.

For each dimension d = 1 + 1, 1 + 2 and 1 + 3 of
a Minkowski spacetime Md, we consider a non-empty
Alexandrov subset U = J+(p) ∩ J−(q) for fixed p, q in
Md. On the subset U , we repeat a sprinkling process
10000 times with a fixed sprinkling density parameter
such that the sprinkles have an expected cardinality of
6000 events. This corresponds to a grand-canonical en-
semble of sprinkles in the given Alexandrov set. For each
event x in each sprinkled causet, we consider every event
y ∈ R−

2 (x) in the rank 2 past of x and count the num-
ber of perimetral and internal events in the diamonds
spanned by x and y. The counts are accumulated over
all the 10000 sprinkles so that we obtain results averag-
ing over tens of millions of rank 2 past events. Details on
the implementation of the sprinkling process are given in
section A.

There will be effects from the past boundary of the
sprinkling region U . To mitigate these effects, we set
up various observation regions as subsets of U . For i ∈
{0, 1, . . . , 5}, fix points pi ∈ Md along the straight line
from p to q in Md such that the observation regions Ui =

J+(pi) ∩ J−(q) have a volume

Vi = 2−di/4V0. (19)

So we obtain 6 regions per Alexandrov subset of
Minkowski space to compare. We consider all rank 2 past
diamonds in U whose future tip is contained in Ui ⊂ U .
In Figure 3, for example, the observation region with vol-
ume V1 excludes the lowest events (orange), V2 further
excludes the next set of events (yellow), then V3 also ex-
cludes the darker shaded events (green), and so on.

In section III B we set out 6 methods for selecting a
subset S(x) ⊂ R−

2 (x) for each event x outside the rank
2 past infinity. The first criterion was proposed in [7],
while the others are newly introduced here. We compare
the subsets S(x) selected by each method so that we can
identify the one that performs best in relation to three
qualitative measures:

• the selected sets S(x) should be singletons with
high probability, across all points x in each sprinkle
in the ensemble studied

• the distribution of proper time separations between
x and the event(s) in S(x) should have low variance
and small expectation value, across the ensemble as
before

• the distribution of the unit-normalized separation
vectors between x and the event(s) in S(x), should
be approximately uniformly distributed on the unit
hyperboloid, across the ensemble.

The third of these is intended to ensure Lorentz invari-
ance of the preferred past structure, in a statistical sense,
in the limit of large sprinkles.

Furthermore, we study the diamond size and its ex-
pected proper time separation in more generality. Con-
sider the events with the minimal and maximal time co-
ordinates in a given sprinkle. If they are causally re-
lated, as occurs with high probability, there are maximal
paths between them; an example is illustrated as the line
connecting the events with the smallest and largest time
coordinate in Figure 3. Such paths are analogous to time-
like geodesics and may be regarded as potential observer
trajectories. We compute the expected diamond size and
proper time separation between next-to-nearest neigh-
bours along such paths. It transpires that an observer
travelling along such a path can hardly determine the di-
mension of the underlying flat spacetime by measuring
the diamond size or the expected proper time separa-
tion (ticking rate of a ‘diamond clock’) of the diamonds
spanned between next-to-nearest neighbours along the
geodesic, see section IIIG.

B. Criteria for selecting rank 2 past subsets

As described in Definition 10, a preferred past struc-
ture maps each causet event outside the 2-layer past in-
finity to one of their rank 2 past events. In general, for

Figure 2.2: A sprinkling of 600 elements into a finite interval in (1 + 1)-dimensional
Minkowski spacetime [1], having imposed causal relations. The red line connecting
the past-most and future-most events shows a possible maximal path.

2.6 Coarse-Grainings

A further aspect that may investigated in the approach to finding a link between

discreteness and the continuum is coarse-graining. For a spacetime (M, g) it is

possible to obtain a causet (C,⪯) for different densities, ρ. Given a causet (C,⪯),

which may or may not faithfully embed into a spacetime (M, g), we may coarse-

grain it into a smaller subcauset C ′ ⊂ C which faithfully embeds into (M, g) at

ρ′ < ρ [19, 22]. Coarse-graining can be thought of as an “averaging” over the

original elements. For example, let us consider a random selection of elements in

C such that for every n elements in C, n′ = (ρ′/ρ)n are chosen [22], is a coarse-

graining. A second example may be made to the sprinkling process itself applied to

the causet [19], by assigning a fixed probability px of keeping each element x ∈ C.
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Then, for instance, for a 3 : 1 coarse-graining we may choose px = 1/3.

This broader condition can be considered an “intermediate” stage of the embed-

ding process. It allows us to take in more causets that are not manifold-like at the

Planck scale, but could still have physical manifestations. This allows the consider-

ation and study of a wider range of causets, for instance, those of microscopic states

in the quantum regime. Through coarse-graining, it is possible to define a subcauset

which in turn can be faithfully embedded into a continuous spacetime.

2.7 Dimensions

Before tackling the dynamics of causal set theory, one should investigate a final

aspect of the manifold approximation: its geometry and topology. Assuming the

Hauptvermutung is true, it is possible to extract geometrical and topological in-

formation from the manifold’s order relation. A most fundamental aspect of the

manifold’s topology, of interest to us, is its dimension. Dimensionality is not an

inherent property of a causet, so it is possible to arrive at the effective continuum

dimension of the causet in various ways; three will be presented [19]. All three es-

timators determine a dimension for an interval I in a causet C for the case where

I ≈ A. Here A is a double light cone interval (also known as an Alexandrov interval

or, colloquially, a causal diamond), in Minkowski space Md.

Myrheim-Meyer Dimension

Given an order interval I (x, y) for x, y ∈ C where x ⪯ y, then let N (x, y) = |I (x, y)|

be the number of elements within the order interval and R be the number of relations,

that is, pairs x, y ∈ I (x, y) such that x ⪯ y. Also, let:

f (d) =
3

2

(
3d/2

d

)−1

. (2.15)
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Finally, an estimate for the dimension when N ≫
(
2
7
/16
)d is given by [27, 28]:

d = f−1 R(
N
2

) = f−1 R

N (N − 1)
, (2.16)

which means an estimate of the dimensions of the causet can be found by counting

the number of elements and the number of relations between them. Then, for a fixed

number of elements, a higher number of relations will lead to a higher dimensionality.

Midpoint Scaling Dimension

Given an order interval I (x, y) for x, y ∈ C where x ⪯ y, let z ∈ I such that

x ≺ z ≺ y. Next, let us define two new order intervals I1 (x, z) and I2 (z, y) for

which N1 (x, z) = |I1 (x, z)| and N2 (z, y) = |I2 (z, y)|.

We choose z to be the “midpoint”, that is, to maximise

Nmid = min{N1 (x, z) , N2 (z, y)} . (2.17)

The dimension of the causet C is then defined as [29, 30]:

d = log2

(
N

Nmid

)
. (2.18)

A Third Estimator

Given an order interval I (x, y) for x, y ∈ C where x ⪯ y, then let N (x, y) = |I (x, y)|

be the number of elements within the order interval and K be the number of chains

in I (x, y). Then, another estimation of the dimensionality is given by [19]:

d =
lnN

ln lnK
. (2.19)

However, it should be noted that this is only a reasonable estimate for exponentially

large N due to the logarithmic relation.
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2.8 Dynamics

So far, all we have is what a causal set is and how a spacetime can be associated to

it; we are yet to produce the laws of motion; we have kinematics without dynamics.

To formulate a theory of Quantum Gravity, these dynamics are expected to be

quantum in character, but we cannot start directly from a quantum dynamics. Let

us begin from the idea that a causet develops in time, or better, that the growth

of a causet is time itself, in a process known as “sequential growth”. As we would

like a quantum dynamics, this process will be of probabilistic nature (classically at

first and quantum at a later stage). Essentially the aim is to develop a quantum

dynamics starting from a classical stochastic process [19].

Classical Sequential Growth

This first stochastic process is known as a “Classical Sequential Growth” model

(CSG) and was introduced by Rideout and Sorkin [31]. The dynamics is described as

a series of “births” of new causet elements with assigned probability to each possible

path. However, clearly, this is much too loose, and the sheer number of choices

gets us nowhere, especially seeing how many would result in completely unphysical

causets. As a result, some physical restrictions are imposed on the process [19].

First of all, we impose internal temporality, this ensures causality is respected.

We prohibit an element being born “before” one which causally precedes it. Ele-

ments can only be born in the causal future of, or spacelike to, all already existing

elements. This introduces a natural labelling of non-negative integers purely based

off of “fictitious” birth order, such that:

x ≺ y =⇒ label (x) < label (y) . (2.20)

For example, the first-born is “0”, the second-born “1” and so forth. However, this

can be seen as a gauge choice.
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Secondly, there is the introduction of discrete general covariance. This statement

is very similar to one present in general relativity. We want our framework to be

independent of its natural labelling, precisely to how general relativity is coordinate

independent. Should this labelling persist, it would suggest that the elements are

governed by some sort of unphysical “external time”. Thus, this condition is just a

statement about gauge invariance.

Next, there is the necessity of the Markov sum rule, that is, all the probabilities

of all the possible transitions at any given stage sum to one.

Finally, there is the requirement of Bell causality. Loosely, it ensures that the

birth of an element in one region of a causet is independent of the births taking

place in another region of the causet spacelike to the first.

The resulting family of equations from these conditions may be solved explicitly

and in general [31, 32]. At stage n, the transition probability for cin → c
j(i)
n+1,

Ci → Cj(i) where an element is born with ϖ ancestors and m parents (direct

ancestors) is given by:

P
(
cin → c

j(i)
n+1

)
=

λ (ϖ,m)

λ (n, 0)
, (2.21)

where n is also the cardinality of the original causet Ci and λ is defined as:

λ (ϖ,m) =
ϖ∑

k=m

(
ϖ −m

k −m

)
tk , (2.22)

with tn ≥ 0 and t0 > 0 being viewed as the coupling constants of this dynamics.

The result is an infinite number of causets (each of which may be an infinitely long

sequence). However, very many of these are of no interest as they do not describe

physical spacetimes, while others describe causal set interpretations of known phys-

ical notions. Yet, some are interesting and will define physical laws based on the

ratios of these constants [19].

This structure, and the growth of causets, can be seen in a partial order of

causets, known as a poscau diagram. A poscau can be thought of as a Hasse diagram
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of Hasse diagrams, it represents all the possible dynamic evolutions a given causet

can take. Thus, a path through a poscau then corresponds to a sequence of causet

transitions given by their respective probabilities. It should be noted that, different

paths through a poscau can lead to the same causet. However, by discrete general

covariance, this is just an equivalent way of representing the same growth process,

and thus the probabilities of reaching either causet are equal. In Fig. 2.3, Henson

has made the starting element the empty set, but obviously, one may start from any

causet and apply the same rules to see the growth.

2

22 3

3

Figure 3: An augmented Hasse diagram of “poscau”, the partially ordered set of finite causets.
The elements of this set are the finite causets. To the “future” of each causet are all the causets
that can be generated from it by adding elements to the future of or spacelike to its elements
(the numbers on some of the links represent the number of different ways the new element can
be added, due to automorphisms of the “parent” causet). Only causets of up to size 4 are shown
here. An upwards path in poscau represents a sequence of transitions in a growth process. Each
such path is given a probability by a CSG model. Because of the general covariance condition,
the probabilities of paths ending at the same causet are the same. (Note that the apparent
“left-right symmetry” of poscau does not survive above the 4-element causets.)

“covariant”, meaning insensitive to the growth order labelling) can be characterised and
given a physical interpretation. This was achieved for a generic class of CSG models in
[24] and the results extended to the most general models in [63]. Most of the methods
used will be directly applicable to any future “quantum sequential growth” model.

Another result with possible implications for the full quantum theory concerns the so-
called “cosmic renormalisation” behaviour that the models exhibit [64, 65, 66]. Certain
generic CSG models yield a “bouncing” cosmology, in which the universe expands from
zero size to a certain “spatial volume” (measured by the size of maximal antichains), and
then contracts down to minimal size, only to expand once again, in an infinite chain of
big bang/big crunch cycles. The dynamics after each new big bang is equivalent to a CSG
model with no previous cycles, but with a different “renormalised” set of free parameters.
After a large number of cycles the values of these effective parameters converge to a
small set of those possible – in particular, the total size of the cycle (i.e. the number of
elements between its big bang and crunch) becomes large whatever the size in the first
few cycles. This gives a possible mechanism for the setting of fundamental constants:
the large spatial extent of the universe in these models is not a result of fine-tuning, but
simply a consequence of the extreme age of the universe.

The CSG models have also been of use in developing tests of dynamically generated
causal sets to look for manifoldlike behaviour [47], and computational techniques for causal
sets. But it is important to note that the theories are not supposed to be a “classical
limit” of a quantum dynamics; the situation is more analogous to the stochastic dynamics
of Brownian motion, and its relationship with the quantum dynamics of the Schrödinger
particle. The goal is to replace the probability measure used in the CSG model with a
quantum measure, reworking the physical conditions to make sense in this case. Whether
or not the CSG models can produce manifoldlike causal sets is not crucial for them to

11

Figure 2.3: A poscau diagram starting from a single element and growing up to
causets of cardinality four [2]. Numbered links refer to the different ways the same
causet could be generated due to automorphisms of the parent causet. It is important
to note that, on the grounds of discrete general covariance, although certain identical
causets have different growth paths, they are just equivalent ways of representing
the same process and so have the same probabilities of happening.

Quantum Sequential Growth

To move to a quantum sequential growth model (QSG) from a classical one, it must

be “quantised”. This is done through the use of measure theory: by replacing the

classical measure µC with a quantum measure, µ [33, 34, 35]. We will not go into the

details of measure theory; only a very brief introduction to the ideas is provided as

the specific details are beyond the scope of this work. Essentially, ther is a classical
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measure µC (also known as a level 1 measure) which can be related with the classical

probabilities of CSG and as such satisfies the Kolmogorov rules (additivity):

µ (α ∪ β) = µ (α) + µ (β) , (2.23)

where α and β are subsets of the set of all possible configurations of past finite

causets.

On the other hand, the quantum measure µ (also known as a level 2 measure)

cannot be thought of as a “probability” in the classical way as it is allowed to violate

the Kolmogorov rules, but respects the quantum sum rule [22]:

µ (α ∪ β ∪ γ) = µ (α ∪ β) + µ (α ∪ β) + µ (β ∪ γ)− µ (α)− µ (β)− µ (γ) , (2.24)

where α, β, γ again are subsets of all possible past finite causets.

With this new interpretation in mind, to be able to better define a quantum

analogue, the classical rules must be re-expressed into quantum language and en-

sured that µ respects them [35]. The first condition of internal temporality can be

implemented identically. To introduce the condition of discrete general covariance,

we should first restate the classical requirement using measure theory nomenclature.

We say that the measure µC must be the same for order isomorphic causets. The

quantum equivalent then follows as it requires:

|cin⟩ = |cjn⟩ , (2.25)

when cin ∼ cjn. To find the analogue of the Markov sum rule, the quantum counter-

part of total probability summing to unity through operators is needed. Specifically

for this case, a set of transition operators given by Ô
(
cin → c

j(i)
n+1

)
such that:

|cj(i)n+1⟩ = Ô
(
cin → c

j(i)
n+1

)
|cin⟩ , (2.26)
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which must satisfy: ∑
j(i)

Ô
(
cin → c

j(i)
n+1

)
= I . (2.27)

Finally, the Bell causality condition is much more subtle to introduce; this, however,

can be done unambiguously when H ≃ C, as the transition operators simplify to

C-valued amplitudes [35].

Although QSG has had a lot of progress in recent years, a lot remains to do and

be discovered, it is still in its infancy and a full quantum dynamics requires much

work.

A quantum dynamics is built in the hope of reproducing a fully functioning

theory of quantum gravity, but at a fundamental level, it looks very different. This

theory must be formalised in order to create a stronger parallel, which can be done

in various ways. The question that must be asked is whether a sum-over-histories

framework or the “observable and state-vector” approach would work best. Or,

expressed differently, should a path integral approach to quantum mechanics or the

canonical formulation of quantum theory be used.

Given a choice between the use of a Lagrangian or a Hamiltonian to solve this

problem, the understanding is to side with the former. The Hamiltonian approach

requires the unphysical separation of time from space as it requires an external time

parameter with respect to which the system then evolves. This feels completely

unnatural to do, seeing as space and time are indistinguishable at the causet level [6,

19]. Monte-Carlo simulations of the action have been performed, and promising

evidence has been collected, specifically for the two-dimensional continuum case [36].

Finally, using the Lagrangian approach, one is able to employ a sum over histories

(path integral) approach. The causet analogue to the sum over all the possible

trajectories a particle could take is the sum over all possible causets that could, in

principle, be grown. The discretised version (in the continuum this would be an
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integral), takes the form:

Z =
∑
C

eiS[C] , (2.28)

to be able to define this we now need a causet action S [C].
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Chapter 3

The Action of a Causal Set

As mentioned, along the road to quantum gravity, the choice is made to take the

sum over histories route to the dynamics, and as a result, a causet action, S (C), is

required. To recover the current theories, the causet action is expected to recover

the Einstein-Hilbert action (Eq. 3.19) in the continuum limit. Thus, an action will

be built up from this assumption.

3.1 The d’Alembertian

We want to be able to construct a differential operator on the discrete spacetime of

causal sets analogously to how it must be done on a continuous manifold. Therefore,

more than one element is required. These are the “nearest neighbours” of the point

in question, the (past or future) layers previously defined.

Non-Locality

Up to this point, a framework has been constructed with Lorentz invariance and

discreteness. However, their combination results in a radical (but causal) non-

locality [37, 38, 39]. This notion of non-locality could turn out to be fatal: if it

cannot be tamed, the inherently local theory of general relativity cannot be recov-

ered. To appreciate its origin, consider a causet faithfully embedded in Minkowski
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spacetime. Let us take an element, x, and notice how all its nearest neighbours will

be one unit of Planck proper time away from x. The locus of all such points forms a

hyperboloid that stretches from past infinity up to future infinity; it will have infinite

spatial volume. All elements in the vicinity of such a surface will form links with

the initial element and thus be considered x’s “nearest neighbours”. Clearly, there

is an infinite number of such points, and even in the presence of Lorentz-symmetry-

limiting curvature, the number of nearest neighbours will remain huge as long as

the radius of this curvature is greater than the Planck scale [40]. To align with the

sprinkling process, this sentiment may be expressed by saying that the probability

of x having a limited number of nearest neighbours is vanishingly small. It is then

straightforward to see how problems will arise when attempting to define any notion

of “discrete locality” [41].

A causet d’Alembertian is crucial to define the dynamics and equations of motion

of a real scalar field φ on a background causet. Having assumed vanishing mass,

it is expected that in the continuum limit □φ = 0. This radical non-locality must

be confined to the Planck scale, where physics has already been seen to possess

this property, and as such will not cause problems. This is achieved by finding

cancellations between the “non-local” couplings of the field φ, such that the limit

theory may be recovered. To start the construction of the d’Alembertian, let us

assume that it acts linearly on φ so that the task simply becomes finding a suitable

matrix Bxy that plays the role of the d’Alembertian, where x, y ∈ C. The requirement

of causality becomes equivalent to Bxy = 0 whenever x ≺ y or x||y [41].

Recovering the d’Alembertian

To construct the d’Alembertian let us first make some observations about Bxy. First

of all, for a usual sprinkling, there will be an equal distribution of the individual

elements between positive and negative values. Secondly, x has a stronger coupling

with elements that are a small proper distance away from it; those with a large
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proper distance will make a near-zero contribution. The former, however, seems

to be the suggestion that unlocks the puzzle: introducing oscillating signs in the

discretised causet d’Alembertian operator. Sorkin explains the justification and

thought process behind this method in great detail in [41], a brief summary of it

will be presented.

Let us consider the case of M1, just the real line, where □ = ∂2

∂t2
φ up to a sign

convention. This differential operator may be discretised with spacing ∆t as:

∂2

∂t2
φ (t) ≈ 1

∆t2
φ (t−∆t)− 2φ (t) + φ (t+∆t) , (3.1)

where the causet analogue would be the three-chain x ≺ ∗y ≺ ∗z. A discretised

causet d’Alembertian will be built up from these principles.

Now consider a causet sprinkled in M2 where we want □φ|x (note x ∈ C has

been fixed and our spacing ∆t → lP , to agree with the fundamental causet scale).

To impose causality, the discretised operator is chosen to be solely dependent on

those elements which precede it; we introduce the idea of past layers in order to

distinguish them. The prescription of □φ consists of a linear sum of a certain number

of layers with alternating signs; it is restricted by requiring it to be causal, Lorentz

invariant, and analogous to the d’Alembertian on a lattice. The minimum number

of layers requires to ensure the uniqueness of coefficients has a curious sequence, for

d dimensions:

Even d: Lmax ≥
d

2
+ 2 ,

Odd d: Lmax ≥
d− 1

2
+ 2 ,

(3.2)

where Lmax is the minimum number of layers required in order to recover □, recalling

that:

Li := {y ∈ C | y ≺ x and n (x, y) = i− 1} . (3.3)

Introducing more layers is certainly possible but is equivalent to approximating a

27



second derivative in one-dimensional space with more than three points; it simply

results in the non-uniqueness of coefficients [42]. Note that Aslanbeigi et al. define

layers slightly differently, they start from i = 0 while we start from i = 1, i.e. in

their definition of Eq. 3.3 the second condition is n (x, y) = i− 2.

The generalised form of the B operator applied to φ may be defined as [42]:

ρ−
2
d

(
B(d)φ

)
(x) = aφ (x) +

Lmax∑
i=1

bi
∑

y∈Ii(x)

φ (y) , (3.4)

where {a, bi} are dimensionless coefficients, Ii is the set of all the i-th neighbours

to the past of x, and ρ is the density of sprinkled elements (ρ → ∞ in the contin-

uum limit). The coefficients are then fixed by requiring the operator to give the

correct local limit in Minkowski Md space. In flat space [41], and for the case with

curvature [43, 44]:

lim
ρ→∞

E
(
B(d)

ρ φ
)
(x) = □(d)φ (x)− 1

2
R (x)φ (x) , (3.5)

where R (x) is the Ricci scalar evaluated at x (this term is only present in the

limiting case with curvature), and E is the expectation value with respect to the

Poisson sprinkling process which generated our causet C. From now on we will use

the notation ⟨...⟩ to mean E. A comprehensive list of coefficients was done by Dowker

and Glaser in [43]. A few considerations must be made: first of all, the limit imposed

is clearly equivalent to l → 0 as ρ = l−d; secondly we must use the expectation value

of the discretised operator as
(
B

(d)
ρ φ

)
(x) is a random variable dependent on the

C on which the discrete d’Alembertian was applied. Some conditions must also be

imposed on φ (x). The scalar field φ must be of compact support, and x must

not be on the past boundary of this support. If this were the case, there would

be unbounded calculations which result in divergences; this cutoff can be seen as

a physical IR cutoff [40, 41]. The conditions on φ (x) will be explicitly tested in

Sec. 3.3.
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Finally, numerical calculations show how fluctuations in
(
B

(d)
ρ φ

)
(x) appear in

the continuum limit when the physical IR cutoff is fixed, such that the required

□(d)φ (x) is not recovered [40]. A description of how these are damped is given by

Sorkin in [41, 45] and by Benincasa and Dowker in [40].

The idea is to introduce an intermediate length scale over which the expression

for the discrete d’Alembertian may be smeared out, all the while hoping that the av-

eraging will suppress these fluctuations due to the law of large numbers. Therefore,

a second discrete operator with a different length scale (l, equivalent to a differ-

ent density ρ) but same form of expected value is sought: this operator is found

by working backwards. Numerical simulations show that this modified version of

the discretised d’Alembertian not only provides the expected continuum approxi-

mation, but also successfully damps fluctuations with the length scale (at increasing

density) [40, 41].

For completeness, this modified discretised d’Alembertian operator in d dimen-

sions is given by [42]:

ρ−
2
d

(
B̃(d)φ

)
(x) = aφ (x) +

∞∑
n=0

b̃i
∑

y∈Ii(x)

φ (y) , (3.6)

where a is a dimensionless coefficient as before and b̃i is given by:

b̃i = ϵ (1− ϵ)i
Lmax−1∑

j=0

(
i

j

)
bjϵ

j

(1− ϵ)j
, (3.7)

where ϵ = ρ̃/ρ and bj are dimensionless coefficients as stated previously. Clearly,

when ρ̃ = ρ the original discretised d’Alembertian, Eq. 3.4, is recovered. Also, here

the binomial coefficients have been set to be zero by convention for j > i. By

construction, the expected continuum limit of □φ is recovered.
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Four Dimensions

Due to there being different coefficients, or weightings, for the layers for different

spacetime dimensions, it is helpful to explicitly state the required expressions us-

ing [44].

In particular, in four dimensions, the discrete d’Alembertian operator:

(
B(4)φ

)
(x) =

4√
6l2

−φ (x) +

 ∑
y∈L1(x)

−9
∑

y∈L2(x)

+16
∑

y∈L3(x)

−8
∑

y∈L4(x)

φ (y)

 . (3.8)

It is also useful to look at the expected value of the random variable formed when

applying our operator to the causet C:

⟨
(
B(4)

ρ φ
)
(x)⟩ =

4√
6

√
ρ

[
−φ (x) + ρ

(∫
y∈J−(x)

d4y
√−gφ (y)

(
1− 9ξ + 8ξ2 − 4

3
ξ3
)
e−ξ

)]
, (3.9)

where ξ = ρVxy, and Vxy is the volume of the causal interval between x and y. It

can be seen that this result holds by considering a Poisson distribution and using

Eq. 2.14. This can be shown to respect the required behaviour in the limit.

3.2 The Benincasa-Dowker-Glaser Action

The Benincasa-Dowker-Glaser (BDG) causet action is a family of actions, one for

each d > 1 [43, 46]. To construct this, the causet d’Alembertian operator is employed

as defined (using the convention by Dowker and Glaser):

(
B(d)φ

)
(x) =

1

l2

(
αdφ (x) + βd

nd∑
i=1

C
(d)
i

∑
y∈Li

φ (y)

)
, (3.10)
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where {αd, βd, C
(d)
i } are constants defined by Dowker and Glaser in [43], nd is the

minimum number of required layers given by Eq. 3.2. Next, the scalar curvature of

the causet is defined by applying the discretised operator to a constant scalar field

φ = −1 at every x:

R(d) (x) = B(d) (−1)|x

= − 2

l2

(
αd + βd

nd∑
i=1

C
(d)
i Ni (x)

)
,

(3.11)

where Ni (x) = |Li (x)| is the cardinality of the i-th past layer of the causet with

respect to x. When evaluating this over a causet faithfully embedded into a d-

dimensional spacetime, the mean of the random variable will be R (x) in the con-

tinuum limit.

The action is then defined by summing the causet scalar curvature R(d) over the

whole causet C [46]:

1

ℏ
S(d) (C) = ld

2ld−2
P

∑
x∈C

R(d) (x)

= −
(

l

lP

)d−2
(
αdN + βd

nd∑
i=1

C
(d)
i Ni

)

= ζd

(
N +

βd

αd

nd∑
i=1

C
(d)
i Ni

)
,

(3.12)

where ζd = −αd

(
l
lP

)d−2

, lP is the Planck length, and l is the fundamental causet

length scale.

Given the interest in the continuum behaviour, it is useful to determine the mean

causet action:

1

ℏ
⟨S(d)

ρ (M)⟩ = ζd

(
⟨Nρ (M)⟩+ βd

αd

nd∑
i=1

C
(d)
i ⟨Ni,ρ (M)⟩

)
. (3.13)

The recovery of this expression will be shown explicitly. Let us recall the Poisson
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distribution Eq. 2.14. The mean number of elements is straightforward; it is the

probability of there being an element in a causet cell ∆V . Then, from the fact that

in the continuum we replace ∆V → ddx
√−g and so

∑→
∫

. The mean number of

elements is given by:

⟨Nρ (M)⟩ = ρ

∫
M

ddx
√−g . (3.14)

The next term is the mean number of order intervals of order (i+ 1). In this

convention, we have included the bottom and top elements in the count. Thus, the

probability of sprinkling an element at the bottom, x, and one at the top of this

interval, y is required. These are simply given by the same expression as above, with

the extra condition that y ∈ J (x). Then, placing (i− 1) elements in between the

two:

⟨Ni,ρ (M)⟩ = ρ2
∫∫

M×M
y∈J+(x)

ddx
√
−g (x) ddy

√
−g (y)

(ρVxy)
i−1

(i− 1)!
e−ρVxy , (3.15)

where Vxy is the volume of the causal interval between x and y. Putting all this

together, the averaged causet action becomes:

1

ℏ
⟨S(d)

ρ (M)⟩ = ζd

ρ

∫
M

ddx
√−g

+
βd

αd

nd∑
i=1

C
(d)
i ρ2

∫∫
M×M
y∈J+(x)

ddx
√

−g (x) ddy
√
−g (y)

(ρVxy)
i−1

(i− 1)!
e−ρVxy

 . (3.16)

Four Dimensions

Similarly to how was stated for the causet d’Alembertian, in four dimensions, the

action is:
1

ℏ
S(4) (C) = 4√

6

l2

l2P
(N −N1 + 9N2 − 16N3 + 8N4) , (3.17)
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and the expected value:

1

ℏ
⟨S(d)

ρ (M)⟩ = − 4√
6

√
ρ

l2P

∫
M

dVx1− ρ

∫
M∩J+(x)

dVy

(
1− 9ρVxy + 8 (ρVxy)

2 − 4

3
(ρVxy)

3

)
e−ρVxy

 . (3.18)

Where we have chosen the normalisation such that we recover the Einstein-Hilbert

action in the limit (up to possible boundary terms):

SEH =
1

2κ

∫
M

d4x
√−gR , (3.19)

where κ = 8πG
c4

.

3.3 The Infinite Slab

As previously mentioned, the scalar field must be of compact support. This most

importantly means that a cutoff of the scalar field must be introduced when applying

the causet d’Alembertian operator to a spacetime. As will be described in more

detail in the next chapters (4, 5) and previously by Dowker in [47], the d’Alembertian

operator acting on a constant scalar field, φ = 1, can be written as:

Lρ(p) =
4√
6
ρ

1
2 (1− ρO4I(p)) , (3.20)

where we have:

I(p) =

∫
J+(x)∩M

d4q
√

−g(q)e−ρVpq , (3.21)

O4 = 1 + 9ρ
d

dρ
+ 8ρ2

d2

dρ2
+

4

3
ρ3

d3

dρ3
, (3.22)

where p and q are elements of the causet and p ≺ q. We may notice that the

operator’s role is to kill off divergences. For the purposes of the upcoming example,
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the flat case is considered, i.e. g = −1.

To portray the importance of requiring a cutoff (φ to be of compact support),

consider a four-dimensional slab that stretches off to infinity in the positive xµ

direction, i.e. half of infinite M4. Then two points are placed, p and q, and it is

imposed that the latter must be within the future light cone of the former, i.e.

q ∈ J+(p), see Fig. 3.1. Then, due to spatial translation invariance, it is possible to

choose p to be positioned at (p0, 0, 0, 0) without loss of generality.

𝑝

𝑞
𝑡

𝑥

Figure 3.1: A section of the infinite slab (shaded), with the y and z spatial dimen-
sions suppressed, showing the position of points p and q. The integral is performed
over the region in the slab in the causal future of p, shown by the dashed line.

To compute the integral (Eq. 3.21), radial null coordinates (u, v, θ, ϕ) centred

on p are a convenient choice. First, a coordinate transformation is performed by

defining a new set of coordinates for which p is at the origin, {xµ} → {zµ}. Then,

the radial null coordinates are defined as:

u =
1√
2

(
z0 − ∥zi∥

)
, v =

1√
2

(
z0 + ∥zi∥

)
, (3.23)

together with polar coordinates ϕ and θ described in the usual way. The integration
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measure becomes:

d4q = ∥J∥ du dv dθ dϕ =
1

2
(v − u)2 sin θ du dv dθ dϕ , (3.24)

where ∥J∥ is the modulus of the determinant of the Jacobian matrix of the trans-

formation. As limits of integration, having invoked spherical symmetry:

v ∈ [u,∞] , u ∈ [0,∞] ,

θ ∈ [0, π] , ϕ ∈ [0, 2π] .

(3.25)

So the integral becomes (recalling the sla is embedded in flat space):

I(p) =

∫ ∞

0

du

∫ ∞

u

dv

∫ π

0

dθ

∫ 2π

0

dϕ
1

2
(v − u)2 sin θ e−ρπ

6
v2u2

, (3.26)

where the calculations for the volume of the interval Vpq are used (shown in detail

in Sec. 4.4).

The v, θ, ϕ integrals can be computationally integrated, for instance using Math-

ematica, while the u integral cannot. To make Mathematica compute this last

integral, we may employ a trick. It can be noticed that u is independent of ρ, and so

one can differentiate with respect to ρ under the integral sign. Thus, the operator

O4 is commuted with the integral. Having done this, we give it back to Mathemat-

ica, which is now able to fully compute the integral analytically. Evaluating the u

integral then gives:

O4I(p) = −1

ρ
, (3.27)

putting it all together:

Lρ(p) = 4

√
2

3

√
ρ , (3.28)

which in the continuum limit clearly diverges in the expected fashion:

lim
ρ→∞

Lρ (p) → ∞ . (3.29)
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This divergence is avoided by imposing a cutoff on the integration, that is, by
requiring the scalar field φ to be of compact support.
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Chapter 4

The Benincasa-Dowker Conjecture

Following considerations made in chapter 3, it has been seen that the continuum

limit of the Benincasa-Dowker-Glaser action gives the Einstein-Hilbert action up to

some boundary terms. Benincasa and Dowker [46] subsequently suggested, in the

shape of a conjecture, the form and origin of these boundary terms for a globally

hyperbolic spacetime.

4.1 The Conjecture

Consider a d-dimensional globally hyperbolic Lorentzian spacetime (M, g) of finite

volume with a causal set C sprinkled in it at density ρ. The causet action then gives

rise to a random variable Sρ (M) that in the continuum tends to the Einstein-Hilbert

action plus boundary terms. The boundaries of M are required to be achronal, such

that ∂M := Σ− ∪ Σ+ where Σ± can be null, spacelike, or both but not timelike.

Then, the conjecture by Benincasa and Dowker [46].

Conjecture 4.1 (Benincasa-Dowker Conjecture).

lim
ρ→∞

1

ℏ
⟨S(d)

ρ (M)⟩ = 1

ld−2
p

∫
M

ddx
√−g

R

2
+

1

ld−2
p

Vold−2 (J) , (4.1)

where R is the Ricci curvature scalar, J := Σ− ∩Σ+ is the “joint” and Vold−2 (J) is

its volume.
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The justification presented by Benincasa [46] and Dowker [47] is as follows. Let

us start by recalling that all that has been done in chapter 3 is based on the retarded

convention; that is, the layers used are sets of elements which precede x, the past

layers. Alternatively, one could equally as well have chosen the advanced convention

and recovered the same results, using the future layers. The order can be reversed,

and now x is succeeded by the employed layers (they are to its future). However,

the action is the same: it is invariant under this order reversal.

To see the conjecture, let us then examine the retarded version. For a large

enough ρ, and given that x is not on the past boundary of M, there will be enough

points to the past of x such that the Ricci curvature scalar can be recovered in

the continuum limit of ⟨R(d)
ρ (x)⟩. This can be justified by noticing that there

will be enough elements for all required layers to exist and achieve the necessary

cancellations. In particular, we are interested in the fact that this works for an

x on the future boundary of M but not on the past boundary, where only the

Einstein-Hilbert contribution is expected. The analogous argument can be made

for the advanced version: this works for an x on the past boundary of M but not

on its future boundary, where again only the Einstein-Hilbert contribution is to be

expected.

Clearly, in the union of these two sets, those points which appear both on the

future and past boundaries of M have not been included. These make up a special

set known as the “joint” (see Sec. 4.3), where elements have no past nor future: their

contribution will not be the Einstein-Hilbert term but something else.

4.2 The Order of Integration

The expression for the left hand side of the conjecture Eq. 3.16 can be simplified

into a form which will turn out to be very useful. In order to do this, the order of

integration must be decided, as choosing to do the y or x integral first is equivalent
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to selecting the advanced or retarded convention, respectively. We will choose the

advanced version, as done by Dowker in [47].

Some considerations will be made in order to make the integration more manage-

able. These have already been seen in part in Sec. 3.3 in the form of the differential

ρ operator and the discretised d’Alembertian integral.

It may be noticed how the ⟨Ni,ρ (M)⟩, Eq. 3.15 can be rewritten using the mean

number of links ⟨NLinks,ρ (M)⟩:

⟨NLinks,ρ (M)⟩ = ⟨N1,ρ (M)⟩ = ρ2
∫∫

M×M
y∈J+(x)

dVx dVy e
−ρVxy . (4.2)

Where it has been used that this is non-other than an order interval of order two,

⟨N1,ρ (M)⟩. The expected value for the order i+ 1 interval is then given by:

⟨Ni,ρ (M)⟩ = ρ2
ρi−1

(1− 1)!

(
− d

dρ

)i−1 [
ρ−2⟨N1,ρ (M)⟩

]
, (4.3)

which may then be substituted back into the mean causet action. This may be

rewritten in a simplified manner using some newly defined quantities:

1

ℏ
⟨S(d)

ρ (M)⟩ = 1

ld−2
P

∫
M

dVx Lρ (x) , (4.4)

where:

Lρ (x) := −ρ
d
2

(
αd + ρβd

∫
M∩J+(x)

dVy O4e
−ρVxy

)
, (4.5)

Od :=

nd∑
i=1

C
(d)
i

(i− 1)!
ρi−1

(
− d

dρ

)i−1

, (4.6)

and the constants defined by Dowker and Glaser [43, 44] {αd, βd, C
(d)
i } have again

been used. This not only makes the expression much easier to deal with, it also

shows how the operator’s role removes certain divergences by annihilating certain

powers of ρ.
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Four Dimensions

It will be beneficial to note down the above expressions in four dimensions:

1

ℏ
⟨S(4)

ρ (M)⟩ = 1

l2P

∫
M

dVx Lρ (x) , (4.7)

and:

Lρ (x) := − 4√
6

√
ρ

(
1− ρO4

∫
M∩J+(x)

dVy e
−ρVxy

)
, (4.8)

O4 = 1 + 9ρ
d

dρ
+ 8ρ2

d2

dρ2
+

4

3
ρ3

d3

dρ3
. (4.9)

where we have commuted the operator with the integral as the region M∩ J+ (x)

is independent of ρ.

4.3 The Joint

The joint term in the conjecture is a boundary term; it arises due to divergences

appearing on the boundaries. It is defined to be the intersection between the future

and past boundaries of the spacetime:

J := Σ− ∩ Σ+ . (4.10)

These boundaries can be defined by what follows. We start by recalling Cauchy

surfaces and imposing a notion of “global hyperbolicity” on the spacetime. These

can be defined as:

Definition 4.1. A Cauchy surface, Σ, is an achronal spacelike hypersurface such

that every causal curve may only intersect it once. Its domain of dependence is the

entire manifold.

Definition 4.2. A globally hyperbolic spacetime is one which contains a Cauchy

surface, Σ.
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The information on a Cauchy surface can be thought of as the “initial conditions”

of a deterministic system. The implications of this requirement are massive: by

providing appropriate information on Σ, one may solve the theory completely, as

the entire manifold lies in its domain of dependence [48]. These conditions ensure

that, for the purposes of this conjecture, all boundaries are either null or spacelike.

Also, it will be useful to note that a boundary is of codimension one while the joint is

of codimension two; explaining the Vold−2 term of the conjecture. Fig. 4.1 contains

some examples of hyperbolic spacetimes.

(a) (b)

Figure 4.1: Cauchy surfaces (blue) in different spacetimes. (a) The four-dimensional
interval, the Cauchy surface and null boundaries are shown; the Cauchy surface is
also the joint. (b) The two-dimensional slab with vertical spacelike boundaries and
showing one of the possible Cauchy surfaces (any horizontal circle drawn will be a
Cauchy surface), this spacetime does not contain a joint.

Strictly speaking, the diagrams in Fig. 4.1 are not Lorentzian manifolds as the

boundaries have been included:

Definition 4.3. A past (future) boundary is an area from which past (future)

directed curves may leave a spacetime.

The joint will then be where these two meet (if indeed they do); Fig 4.1 gives an
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example of each case.

From all of this, we understand why, how, and where these joint terms appear.

It can then be proven that the contribution will be the codimension-2 volume of

the intersection of the (d− 1)-surfaces: a (d− 2)-sphere of radius τ
2
, where τ is the

proper time separating x and y [46]. Spacetimes with curvature will, as usual, have

higher-order corrections.

4.4 The Interval

Another aspect of the conjecture of interest to this work is the volume Vpq, that is,

the volume of the causal interval between p and q. The Alexandrov interval between

two points is defined as:

A (p, q) = J+ (p) ∩ J− (q) , (4.11)

for p ≺ q, colloquially, this is also known as a causal diamond.

In Minkowski spacetime Md, there exists a unique timelike geodesic between two

points with proper length τ . Thus, the volume will be a function of τ . To see this,

consider two points and perform a Lorentz boost such that they are at the same

spatial coordinates but different time coordinate. Clearly, their spacetime position

difference will be their proper time τ . Using that it is a Lorentz invariant quantity,

we may show the volume will be dependent solely on τ .

Calculating this volume is relatively straightforward; a spacetime integral can be

performed over a cone [49]:

V (d)
pq =

∫
J+(p)∩J−(q)

ddx
√−g . (4.12)

For the flat case, it is a known function of τ . However, for the case with curvature, a

series expansion is required. Various methods are explained in the literature [27, 49],
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and they all have the same final result up to a sign. In four dimensions, up to O (τ 3),

there is the expression for the volume of the Alexandrov interval in Riemann normal

coordinates:

V (4)
pq =

π

24
τ 4
[
1 +

1

180
R (0) +

1

30
τ 2R00 (0) +O

(
τ 3
)]

, (4.13)

where the Ricci scalar R and the time-time component of the Ricci tensor R00 are

evaluated at the origin.

4.5 The Evidence

Although there is yet to be a formal proof for this conjecture, numerous pieces of

evidence are available in the literature. All follow a similar approach: a globally

hyperbolic manifold is taken, and the mean of the random discrete action is calcu-

lated. Many are in flat two-dimensional spacetime: see the flat causal interval [46];

the null triangle, the null cylinder, the slab [50]. An extension with the addition

of a specific conformally flat metric was done for both two- and four-dimensional

spacetimes by Dowker [47] and Bhatnagar [51]. An extension to all dimensions and

arbitrary curvature for the causal interval can also be found [52, 53]; some examples,

though, have been done in a neighbourhood in which Riemann normal coordinates

apply.
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Chapter 5

The Four-Dimensional Flat Slab

In this chapter, evidence will be added to that already present in the literature. By

using a combination of analytical and numerical methods, it will be shown how the

four-dimensional slab does indeed respect conjecture 4.1 in the flat case. Note that

from here to the end of this chapter, the superscript (4) above the action will be

dropped, as the problem implies d = 4.

5.1 The Geometry

First of all, one must decide how the slab is to be defined. Let us choose a slab of

height T in the time dimension and width L in all three spatial dimensions, described

by coordinates {xµ}, see Fig. 5.1.

In constructing this manifold, we identify opposite sides of the spatial boundaries

with each other (antipodal identification); that is, a particle moving eastwards in

the x1 direction will reach x1 = L and then reappear at x1 = 0. Topologically

this is an S1 × S1 × S1 × R; we may think of it as a four-dimensional cylinder,

or without the time axis, just a 3-torus, T 3. This identification imposes spatial

translation invariance without loss of generality, as the manifold looks the same

wherever we are along the spatial axes, thus significantly facilitating the problem at

hand. Precisely, it ensures that the outer integral can be performed only over the
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𝑞

𝑥!

𝑥"

𝑇

𝐿

Figure 5.1: The four-dimensional slab, with the x2 and x3 spatial dimensions sup-
pressed, showing the position of points p and q. The first integral is performed over
the dashed region in the slab (the causal future of p), while the second is over the
full manifold.

time coordinate, p0, as the integrand will be independent of pi.

This notion of spatial translation invariance allows us to fix the spatial coordi-

nates of p to whatever is most useful to us. We may do this simply by translating the

point, but always ensuring that the time coordinate, p0, remains untouched. For the

set of calculations and examples that follow, we will always assume p = (p0, 0, 0, 0)

unless explicitly stated otherwise. On the other hand, the only condition made on

q is that it must lie in the causal future of p, as stated in the conjecture.

Wrap-Around

Next, in deciding how T and L should be related (if at all), we will introduce the

notion of “wrap-around”. We may recall from the previous chapter that the interval

between points p and q appears within the integrand. We must then picture this

on our manifold to determine over which areas to integrate. It turns out that the

relationship we choose between the height and width of our slab will either greatly
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complicate, or simplify, the calculation. For simplicity, these considerations are

made in (1 + 1)-dimensional space, but the arguments apply identically to our case

of (3 + 1) dimensions.

Let us first consider the two-dimensional tall-thin slab (T ≫ L):

𝑡
𝑇

𝐿 𝑥

𝑝

𝑞

Figure 5.2: The tall-thin slab (T ≫ L) is pictured in two dimensions. The dotted
line represents the boundary of the causal future of point p.

Clearly, the interval over which we must compute the first integral is not immedi-

ately obvious: there are many patches and areas of overlap which would complicate

the calculations. While attempting to compute this integral, the following concerns

arise:

1. We must calculate each portion, and so volume, of the integral separately;

2. We must consider all possible positions of q with respect to p as these will

have different interval patterns (some of which will be straightforward), and

so will have to be done on a case-by-case basis.
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Nevertheless, we should note that these two problems do not increase the actual

difficulty of the problem: they just make it much more tedious to do.

Next, the short-fat slab (T ≪ L):

𝑡

𝑥

𝑇

𝐿

𝑝

𝑞

Figure 5.3: The short-fat slab (T ≪ L) is pictured in two dimensions. The dotted
line represents the boundary of the causal future of point p.

Here, we have translated p to a position more suitable to illustrate this example.

Noticeably, the interval over which the first integral must be computed is now obvi-

ous to see: it is in one clear piece without any tricky bits or overlaps. This applies

even when the future cone is at its largest (at p0 = 0), as shown in Fig 5.3.

Evidently, the second relation between the height and width will make the prob-

lem much more approachable, but now begs the question: may we impose such a

condition? The answer is yes, as we are only interested in the continuum limit where

ρ → ∞. While the contribution from the two manifolds will clearly differ, in the

limit case, two considerations allow us to do this. First of all, they will have the

same dependence on ρ, so the limit will be identical; and secondly, the variables we

are using to change the shape of this manifold, T and L, are independent of ρ, and

so, when we take the limit, we will achieve the same result.
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5.2 The Conjectured Result

The conjectured solution involves the Einstein-Hilbert term and the joint term.

Starting from the Einstein-Hilbert term, we may see:

SEH =
1

κ

∫
M

ddp
√−g

R

2
= 0 , (5.1)

having used that R = 0 in the flat case. The joint term is similarly trivial, there is

no intersection between the future boundary t = T and past boundary t = 0 of the

slab, and so this too is zero. We then expect:

lim
ρ→∞

1

ℏ
⟨Sρ (M)⟩ = 0 . (5.2)

5.3 The Inner Integral

First of all, we should note that some calculations will resemble those done in sec-

tion 3.3. Let us start by considering the inner integral of Eq. 4.8, the one over p’s

causal future J+ (p) shown by the dotted line in Fig. 5.1:

I (p) =

∫
J+(p)

d4q e−ρVpq . (5.3)

To evaluate this integral, we may notice how the integral element is independent of

the density ρ, so we may commute the differential operator O4 into the integral:

O4I (p) =

∫
J+(p)

d4q

(
1− 9ρVpq + 8 (ρVpq)

2 − 4

3
(ρVpq)

3

)
e−ρVpq , (5.4)

where we have applied Eq. 4.9 to our previous expression and have that Vpq =
π
24
τ 4

with τ being the proper time between p and q.

By recalling that we may place p at (p0, 0, 0, 0) without loss of generality, we may

define a new height, Tp = T − p0, as the distance between p and the top of the slab.
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Furthermore, we may notice that due to the geometry of the slab and the fact that

the dotted lines (the boundaries of J+ (p)) in Fig. 5.1 are null lines; we are able to

make a convenient coordinate transformation to radial null coordinates (u, v, θ, ϕ)

centred at p. This can all be seen in Fig. 5.4.

𝑇

𝑝

𝑞

𝑣𝑢
2𝑇!

𝑇!
2

𝑇!
2

2𝑇!

𝑢 = 𝑣

𝑇!
I

II

Figure 5.4: The future cone of p, specifically the construction for the integral in
I (p) using radial null coordinates where we may think of each point on the diagram
as a 2-sphere, S2. The u and v integrals must be computed over the shaded areas,
where Tp = T − p0. Blue lines are construction lines, while the red line is the top of
the slab, t = T . We also have that the u and v lines are the boundary of J+ (p).

Explicitly, the full coordinate transformation takes place in three steps. The first

coordinate transformation, {x0} → {zµ}, consists of a time translation to centre at p:

z0 = x0 − p0 , zi = xi . (5.5)

Next, defining spherical polar coordinates (t, r, θ, ϕ):

t = z0 , r = ∥zi∥ , (5.6)

with the polar coordinates θ and ϕ defined in the usual way. The integration measure
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becomes:

d4q = ∥JSpherical∥ dt dr dθ dϕ = r2 sin θ dt dr dθ dϕ , (5.7)

where ∥JSpherical∥ is the modulus of the Jacobian for the transformation from {zµ}

to spherical coordinates. Then, define radial null coordinates as:

u =
1√
2
(t− r) , v =

1√
2
(t+ r) , (5.8)

with the polar coordinates being kept as they were. The integration measure then:

d4q =
1

2
(v − u)2 sin θ du dv dθ dϕ , (5.9)

where we used that ∥JNull∥ = 1.

Finally, we also need an expression for the volume in radial null coordinates. We

start from the expression for the volume Vpq =
π
6
τ 4, so we now only need the proper

time between p and q in these coordinates. Starting from:

τ 2 = (z0)2 − (z1)2 − (z2)2 − (z3)2 (5.10)

= t2 − r2 (5.11)

=
1

2
(v + u)2 − 1

2
(v − u)2 (5.12)

= 2uv . (5.13)

Thus, the volume of the causal interval between p and q is:

Vpq =
π

6
u2v2 . (5.14)

The u Integral

As we are working in four dimensions (two of which are polar angles), we must only

consider the grey shaded area in Fig. 5.1 for integration over u and v. Which, for
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reasons that will soon become apparent, can conveniently be split into two regions,

I and II. Respectively, their bounds of integration are:

I: u ∈ [0, v] , v ∈
[
0,

Tp√
2

]
, (5.15)

II: u ∈
[
0,
√
2Tp − v

]
, v ∈

[
Tp√
2
,
√
2Tp

]
, (5.16)

and they have the same bounds for the polar coordinates:

I, II: θ ∈ [0, π] , ϕ ∈ [0, 2π] , (5.17)

these always integrate into a factor of 4π as the integrand is independent of both θ

and ϕ; we will assume this has been done.

Putting all of this together, we may separate Eq. 5.4 into two terms as:

O4I (p) = II (p) + III (p) , (5.18)

where we now have absorbed O4 into the newly defined integrals:

II (p) = 4π

∫ Tp√
2

0

dv

∫ v

0

du
1

2
(v − u)2(

1− 9ρ
(π
6
u2v2

)
+ 8ρ2

(π
6
u2v2

)2
− 4

3
ρ3
(π
6
u2v2

)3)
e−ρπ

6
u2v2 , (5.19)

III (p) = 4π

∫ √
2Tp

Tp√
2

dv

∫ √
2Tp−v

0

du
1

2
(v − u)2(

1− 9ρ
(π
6
u2v2

)
+ 8ρ2

(π
6
u2v2

)2
− 4

3
ρ3
(π
6
u2v2

)3)
e−ρπ

6
u2v2 . (5.20)

Now, turning to Mathematica to evaluate these integrals, we will do one part at
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a time and one term at a time. We perform the u integrals:

II (p) =
2π

3

∫ Tp√
2

0

dv v3e−ρπ
6
v4 , (5.21)

III (p) =
π

27

∫ √
2Tp

Tp√
2

dv
(√

2Tp − v
)
e−ρπ

6
v2(v−

√
2Tp)

2

(
36T 2

p − 90
√
2Tpv +

(
126− 60πρT 4

p

)
v2 + 192

√
2πρT 3

p v
3

+
(
8π2ρ2T 6

p − 438πρT 2
p

)
v4 +

(
210

√
2πρTp − 32

√
2π2ρ2T 5

p

)
v5

+
(
104π2ρ2T 4

p − 72πρ
)
v6 − 88

√
2π2ρ2T 3

p v
7 + 82π2ρ2T 2

p v
8

−20
√
2π2ρ2Tpv

9 + 4π2ρ2v10
)
.

(5.22)

The v Integral: Part One

We then perform the v integrals:

II (p) =
1− e−ρ π

24
T 4
p

ρ
, (5.23)

and we notice Mathematica is unable to perform the v integral for III. However, we

do not believe this to be a case where the conjecture is invalid. We believe the error

is due to Mathematica simply not being able to analytically perform integrals of the

form: ∫ a

b

f (v, ρ) e−ρh(v) , (5.24)

where f (v, ρ) is an n-th order polynomial in v (n > 0), and h (v) is a fourth order

polynomial. We may justify this belief by recalling that the upwards pointing trian-

gle was shown to respect the conjecture [51], and this area of integration is similar

to the downwards pointing triangle. As we are in flat space, we expect the same

final answer from the two triangles: they just differ by the order of integration and

else have identical geometry.
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A Slight Deviation: The Continuum Limit of a 4-Dimensional Causal

Set Scalar d’Alembertian

In order to perform the v integral in III, we make use of the result in a paper by

Belenchia, Benincasa, and Dowker [3]. We first verify the results for this geometry

by adapting Fig. 1 on page 6 of the original paper [3], see Fig. 5.5. There are some

considerations we must make:

• We have a hard cutoff at the top of the slab for the support of the scalar field,

φ.

• We have a constant scalar field, φ = 1, while the paper does not.

• The area of integration W =
∑3

i Wi must fully contain the support of φ.

• We choose a → 0 and ρ → ∞ such that ρa4 → ∞ to have that e−ρa4 so

a ∼ ρ−1/8.

𝑇!

𝑢 = 𝑣

2𝑇!
𝑣

𝑢

𝑝

𝑎

𝑢𝑣 = 𝑎"

𝑊"

𝑊#

𝑊$

Continues to 𝑢 = 𝑣 = 2𝑇!

Figure 5.5: A reproduction of Fig. 1, page 6, of [3], with adjustments made according
to Fig. 5.4. We have separated the regions with a parabola uv = a2. The general
cutoff on the scalar field has been substituted with a hard cutoff (red line), and an
area of interest is circled in green in the top right region of the diagram, see Fig. 5.6.
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The paper states that:

Lρ (p) =
4√
6

√
ρ

(
−1 + ρ

3∑
i

Ri (p)

)
, (5.25)

goes to zero in the limit ρ → ∞, where we have:

Ri (p) =

∫
Wi

d4q

(
1− 9ρV + 8 (ρV )2 − 4

3
(ρV )3

)
e−ρV , (5.26)

the bounds of integration over the null coordinates are:

W1: u ∈ [0, v] , v ∈ [0, a] , (5.27)

W2: u ∈
[
0,

a2

v

]
, v ∈

[
a,
√
2Tp

]
, (5.28)

and:

W3: u ∈
[
a2

v
, v

]
, v ∈

[
a,
√
2Tp

]
. (5.29)

We will verify the result for our slab, starting with R3. Using similar arguments,

we can see that V is bounded from zero in W3 and so clearly V ≥ Vmin = π
6
a4, this

means:

e−ρVmin ≥ e−ρV . (5.30)

Then we may see:

|R3 (p)| ≤ e−ρVmin

∫
W3

d4q
∣∣∣1− 9ρV + 8 (ρV )2 − 4

3
(ρV )3

∣∣∣ , (5.31)

which in the limit ρ → ∞ goes to zero much faster than any negative power term

of ρ; we know these as “exponentially small” terms [3].

Next, we consider region W1, which we note was similarly done by Dowker [47],
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and is also very alike to II done previously. We do this explicitly using Mathematica:

R1 (p) = 4π

∫ a

0

dv

∫ v

0

du
1

2
(v − u)2

(
1− 9ρ+ 8 (ρV )2 − 4

3
(ρV )3

)
e−ρV , (5.32)

with V = π
6
u2v2 and having already performed the integration over the polar coor-

dinates. Mathematica is able to perform both integrals:

R1 (p) =
1− e−ρπ

6
a4

ρ
. (5.33)

We then incorporate the first term from Eq. 5.25:

4√
6

√
ρ

(
1− ρ

1− e−ρπ
6
a4

ρ

)
= − 4√

6

√
ρe−ρπ

6
a4 , (5.34)

which, using the argument from R3, clearly goes to zero in the limit.

Now we must show that R2 goes to zero as well:

R2 (p) = 4π

∫ Tp

√
2

a

dv

∫ a2

v

0

du
1

2
(v − u)2

(
1− 9ρV + 8 (ρV )2 − 4

3
(ρV )3

)
e−ρV ,

(5.35)

with V = π
6
u2v2 and having performed the polar integrals. Mathematica performs

both integrals:

R2 (p) =
π

27
a2e−ρπ

6
a4(

− 9a4

2T 2
p

− 54a2 log(Tp)− 18a2 − 27a2 log(2) + 54a2 log(a) + 54T 2
p

+ ρ

(
15πa8

4T 2
p

+ 36πa6 log(Tp) + 3πa6 + 18πa6 log(2)− 36πa6 log(a)

−21πa4T 2
p

)
+ ρ2

(
−π2a12

4T 2
p

− 2π2a10 log(Tp)− π2a10 log(2) + 2π2a10 log(a)

+π2a8T 2
p

))
.

(5.36)
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This integral is exponentially suppressed by the exponential factor, which then fol-

lows the same arguments made previously for R3 and R2. However, we should notice

that an assumption has been made, but not justified. To see this consider the green

circled region in Fig. 5.5, shown more clearly in Fig. 5.6. While [3] does verify that

the contribution from W2 goes to zero, it does not take into account the possibility

of a hard cutoff, for instance, the top of the slab. Applying this allows us to identify

three regions: A1, A2 and the remaining (W2 − A1 − A2). We must then show that

either contribution D1 or D2, from A1 or A2, goes to zero.

2𝑇!

𝑣

𝑢

𝑝

𝑢𝑣 = 𝑎"

Continues to 𝑢 = 𝑣 = 2𝑇!

𝑣#

𝐴$

𝐴"

Figure 5.6: A clearer picture of the green circle in Fig. 5.5, A1 and A2 are part of
W2. The top of the slab, i.e. the end of support for field φ is represented by the red
line.

For completeness, the bounds of null integration for both regions are:

A1: u ∈
[√

2Tp − v,
a2

v

]
, v ∈

[
v0,

√
2Tp

]
, (5.37)

A2: u ∈
[
0,
√
2Tp − v

]
, v ∈

[
v0,

√
2Tp

]
, (5.38)

and we have that v0 =
Tp√
2
+

√
T 2
p

2
− a2. We choose to integrate over A2 as it is most
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similar to our original problem:

D2 (p) = 4π

∫ √
2Tp

v0

dv

∫ √
2Tp−v

0

du
1

2
(v − u)2

(
1− 9ρV + 8 (ρV )2 − 4

3
(ρV )3

)
e−ρV .

(5.39)

Mathematica is able only to perform the u integral analytically, which is precisely

the result in Eq. 5.22 (up to the bounds of the v integral). Now to tackle the v

integral, we will use numerical methods on Mathematica. To do this, we must set

our variables, and we choose:

Tp =
1√
2
, a = ρ−

1
8 , (5.40)

and we also take in the extra ρ3/2 factor from Eq. 5.25. Finally we may numer-

ically integrate for ρ ∈ [104, 108]. We may then fit a function to our output,

g (ρ) ∼ −ρ−1/2, which behaves as we expect, Fig. 5.7. This clearly goes to zero in

the limit, and so the assumption made in [3] holds.

2×107 4×107 6×107 8×107 1×108
ρ

Figure 5.7: A plot showing the numerical integration of −ρ3/2D2 — plotted with the
fitted function g (ρ) - - -, for varying ρ on the x-axis and fixed Tp = 1√

2
, a = ρ−1/8.

A clear agreement may be seen, and both approach zero as ρ → ∞.
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The v Integral: Part Two

We now return to II (p) and III (p), and place them back into our expression for

Lρ (p):

Lρ (p) =
4√
6

√
ρ [1− ρ (II (p) + III (p))] . (5.41)

We split this expression in two:

Lρ (p) = KI (p) +KII (p) , (5.42)

where:

KI (p) =
4√
6

√
ρ (1− ρII (p))

=
4√
6

√
ρe−ρ π

24
T 4
p ,

(5.43)

KII (p) = − 4√
6
ρ

3
2 III (p) . (5.44)

we note that while KI has been calculated analytically and clearly → 0 as ρ → 0,

the second still cannot be computed, and we do not yet know its behaviour. Using

the results from Belenchia et al. [3], we may notice that KII is the same as R2 up to

the lower bound of the v integral. However, as the lower bound in R2 is ρ-dependent

through a, we will explicitly verify the behaviour of KII in the limit.

Again, for numerical integration, we must assign values to the variables we are

not investigating:

Tp =
1√
2
, (5.45)

and numerically integrate for ρ ∈ [104, 108]. The fitted function, g′ (ρ) ∼ −ρ−1/2,

does not agree as well as it does for that of R2 in Fig. 5.7. Nevertheless, it behaves

as expected and approaches zero in the limit, see Fig. 5.8. This disagreement may

be explained by higher order terms having a stronger influence on KII .
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2×107 4×107 6×107 8×107 1×108
ρ

Figure 5.8: A plot showing the numerical integration of KII (p) — plotted with
the fitted function g′ (ρ) - - -, for varying ρ on the x-axis and fixed Tp = 1√

2
. A

satisfactory agreement may be seen, and both approach zero as ρ → ∞.

5.4 The Outer Integral

Moving onto the outer integral, the one in Eq. 4.7, we may put all we have together:

1

ℏ
⟨Sρ (M)⟩ = 1

ld−2
p

∫
M

ddp (KI +KII) . (5.46)

This integral is performed over the full manifold, shown in Fig. 5.1; we may simply

use the original {xµ} coordinates, similarly to what we did for the Einstein-Hilbert

term, see Sec. 5.2. The bounds of integration for this integral will simply be:

x0 ∈ [0, T ] , xi ∈ [0, L] , (5.47)

and noticing that the integrand is independent of xi due to the spatial translation

invariance, it is straightforward to see that the d3xi integral evaluates to an L3

factor. We will assume this integral has been done, note that x0 ≡ p0, and recall

that Tp = T − p0. We now split Eq. 5.46 into two terms, as they are evaluated

differently:

HI = L3 4√
6

√
ρ

∫ T

0

dp0 e−ρ π
24(T−p0)

4

, (5.48)
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and:

HII = L3

∫ T

0

dp0KII (p) . (5.49)

Before evaluating the p0 integrals and verifying the behaviour of these expressions

in the continuum limit, we should investigate how the integrands of HI, HII behave

over p0 ∈ [0, T ], to make sure there is no “funny business” near the top boundary.

Clearly, the integrand of HI is well-behaved over the domain of p0, however, we

should look into that of HII. We may plot it for:

T = 1 , ρ = 107 , (5.50)

in Fig. 5.9.

p0

-10000

-5000

5000

Figure 5.9: A plot showing the integrands of HI — and HII —, for p0 ∈ [0, T ] with
T = 1, ρ = 107. Both functions have finite areas and are well-behaved over the
domain of p0.

Both integrands are well-behaved over the domain, so we may now move on

and check the behaviour in the limit. We also note that with increasing ρ, the

two functions tend towards narrower and more elongated peaks, with HII’s moving

towards p0 = T .

Returning to the integrals, we are able to evaluate HI analytically using Mathe-
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matica:

HI =

(
2

3π

) 1
4

ρ
1
4 Γ

(
1

4

)
− 1√

6

√
ρExpIntegralE

[
3

2
,
π

24
ρ

]
, (5.51)

while HII has to be done numerically. Performing this double numerical integration

is trickier as we have implicit bounds, specifically:

HII: v ∈
[
T − p0√

2
,
√
2
(
T − p0

)]
, p0 ∈ [0, T ] . (5.52)

To resolve this issue, we may plot our bounds of integration on a (p0 − v) plane and

notice that they form a triangle with coordinates:

(
p0, v

)
: (T , 0) ,

(
0 ,

T√
2

)
,

(
0 ,

√
2T
)
. (5.53)

Fortunately, Mathematica is able to perform a numerical integral over an area, and

it gives finite values.

2×107 4×107 6×107 8×107 1×108
ρ

Figure 5.10: A plot showing the discrete numerical integration of HI (p) +HII (p) •,
plotted with the fitted function g′′ (ρ) - - -, for varying ρ on the x-axis and fixed
T = 1. A satisfactory agreement may be seen, and both approach zero as ρ → ∞.

To analyse the behaviour in the limit, we numerically evaluate HI + HII for

increasing values of ρ and set T = 1, see Fig 5.10. We note that we had to perform

the integration in discrete steps of ∆ρ = 105 for ρ ∈ [104, 108], some discrepancy in
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the form of anomalous points is down to “precision error” as stated by Mathematica

output warnings. The fitted function, g′′ (ρ) ∼ −ρ−1/2, goes with the mean scalar

action, ⟨Sρ (M)⟩ = HI +HII.

We can then see that:

lim
ρ→∞

⟨Sρ (M)⟩ = 0 , (5.54)

as was conjectured by Benincasa and Dowker, Sec. 5.2 [46].
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Chapter 6

Discussion

Causal set theory is a programme for quantum gravity. It postulates that, funda-

mentally, spacetime is a discrete collection of events that grow in time and whose

structure is sourced purely from its causal order. It postulates that there is a con-

tinuum limit when the density of elements is so large that discreteness of space-

time is no longer apparent, recovering the well-known and established quantum

field theory and theory of general relativity. In formulating this, a quantum causal

dynamics is required to build a full theory of quantum gravity; this based on a

sum-over-histories framework for which a well-formulated action is required. The

behaviour of the Benincasa-Dowker-Glaser action and its building block, the discre-

tised d’Alembertian operator, in the limit was the focus of this project.

A previously unjustified but assumed condition that arises when looking at how

the discretised d’Alembertian acts on a causal set faithfully embedded in Minkowski

spacetime was successfully verified. The original paper broke down a manifold into

three regions, two of which were independent of the support of the scalar field φ and

thus would always be “exponentially suppressed”. The remaining region’s boundaries

of integration are however dependent on the boundary of support of φ. Belenchia

et al. performed this calculation but missed to consider the case for where the

support acted as it does in this work: a hard horizontal cutoff. This specific cutoff
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results in two new regions, either of which must have a contribution equal to zero

in order for the assumption to hold. Unlike for the other regions, the result is not

immediately obvious as there is no exponential suppression, and analytical results are

not immediately available using Mathematica. Therefore, numerical methods were

utilised. The result was explicitly verified, successfully showing that the assumption

stands and thus reinforcing the paper by Belenchia et al..

With the use of this result, the Benincasa-Dowker conjecture was confirmed for

the case of a four-dimensional slab with spatial antipodal identification embedded

in flat Minkowski spacetime. The conjectured result for this spacetime is purely the

Einstein-Hilbert action (which is equal to zero in flat spacetime) without any extra

joint boundary term due to the lack of intersection between the future- and past-

boundaries of the slab. Due to Mathematica being unable to perform integrals of

a certain form, a combination of numerical and analytical methods were employed

to reach a solution. Furthermore, in order to be able to numerically integrate the

functions, the behaviour of the integrands was verified over the full range of integra-

tion. Finally, the mean discrete causet action (BDG) was shown to approach zero in

the continuum limit ρ → ∞ as ∼ −ρ−1/2, in agreement with the Benincasa-Dowker

conjecture

Nevertheless, there is much more work to be done regarding the conjecture,

not only the extension of this example to curved spacetime but also perhaps a

formal proof for it as a whole. From the studied case, and from those examples

present in the literature [46, 47, 50, 51, 52, 53], it is anything but easy to see

how and why the boundary terms appear as a result of the joint. Determining

how to spot this, possibly by writing the mean discrete action in a different form,

would greatly simplify the gathering of evidence and move us down the path of

proving the conjecture with greater generality. An extension to arbitrary curvature

using Riemann normal coordinates for specific geometries is present in the literature.

Further extending this to generic geometries would greatly benefit the move towards
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a full proof.

Should the conjecture hold, it would be a strong move towards building up the

sum-over-histories approach. As explained by Dowker [47], such a result would

suggest that the originally non-local BDG action can indeed be localised by the

continuum limit and be well-behaved in the presence of curvature. This contrasts

with the non-manifold-like family of causal sets, which have a non-local action.

Thus, it would give a clear distinguishing property that could be used when picking

out the manifold-like causal sets in the sum-over-histories framework.

Amending the lack of knowledge on the discretised scalar d’Alembertian in

generic curvature could reinforce the arguments for the conjecture regarding the

Einstein-Hilbert term. As Dowker suggests [47], in the short term, computational

and numerical methods involving the modified d’Alembertian (with dampened fluc-

tuations) could achieve this result while analytical approaches continue to be studied.

However, analysing the asymptotic regime remains no easy task due to the sheer

number of elements in the causet. Also, the reasoning behind the construction of the

d’Alembertian, and the origin of, or reasons for why, the curious sequence of mini-

mum layers required for coefficient uniqueness is the way it is could be an exciting

area of study. They may bring to light some novel ideas.

Furthermore, advances are to be made in the study of the action itself. The BDG

action, although widely successful, is dimensional-dependent. Imposing a dimension

does not seem like a reasonably fundamental act. We should be asking ourselves

why our reality appears to be in four dimensions, not imposing it arbitrarily in our

many models. We would like for d = 4 to appear out of these models. Therefore, a

more fundamental version of the action could still be out there, hidden from view,

perhaps in a quantum sequential growth model. The discovery of such an action

could also provide insight regarding the previous comments on the d’Alembertian

uniqueness. Notwithstanding, this would not necessarily disprove the BDG action;

it may govern an intermediate regime of the theory, so it, and its many uses and
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applications, should continue to be investigated.

Further work could also be done in exploring the behaviour of the BDG action

and discretised scalar d’Alembertian for more general geometries (for instance, those

which include timelike boundaries). Although this conjecture is only made with glob-

ally hyperbolic spacetimes in mind, a more general analytical extension could exist.

Additionally, investigating the behaviour of the discretised scalar d’Alembertian on

a varying scalar field for a general spacetime geometry with arbitrary curvature

could lead to compelling results.

Regardless of this conjecture’s outcome, I have but one wish. I wish for the result

to give way to novel ideas, shine a light on our still-obscure universe, and lead to a

deeper understanding of this beautifully elegant theory of geometry from causality

and discreteness.

“Success is not final, failure is not fatal: it is the courage to continue that counts.”

Sir Winston Churchill
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