
Imperial College London

Department of Physics

Non-Hermitian Hamiltonians in
Quantum Theory

Author:
Konstantinos
Georgakopoulos

Supervisor:
prof. Jonathan J.

Halliwell

Submitted in partial fulfillment of the requirements for the MSc degree in
Quantum Fields and Fundamental Forces of Imperial College London





Abstract

PT -Symmetry and pseudo-Hermicity provide an alternative approach
to the ”axiom” of Dirac Hermicity in Quantum Mechanics, that is more
general and includes more types of Hamiltonians to be considered, where
they would otherwise be dismissed as non-Hermitian. In this work, the
preliminaries of the non-Hermitian treatment in Quantum Mechanics
is given, in terms of the PT -Symmetric and pseudo-Hermitian frame-
work and the tools developed are extended to Field Theories with non-
Hermitian mass terms, where the problem of non-Hermicity is resolved
and a consistent description of a PT -Symmetric Scalar Field Theory is
shown.
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1 Introduction

Since the birth of QuantumMechanics, the Hamiltonian that governs a system’s
time evolution is said to be Dirac Hermitian [1] ( ie. H = H†) in order for the
resulting probabilities to be positive and preserved in Hilbert Space. It was
in 1998 that the ”axiom” of Dirac Hermicity was first formally questioned by
Bender and Boettcher [2], showing that a non-Hermitian but PT -Symmetric
class of Hamiltonians (ie. the Hamiltonian operator commutes with the parity
and time-reversal operator [Ĥ, P̂T̂ ] = 0) in the form of Ĥ = p̂2−(ix)N have real
spectra and can be thought of as an analytic continuation from real to complex
phase spaces. Later in 2002, in a series of papers Ali Mostafazadeh proved that
every non-Hermitian Hamiltonian that produces a real eigenspectrum is in fact
pseudo-Hermitian and moreover, every PT -Symmetric Hamiltonian with a real
eigenspectrum belongs to the class of pseudo-Hermitian Hamiltonians[3, 4, 5].

The glaring difficulty that was encountered in the beginning was that the
standard inner product used in Quantum Mechanics is not always positive
when considering a non-Hermitian Hamiltonian. This was solved when a pre-
viously unnoticed symmetry of PT -Symmetric Hamiltonians, described by the
C operator [6] (given its name as it resembles the Charge Conjugation symme-
try but should not be confused with it) was utilized in order to define a new
inner product, that is positive definite and consequently gives positive proba-
bilities. This inner product, called the CPT inner product, gave more viability
to non-Hermitian theories as physical theories.

PT -Symmetry has also various applications in optics [7, 8, 9], as well as
the field of photonics [10, 11, 12]. The useful property of the PT -Symmetric
potentials is the gain-loss (or source-sink) behaviour that proved particularly
beneficial in experiments of this kind.

Although the work of Bender and Boetcher shed light on the overlooked use
of complex Hamiltonians in 1998, they had already been the topic of discussion
since 1928 [13, 14, 15] in the field of dissipative systems and scattering theory
(as pointed out in [16]).

Recently, PT -Symmetry in Quantum Field Theory has seen a rather fast
rise in popularity, where countless papers have been published ranging from
fundamental aspects like renormalization [17, 18] to developing fermionic theo-
ries with axions [19]. In the early days, the complex cubic (iϕ3) model [20, 21]
and the so called ”wrong sign” −ϕ4 model [22, 23] were considered, where
these are the potentials fall under the general form first studied by Bender and
Boetcher (for N = 3 and N = 4). Although these theories had been well stud-
ied, it proved difficult to produce physical measurements, as the C operator
in Quantum Field Theory is very hard to define because there are infinitely
many eigenfunctions and the definition of the operator is the sum of all these
eigenfunctions.

A prescription for field theories equipped with a non-Hermitian mass term
was given in [24], where the field ϕ(x) is redifined and the Euler-Lagrange
equations can be then formulated (as the usual definition of the equations of
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motion requires the Lagrangian to be Hermitian), thus resulting in a ”modified”
Noether’s theorem for conserved currents. This can be done for scalar field
theories as well as for fermionic field theories.

Furthermore, PT -Symmetry has made an impact in Gravitational aspects
as well. In his work, P.Mannheim [25, 26] claims that the issue of dark matter
is resolved when considering a Conformally symmetric theory, that is implied
by a PT -Symmetric action. Also, this method may provide a possible solution
to the ghost problem in higher derivative gravity [27]. In [28], it shown that
the astrophysical data may provide evidence for a PT -Symmetric Hamiltonian
of Conformal Gravity.

Moreover, work in non-Hermitian Holography [29, 30] has been recently
published, that uses the principles of non-Hermitian Quantum Theories. Also,
in the sector of Quantum Gravity, non-Hermicity has been shown to provide
a possible link between classical and quantum measurements [31], by defining
minimal and maximal lengths of measurement. These publications and many
more in advanced topics may provide solutions to fundamental problems with
theories of everything and could one day give rise to a non-Hermitian funda-
mental theory.

1.1 Thesis Outline

In this thesis, the notion of pseudo-Hermicity and PT -Symmetry in Quantum
Mechanics (QM) and Quantum Field Theory (QFT) is explored. In the first
chapter, the general ideas and mechanisms of PT -Symmetric QM are presented
and an explicit example of a 2× 2 Hamiltonian system is given. Furthermore,
attention is given to the inner product of such theories, namely the so called
CPT inner product [32]. This definition solves one of the biggest problems in
non-Hermitian theories, the existence of negative norms in the Hilbert space,
thus resulting in a positive definite metric.

In the third chapter, the ideas of PT -Symmetry are generalized to those
of pseudo-Hermicity and an equivalence between the two structures is shown,
thus proving that the most general treatment of a non-Hermitian Quantum Me-
chanical theory falls under the umbrella of pseudo-Hermitian QM and the PT -
Symmetric Hamiltonians of interests are a subset of pseudo-Hermitian ones.

Then, the ideas developed in the first chapters are used to build a Quan-
tum Field Theory(QFT) in chapter four. Initially, a Lagrangian with a non-
Hermitian mass matrix is considered [24] and the implications of non-Hermicity
are discussed, in terms of the consistency of the Euler-Lagrange equations for
a field theory and the consequent conserved currents. Moreover, an alternative
method is discussed in this chapter, that was very recently published [33] and
gives a very fundamental way of building a ”healthy” Field Theory by con-
structing a new kind of field that transforms in the ’dual’ representation and is
invariant under the full action of the proper Poincarè group ISO(1, 3)↑. This
is done by extending the standard Poincarè algebra to that of a non-Hermitian
theory, which as proved in [33] results in the algebra having non-Hermitian
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generators. This new method gives a more solid foundation for the field of
pseudo-Hermitian QFTs. Finally, the tools for constructing a scalar field the-
ory are given and a concrete example of a PT -Symmetric Scalar Field Theory
is illustrated, that is identical to that of the previous treatment but now has
been defined using the ’dual’ field.
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2 PT -Symmetric Quantum Mechanics

The central idea of this formulation is to weaken the axiom of the Hamiltonian’s
Hermicity and replace it with the more general (and more physical) argument
of PT -Symmetry (space and time reflection invariance), thus achieving new
theories that could be useful for giving physical descriptions. Recovering the
properties of a Hermitian quantum theory requires these symmetries to be
unbroken, as the eigenvalues are real and non-complex[6] and thus, the inter-
pretation of results is the same as in the Hermitian case.

2.1 P and T operators

The operators act on position and momentum operators x̂ and p̂ as

P : x̂→ −x̂, p̂→ −p̂ (1)

T : x̂→ x̂, p̂→ −p̂, i→ −i (2)

noting that the time reversal operator T also changes the sign of i, so that
the usual canonical commutator relations are preserved (see 6.1 Appendix A)
and P is linear whereas T is anti-linear.

The two main properties of these operators are that they commute with
each other, ie. [P , T ] = 0 and that P2 = T 2 = 0.

One of the central principles of PT -Symmetric theories is that if the symme-
try remains unbroken, then all the eigenvalues of the Hamiltonian are positive.
A short proof for this statement can be written out as follows [6]:
Let a Hamiltonian H be PT -Symmetric ([H,PT ] = 0) and its energy eigen-
state ϕ has eigenvalue E:

Hϕ = Eϕ (3)

then as H commutes with PT , ϕ is also an eigenstate with some eigenvalue λ:

PT ϕ = λϕ (4)

By multiplying equation 4 with PT and using the property that P and T
commute and P2 = T 2 = 1:

PT PT ϕ = PT λϕ⇒ ϕ = |λ|2ϕ (5)

Thus, the eigenvalue λ can be of the form of a pure phase λ = eia for a ∈ R
as λ∗λ = 1. Now, by multiplying equation 3 by PT from the left and as H
commutes with PT :

PT Hϕ = PT Eϕ⇒ Eϕ = E∗ϕ (6)
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Hence, the eigenvalue E is real.

In this short proof, the assumption that PT symmetry is exact (ie. unbro-
ken), ensures that ϕ is the eigenstate of H and PT , as PT is an anti-linear
operator and diagonalization by the same eigenstates of H is ensured.

2.1.1 An example of real spectra

A good example and the first Hamiltonian that was studied [2] is:

H = p̂2 + ix3 (7)

This is clearly P and T symmetric H = HPT and not Dirac Hermitian
H ̸= H†. This particular class of Hamiltonians was used earlier [34] in order
to provide a viable solution to the Yang–Lee edge singularity and the reality
of the eigenspectrum was shown, hence not dismissing the solution.

Following Bender and Boetcher, a δ-expansion can be applied to the Hamil-
tonian 7:

H = p̂2 + x2(ix)δ (8)

where δ is a real parameter andH remains PT -symmetric, as long as the reality
condition of δ is satisfied. It is obvious that if the parameter δ is set to 0, then
the Hamiltonian is Hermitian and reduces to that of the harmonic oscillator.
After a rigorous numerical analysis [2], it turns out that all the eigenvalues of
8 are real for all positive values of δ.

In figure 1 the eigenvalues of the re-written Hamiltonian 8 as

H = p̂2 − (ix)N (9)

are plotted against the continuous real parameter N [6].

The important properties illustrated in figure 1 are that:

• For N ≥ 2 all the eigenvalues are real and positive

• For 1 < N < 2 there are both real eigenvalues and infinitely many
complex-conjugate eigenvalue pairs

• For N ≤ 1 the eigenvalues are all complex

The formal proof of spectral reality for this particular class of Hamiltonians
can be found in [35].
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Figure 1: The eigenvalue spectrum associated with the Hamiltonian 9 as pre-
sented in [6], where the Energy eigenstates are plotted against N ∈ R

2.2 Inner-Product and the C Operator

The useful mathematical implication of (projective) unitary operators is that
they can preserve the probabilities in QM as the system evolves, where they
map inner products inside of a Hilbert space H → H. Thus, one concerning
aspect of a non-Hermitian Hamiltonian is the violation of unitary evolution
of the system, as attempting to create a consistent quantum theory for such
Hamiltonians results in a Hilbert space equipped with an indefinite metric.

In [32] the eigenvalue problem associated with the Hamiltonian 8 proved to
be a Sturm-Liouville differential equation type:

−d
2ϕn(x)

dx2
+ x2(ix)δϕn(x) = Enϕn(x) (10)

This differential equation must be defined along the complex x-plane, on an
infinite contour denoted as C but for 0 ≤ δ < 2 the contour can be defined on
the real axis. Furthermore as in subsection 2.1,PT has the same eigenstates
λn as H, ie. PT ϕn = λnϕn and λn = eian , a ∈ (R) is a pure phase. Also,
completeness of eigenstates holds (as proved numerically in [35]):∑

n

(−1)nϕn(x)ϕn(y) = δ(x− y) (11)
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where x, y ∈ R.

The natural guess for an inner product is:

⟨f |g⟩PT =

∫
C

dx[PT f(x)]g(x) (12)

where C is the countour of integration in the x-plane and f(x) and g(x) are
some arbitrary functions. The useful property of this inner product is that
it is phase invariant and the probabilities of the quantum mechanical states
are preserved. By normalizing the eigenfunctions to unity, ie. (ϕn, ϕm) = 1,
it becomes apparent that the inner product 12 leads to an indefinite metric:
(ϕn, ϕm) = 1. As the space and time-reflection invariant 2n× 2n Hamiltonian
possesses an SU(n, n) symmetry, the state space of this group is one with
half positive and half negative norms. This can also be concluded from the
properties of the symmetry group, as it is not simply-connected.

The problem was resolved by finding a new symmetry that Hamiltonians
with exact PT symmetry embody, described by the linear operator C [32], that
represents the sign of the norm 12. It commutes with both the Hamiltonian
and the PT operator and C2 = 1 so it has eigenvalues ±1. The construction
of C can be done by summing the energy eigenstates ϕn of the Hamiltonian:

C(x, y) =
∑
n

ϕn(x)ϕn(y) (13)

Thus using this hidden symmetry, the new positive definite inner product
is:

⟨f |g⟩CPT =

∫
C

dx[CPT f(x)]g(x) (14)

The CPT inner product is also phase invariant and is positive definite, as
the important property that C utilizes is the ”sign-symmetry” of the (+,−)
indefinite metric of the PT norm, where in the negative-norm states it con-
tributes a minus sign. The completeness condition for this norm still holds:∑

n

ϕn(x)[CPT ϕn(y)] = δ(x− y) (15)

An important observation for this particular inner product 14 is that it
is path-independent, provided that the contour of integration C does not pass
through any poles (application of Cauchy’s residue theorem) or as stated in [32]
C must lie inside the asymptotic wedges (described in [2]) that result from the
boundary conditions of the differential equation 10, ie. ϕ(x) → 0 as |x| → ∞.

Hence, an observable in a QM theory that has exact PT -Symmetry can be
expressed with a CPT invariant operator Ô ∈ H (ie. [Ô, CPT ] = 0).

10



2.2.1 Example of a 2x2 PT -Symmetric Hamiltonian

An example of a 2x2 Hamiltonian, that is PT -Symmetric and p-pseudo-Hermitian
[32][36] is:

H =

(
reiθ s
t re−iθ

)
(16)

where r, t, s, θ ∈ R and with the chosen parity operator:

P =

(
0 1
1 0

)
(17)

and time reversal operator T that acts as the complex conjugate, ie. T x =
(x)∗.

The Hamiltonian is of the general form that satisfies H = P−1H†P (pseudo-
Hermicity condition), thus admits unbroken PT symmetry and has real eigen-
values ϵ± = rcosθ±

√
st− r2sin2θ provided that st > r2sin2θ. The eigenstates

(of both H and PT ) are:

ϵ+ =
1√

2cosa

(
ei

a
2

e−ia
2

)
(18)

ϵ− =
1√

2cosa

(
e−ia

2

−eia2

)
(19)

where a = r/
√
st.

Then, using equation 13, the C operator is defined as:

C =
1

cosa

(
i sina 1

1 −i sina

)
(20)

Using the CPT inner product 14, it is straightforward to show that the
eigenstates are orthogonal:

⟨ϵ+|ϵ−⟩CPT = 0 (21)

and also the normalization condition is satisfied:

⟨ϵ±|ϵ±⟩CPT = 1 (22)

The eigenvalues of C have exactly the same sign as the PT norm [32] and
thus they result in a positive definite inner product that is admitted by the
2-dimentional Hilbert space.

To demonstrate this claim, let ψ =

(
a
b

)
with a, b ∈ C then the explicit

operations are
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T ψ =

(
a∗

b∗

)
(23)

PT ψ =

(
b∗

a∗

)
(24)

CPT ψ =
1

cos(a)

(
a∗ + ib∗ sin(a)
b∗ − ia∗ sin(a)

)
(25)

and so writing a and b in their general forms, a = x + iy and b = v + iu,
the inner product is

⟨ψ|ψ⟩CPT =
1

cos(a)
(x2 + u2 + 2xu sin(a) + y2 + v2 − 2yv sin(a)) (26)

which is always positive and is equal to zero if x = y = v = u = 0.
This particular Hamiltonian in the limit θ → 0 becomes Hermitian and the

C operator reduces to P and hence the Dirac Hermicity condition is recovered.
The use of C is only relevant when standard QM is extended to the complex
domain and the real Hamiltonian is deformed into a complex one [37].

2.2.2 A Note on the No-Signaling Principle and Bell Inequalities

Besides having real spectra and unitary evolution, another requirement for a
physical quantum theory is to satisfy the no-signalling priciple [38]. It is shown
in [36] that a PT symmetric system does not violate the no-signalling principle
when using the CPT scheme, despite other papers suggesting so [39, 40].

In terms of the conditional probabilities, the no-signaling principle is [41]:∑
a

P (a, b|A,B) = P (b|B) (27)

where the set-up of the thought experiment goes as follows [36]: A and B exist
in separate points in space and share an non-separable entangled quantum
state. Then, if A knows the outcome of a measurement, then B cannot know
the outcome of A and is limited to their measurement, using their particular
quantum state.

As an example, take the 2 × 2 Hamiltonian 16 considered in the previous
subsection. Following [36], the orthogonality relation 21 can be expressed in
terms of the state |Φi⟩ where:

|Φi⟩ = C†P ϵ̂i (28)

and thus the orthogonality relation becomes:

⟨Φ±
i |ϵ±⟩CPT j

= δij (29)
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The maximally entangled wavefunction |ϵ0⟩ = (|00⟩ + |11⟩)/
√
2 that A and B

share in the time-evolved state gives two possible outcomes:

ϵ+f =
1√

2 cos(a)


sin(a)
−i
−i

− sin(a)

 (30)

ϵ−f =
1√

2 cos(a)


−i

sin(a)
− sin(a)

−i

 (31)

(32)

where in terms of the time-evolution operator for time U(τ) = exp (−iHτ), the
two wavefunctions are ϵ±f = (U(τ)A± ⊗ I)ϵ0 with Apm being the operators I
and σx that A uses to send signals via the entangled wave function.

Then, the joint probability, using equation 27, that describes B’s outcome
depending on A measuring A− or A+ is (in terms of the parameter a):∑

α

P (a, b|A,B) =
∑
α=±y

⟨ϵ±f | |a⟩ ⟨a| ⊗ |b⟩ ⟨b| |ϵ±f ⟩ =
(1∓ sin(a))2

2(1 + sin2(a)
(33)

where the sum runs from α = ±y signifying the possible outcomes of a or b
respectively.

So by looking at the joint probability result above, it is clear to see that
there is a violation of the no-signaling principle as B’s outcome depends on
A measuring A− or A+. The states are not orthogonal |ϵi⟩ ⟨ϵj| ≠ 0 but when
using the CPT inner product the states are indeed orthogonal (as mentioned
above in equation 28) and therefore, the correct entangled states in terms of
Φ±

f = CPϵ±f are:

|Φ⟩+f =
1√
2


0
−i
−i
0

 (34)

|Φ⟩−f =
1√
2


−i
0
0
−i

 (35)

which indeed obey:

⟨Φ±
f |Φ

±
f ⟩ = 1 , ⟨Φ±

f |Φ
∓
f ⟩ = 0 (36)

Now, replacing ϵ±f with Φ±
f in equation 33 and replacing the identity with

I =
∑4

j=1 |ηj⟩ ⟨ηj|, where |ηj⟩ are the eigenvectors of the operator |a⟩ ⟨a|⊗|b⟩ ⟨b|,
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the correct form of the joint probability calculation is:

∑
a

P (a, b|A,B) =
4∑

j=1

⟨Φ±
f |a⟩ ⟨a| ⊗ |b⟩ ⟨b|ηj⟩ ⟨ηj|Φ±

f ⟩ =
1

2
(37)

Hence, the no-signaling principle holds for PT -Symmetric QM that is defined
by the CPT inner product, as the joint probability does not include the pa-
rameter a and thus, B’s measurement does not depend on A’s.

Moreover, in [36] the Bell inequality is shown to be violated in conformity
with ordinary QM via the CHSH(Clauser, Horne, Shimony and Holt) game
framework, which is used as a simplified Bell test and further proves that the
probabilities produced behave in the same manner as with regular Hermitian
QM.

The validity of the CPT inner product 14 is therefore verified even further,
by not violating the no-signaling principle and exhibiting similar behaviour as
Hermitian QM in terms of winning the CHSH game. Hence, its use seems
viable for the construction of a physical QM theory.
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3 Pseudo-Hermicity

A Hamiltonian exhibiting exact PT symmetry is not sufficient for producing
real spectra alone. In [3] was shown that PT -Symmetric Hamiltonians with real
spectra are a subset of pseudo-Hermitian Hamiltonians and in fact, this exact
anti-linear symmetry can be proven to be equivalent to Hermicity through the
pseudo-Hermitian framework. Therefore, pseudo-Hermicity can be thought to
describe the most general treatment of non-Hermitian Hamiltonians with real
spectra.

In his series of papers [3, 4, 5], following the work of Bender and Boetcher,
Ali Mostafazadeh laid the mathematical foundations for pseudo-Hermitian QM
and proved explicitly the equivalence with the PT -Symmetric theories.

An η-pseudo-Hermitian Hamiltonian satisfies the following condition:

η̂Ĥη̂−1 = Ĥ† (38)

where η̂ is a hermitian and linear automorphism [42]. The η̂ operator is called
the intertwining operator and exists for any operator that is diagonalizable
[3]. By setting η̂ = 1 the usual definition of Dirac Hermicity is recovered, so
pseudo-Hermicity can be thought of as a generalization of Hermicity.

It is simple to show the equivalence of the condition for exact PT with
pseudo-Hermicity. T acts as complex-conjugation and P is a real and linear
involution, such that PT 2 = 1. Then, taking a PT -Symmetric Hamiltonian
H:

Ĥ = P̂T ĤP̂T = P̂Ĥ∗P̂ → Ĥ = P̂Ĥ†P̂ (39)

and by multiplying by P from the left:

Ĥ† = P̂ĤP̂−1 (40)

Hence, the Hamiltonian Ĥ is η-pseudo-Hermitian, with η̂ = P̂ (denoted as
P-pseudo-Hermitian in A.Mostafazadeh’s notation [3]).

The inner product in terms of the intertwining operator η̂ , assuming that
the Hilbert space H is endowed with a positive definite norm ⟨·|·⟩(+) and the
Hamiltonian H is Hermitian, can be written in the form:

⟨ψ|ϕ⟩(+) = ⟨ψ|η̂+ϕ⟩ (41)

where ψ, ϕ ∈ H.

3.1 Equivalence with PT -Symmetric Framework

It is easy to check that the PT inner product 12 is in fact the η inner product
41, for the choice η̂ = P̂ :

⟨ψ̂|ϕ̂⟩PT = [P̂T ψ̂]T ϕ̂ = [P̂ψ̂∗]T ϕ̂ = ⟨ψ̂|P̂ϕ̂⟩ = ⟨ψ̂|η̂ϕ̂⟩ = ⟨ψ̂|ϕ̂⟩(+) (42)
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For the CPT inner product 14, the relation T η+ = CPT is used (as proved
in[43]) 1 and thus:

⟨ψ̂|ϕ̂⟩CPT = [ ˆCPT ψ̂]T ϕ̂ = [T̂ η̂ψ̂]T ϕ̂ = [η̂ψ̂∗]T ϕ̂ = ⟨ψ̂|η̂ϕ̂⟩ = ⟨ψ̂|ϕ̂⟩(+) (43)

Therefore, the inner products 12 and 14 are equivalent to the η-pseudo-
Hermitian inner product 41, as claimed in Ali Mostafazadeh’s work.

3.2 Calculation of η̂

In this subsection, a brief overview two different ways to calculate the in-
tertwining (or metric) operator η̂ are given as presented by A.Mostafazadeh
[44]. The most standard way is the so called ”Spectral method” but a more
numerically-driven method using perturbation theory is also useful, depending
on the problem.

3.2.1 Spectral Method

The most straight-forward approach that uses the spectral representation of η
as shown below:

η =
N∑
1

|ϕn⟩ ⟨ϕn| (44)

This can be easily done numerically by summing over the eigenvectors ϕn (or
in the case of a continuous spectrum, calculating the corresponding integrals).

3.2.2 Perturbative Expansion

This method is an application of perturbation theory and the sketch of the
steps goes as follows:

1. Decompose the Hamiltonian H and introduce an infinitesimal parameter
ϵ:

H = H0 + ϵH1 (45)

where H0 is the Hermitian part of H and H1 is the anti-Hermitian part.

2. As η is a positive-definite operator, its logarithm can be written as the
Hermitian operator Q = −lnη such that the pseudo-Hermicity condition
can be expressed as:

H† = e−QHeQ ⇒ η = e−Q (46)

1Note that in [43] when referring to the CPT inner product, the distinction between η̂+
and η̂ is that when using η̂+, a positive definite metric for the inner product ⟨·|·⟩+ is assumed
but for the current discussion the subscript is omitted.
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Now, using the Baker–Campbell–Hausdorff formula on the above equa-
tion:

e−QHeQ = H +
∞∑
l=1

1

l!
[H,Q]l (47)

where [H,Q]l = [[...[[H,Q], Q,Q, ....], Q︸ ︷︷ ︸
1,2,3,...,l

].

Hence, the pseudo-Hermicity condition 46 now reads:

H† = H +
∞∑
l=1

1

l!
[H,Q]l (48)

3. Then, using the infinitesimal parameter ϵ to expand Q:

Q =
∞∑
j=1

Qjϵ
j (49)

4. Now, combining equations 45 with 49 and substituting them into equation
48, leads to a set of equations for the Hermitian operator Qj that are of
the form:

[H0, Qj] = Rj (50)

where j ∈ Z+ and Rj (with k < j) is:

Rj =


−2H1 for j = 1.∑j

k=2[
∑k

m=1

∑m
n=1

(−1)nnkm!
k!2m−1n!(m−n)!∑

s1,..,sk∈Z+

s1+...+sk=j

[[...[H0, Qs1 ], Qs2 ], ..., Qsk ]] for j ≥ 2 .

(51)

Up to and including Q3, the explicit terms of the sum are:

[H0, Q1] = −2H1 (52)

[H0, Q2] = 0 (53)

[H0, Q3] = −1

6
[H1, Q1]2 (54)

5. Finally, the solutions in of the above equations for Qj can be obtained.

To be concrete, consider the following example of a PT -Symmetric cubic
anharmonic oscillator [44]:

H =
1

2m
p2 +

1

2
µ2x2 + iϵx3 (55)
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As defined in [45], the Qj operators for Q2i = 0 with i ∈ Z+ can be written
as:

Q2i+1 =
i+1∑
j,k=0

cijk{x2j, p2k+1} (56)

where the curly brackets denote the anti-commutator ({a, b} = ab + ba) and
cijk ∈ R are constants. So using the above equation in 50 and following the
given steps, the result for up to order O(ϵ2) is:

H =
1

2m
p2 +

1

2
µ2x2 +

3ϵ2

2µ4

(
2

m
x2p2 + µ2x4

)
+O(ϵ3) (57)

3.3 Pseudo-Unitarity

In contrast with Hermitian QM, unitary time-evolution in the pseudo-Hermitian
framework is a condition purely based on the intertwining operator η̂, where
an operator Û : H → H is η-pseudo-unitary if the following equation holds:

Û †η̂Û = η̂ (58)

By considering the usual Schroedinger picture operator Û = e−iĤt it is
clear to see that although the ”ket” vector is indeed η-pseudo-unitary for an
η-pseudo-Hermitian Hamiltonian, the ”bra” is not, as it evolves according to
Ĥ† and the Hamiltonian is not Hermitian.

This is solved by the inner product 41, as it is invariant under time trans-
lations and the probability density is conserved:

⟨ψ(x, t)|ψ(x, t)⟩(+) = ⟨ψ(x, t)|η̂+ψ(x, t)⟩ =
∫
dxP(x, t) (59)

By re-examining this result, E. Sablevice and P.Millington [33] introduced
the ’dual’ wavefunction ψ̃∗ that makes the representation of time-translations
for the ”bra” feasible. Hence, the probability density can be described by ψ
and ψ̃∗, and transforms in the same representation on the Hilbert space.

The representation on a dual Hilbert space is described by the operator
Û∗ : H∗ → H∗ acting on the states ⟨ϕ̃| ∈ H∗ as:

⟨ϕ̃| → Û∗(t) ⟨ϕ̃| := ⟨ϕ̃| Û−1(t) (60)

and the ’dual’ states transform as:

⟨ϕ̃| : H → C (61)

|ψ⟩ → ⟨ϕ̃|ψ⟩ (62)

in the dual representation. Furthermore, the dual ”bra” states are related
to ”bra” states by ⟨ϕ̃| = ⟨ϕ| η̂.
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Thus, now a construction of consistent time evolution can be carried out,
that is governed by only the Hamiltonian H. The dual wavefunction ψ̃∗ :
F(H∗) → F(H∗) is then:

ψ̃∗(x, t) := ⟨ψ̃∗(t)|x⟩ = ⟨ψ(0)|η̂eiĤt|x⟩ (63)

With this similar treatment, the pseudo-Hermitian time-evolution can be
extended to fields (see next chapter) and describe the cannonical operators for
a non-Hermitian Quantum Field Theory. Of course the above arguments are
not relativistic and hence they need to be applied for the symmetry group of
QFT, the Poincarè group.

19



4 Non-Hermitian Field Theory

In this section, the treatment of a field theory equipped with a non-Hermitian
mass terms is discussed. More specifically, the redefinition of the field ϕ̂, as used
in [24, 46] is shown and the resulting Euler-Lagrange solution consequences of
the non-Hermitian term are discussed. Next, an alternative construction is

described, by constructing a new ’dual’ field ˆ̃ϕ†(x) that transforms under the
full proper Poincarè group and the field for the same Scalar Field Lagrangian
(as previous) is constructed.

4.1 Non-Hermitian Scalar Field Theory

The archetypal type of a non-Hermitian but PT -Symmetric Lagrangians stud-
ied in [46, 33, 24] are of the form:

L(x) = ∂µϕ†(x)∂µϕ(x)− ϕ†(x)M2ϕ(x) (64)

where the non-Hermicity stems from the mass matrix M2 ̸=M2†.
The mass term is of the form:

M2 =

(
m2

1 µ2

−µ2 m2
2

)
(65)

where taking the limit limµ2→0 recovers Hermicity.

4.1.1 P and T Transformations

Let the scalar field ϕ(x) have two complex components, one be a scalar and
the other a pseudo-scalar:

ϕ(t,x) =

(
ϕ1(t,x)
ϕ2(t,x)

)
(66)

The parity transformation acts on the field ϕ(x) as:

P : ϕ(t,x) →ϕ′(t,−x) = eiγ1ϕ(x) (67)(
ϕ1(t,x)
ϕ2(t,x)

)
→
(
ϕ′
1(t,−x)
ϕ′
2(t,−x)

)
=

(
eia1 0
0 eia2

)(
ϕ1(t,x)
−ϕ2(t,x)

)
(68)

where γ1, ai ∈ R.

The time-reversal transformation acts on the field as:

T : ϕ(t,x) →ϕ′(−t,x) = eiγ2ϕ∗(x) (69)(
ϕ1(t,x)
ϕ2(t,x)

)
→
(
ϕ′
1(−t,x)
ϕ′
2(−t,x)

)
=

(
eib1 0
0 eib2

)(
ϕ∗
1(t,x)
ϕ∗
2(t,x)

)
(70)

where γ2, bi ∈ R.
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One consequence of non-Hermitian potentials is that they display a certain
behaviour when sources and sinks are present. More specifically, under the
action of the T operator the sinks become sources (due to the change in time
flow) and thus, under PT action, the system is symmetric up to a phase [24]:

PT :

(
ϕ1(t,x)
ϕ2(t,x)

)
→
(
ϕ′
1(t,x)
ϕ′
2(t,x)

)
= eiγ

(
ϕ∗
1(t,x)

−ϕ∗
2(t,x)

)
(71)

where γ ∈ R.
The eigenvalues M± of M2 are:

M± =
1

2

(
m2

1 +m2
2 ±

√
(m2

1 −m2
2)

2 − 4µ4

)
,M± ∈ R for

|m2
1 −m2

2

2
≤ |µ2|

(72)

where the unbroken region of PT -Symmetry corresponds to eigenvalues being
real.

4.1.2 Euler-Lagrange Equations

The equations of motion (eom) for complex-component Hermitian Lagrangian
are straight forward to calculate:

δS

δϕi

=
∂S

∂ϕi

− ∂a

(
∂S

∂(∂aϕi)

)
= 0 (73)

δS

δϕ∗
i

=
∂S

∂ϕ∗
i

− ∂a

(
∂S

∂(∂aϕ∗
i )

)
= 0 (74)

where ϕi is an n-component field with i = {1, 2, .., n} and the action is defined
as usual, ie. S =

∫
d4xL.

As the Lagrangian is Hermitian, then the following relation holds:

L = L† ⇒
(
δS

δϕi

)∗

=
δS∗

δϕ∗
i

=
δS

δϕ∗
i

(75)

thus, this is the only contraint for the eom 73 and 74.

When a non-Hermitian Lagrangian is considered, the relation 75 above is
no longer valid and the eom can no longer be non-trivially defined. Hence,
as proposed first in [46], the PT -Symmetry of the system can be exploited
and re-define the Lagrangian in terms of PT -conjugate fields in the following
notation:

Φ =

(
ϕ1(t,x)
ϕ2(t,x)

)
,Φ†

PT ≡ [PT Φ]T = (ϕ∗
1(t,x) , −ϕ∗

2(t,x)) (76)

so now, the Lagrangian 64 becomes:

L(x) = Φ†
PT

(
−□−m2

1 −µ2

−µ2 □+m2
2

)
Φ (77)
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where □ = ∂µ∂µ denotes the d’Alembertian.
The eom can now be defined by the re-written fields:

δS

δΦ
=

(
δS

δΦ†
PT

)†

PT

=

(
−□ϕ∗

1 −m2
1ϕ

∗
1 + µ2ϕ∗

2

−□ϕ∗
2 −m2ϕ∗

2 − µ2ϕ∗
1

)T

= 0 (78)

δS

δΦ†
PT

=

(
−□ϕ1 −m2

1ϕ1 − µ2ϕ2

□ϕ2 +m2
2ϕ2 − µ2ϕ1

)
= 0 (79)

and the other pair of eom can be obtained by conjugating the above:(
δS

δΦ

)∗

=

(
−□ϕ1 −m2

1ϕ1 + µ2ϕ2

−□ϕ2 −m2ϕ2 − µ2ϕ1

)T

= 0 (80)(
δS

δΦ†
PT

)∗

=

(
−□ϕ∗

1 −m2
1ϕ

∗
1 − µ2ϕ∗

2

□ϕ∗
2 +m2

2ϕ
∗
2 − µ2ϕ∗

1

)
= 0 (81)

These equations do not allow for ”dynamical” solution to the Euler-Lagrange
equations and thus, only one equation must be chosen to proceed, although
either choice would lead to the same observables. This is an obvious result of
non-Hermicity, as the eom 73,74 can have a trivial solution ϕ = ϕ∗ = 0 or only
one equation can be non-trivially defined.

As for the conserved currents, starting from the Hermitian limit µ→ 0, the
two U(1) currents (one for each field) are:

jνa = i (ϕ∗
a∂

νϕa − ϕa∂
νϕ∗

a) with a = 1, 2 (82)

but in the non-Hermitian limit µ ̸= 0 these currents are not conserved, but
their difference is conserved under the eom, ie.:

jν = jν1 − jν2 (83)

Although this ”composite” current is conserved, it is not a symmetry of the
Lagrangian, as the corresponding U(1) transformations are:

ϕ1(x) → ϕ′
1(x) = eiγ1ϕ1(x) (84)

ϕ2(x) → ϕ′
2(x) = e−iγ2ϕ2(x) with γi ∈ R (85)

and the Lagrangian is not left invariant under the above, it is left invariant
only under a single U(1) transformation:(

ϕ1

ϕ2

)
→ e−iγ

(
ϕ1

ϕ2

)
withγ ∈ R (86)

These currents can be identified as the source and sink (or gain and loss)
of the PT -Symmetric potential. This points to the fact that for these theories,
the variational principles must be revisited to accommodate the non-Hermicity
and have interpret-able results.
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4.1.3 Variational Procedure and Conserved Currents

Consider now the variation of the action:

δS =

∫
d4x δL(Φ,Φ†

PT , δνΦ, δνΦ
†
PT )

=

∫
d4x

(
∂L
∂Φ

− ∂ν
∂L

∂(∂νΦ)

)
δΦ + δΦ†

PT

(
∂L
∂Φ†

PT
− ∂ν

∂L
∂(∂νΦ

†
PT )

)

+ ∂ν

(
∂L

∂(∂νΦ)
δΦ + δΦ†

PT
∂L

∂(∂νΦ
†
PT )

) (87)

where the last term is the variation of the current:

δjν =
∂L

∂(∂νΦ)
δΦ + δΦ†

PT
∂L

∂(∂νΦ
†
PT )

(88)

In the Hermitian case, the Euler-Lagrange equations can be exploited in order
to prove current conservation (as δL = 0) in the usual manner. However, for
a non-Hermitian theory, only one Euler-Lagrange equation can be solved non-
trivially and therefore, the conserved current in this case can be determined for
a continuous transformation2 such that the variation of the Lagrangian δL ≠ 0
and the explicit form is:

δL =

(
∂L
∂Φ

− ∂ν
∂L

∂(∂νΦ)

)
δΦ + δΦ†

PT

(
∂L
∂Φ†

PT
− ∂ν

∂L
∂(∂νΦ

†
PT )

)
(89)

For instance, taking the Lagrangian 64 and choosing to proceed with the
PT -conjugate field’s equation of motion:

δS

δΦ†
PT

=
∂L
∂Φ†

PT
− ∂ν

∂L
∂(∂νΦ

†
PT )

= 0 (90)

Thus, the conserved current is given by the expression 89:

δL =

(
∂L
∂Φ

− ∂ν
∂L

∂(∂νΦ)

)
δΦ (91)

→ δL = 2µ2(ϕ∗
2δϕ1 − ϕ∗

1δϕ2) (92)

where this is nothing but the phase transformation 84 and 85, thus this method
provides a consistent variational method for non-Hermitian theories.

2This statement can be thought of as being the Noether’s theorem equivalent for a non-
Hermitian theory, as the original statement assumes a Hermitian Lagrangian.
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4.2 An Alternative Construction

In this section, an alternative approach to a ”healthy” non-Hermitian QFT is
derived from first principles, by extending the usual Poincarè algebra to give
rise to non-Hermitian generators, as shown in [33] and the new ’dual’ field is
defined. The key idea of this paper is to construct this ’dual’ field in order
to transform in the dual representation of the proper Poincarè group. In this
way, the resulting QFT has a more solid theoretical foundation and also, the
inconsistencies with the variational techniques described in the previous chapter
are resolved.

Lastly, an example is given by constructing a scalar field theory and the
Lagrangian 64 of the previous subsection is re-written in terms of the ’dual’
field.

4.2.1 Poincarè Group in Non-Hermitian QFT and its Fock Space
Representations

Let an η-pseudo-Hermitian Hamiltonian operator Ĥ : F → F acting on the
Fock space F . Then the time evolution, which is governed by the Schroedinger
equation, is trivial for the ”ket” states |ϕ⟩ ∈ F :

i∂t |ϕ(t)⟩ = Ĥ |ϕ(t)⟩ (93)

but for the conjugate ”bra” states, the same problem as in the Quantum Me-
chanical case arises, ie. that ⟨ϕ(t)| ∈ F evolves according to Ĥ†. Thus, follow-
ing similar arguments as before, the ’dual’ field operator that can transform in
the dual representation can be determined. But the complication this time is
that the symmetry group of QFT is the proper Poincarè group ISO(1, 3)↑ and
the dual field of ϕ needs to be invariant under its action.

As discussed in [33], having a theory with a non-Hermitian Hamiltonian,
which is the generator of time translations, means that the generators of
ISO(1, 3)↑ will be non-Hermitian as well.

The generators of the Poincarè Lie Algebra [47] for boosts/rotations and
space/time translations are Jµν and P µ respectively. Then, for an operator Û
of ISO(1, 3)↑ that is η-pseudo-unitary, the condition Û †η̂Û = η̂ holds and by
expanding:

Û(ϵ,Λ) = Î+
i

2
ωµν Ĵ

µν + iϵµP̂
µ, with ϵ,Λ ∈ ISO(1, 3)↑ (94)

becomes apparent that ˆJµν and P̂ µ are η-pseudo-Hermitian themselves:

Ĵ†µν = η̂ ˆJµν η̂−1 (95)

P̂ †µ = η̂P̂ µη̂−1 (96)

Hence, the generators are non-Hermitian unless they commute with η̂.
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4.2.2 ISO(1, 3)↑ Representations in Fock Space

The proper Poincarè group can be broken into the proper Lorentz group SO(1, 3)↑

and the 4-dimensional space translations R1,3, where their operators in Fock
space are denoted as Û(Λ) and Û(ϵ) respectively:

Û(ϵ,Λ) ∈ ISO(1, 3)+ : Û(ϵ,Λ) = Û(Λ, 0)Û(ϵ, I)

and the operators are η-pseudo-unitary.

A matrix element M for a pseudo-Hermitian theory is defined with the
inner-product 41:

Mab = ⟨a| ˆϕ(x)|b⟩+ = ⟨a|η̂ϕ̂|b⟩ (97)

and then the expectation value of an operator in F is:

Φ(x) = ⟨a|ϕ̂|a⟩+ (98)

Under the action of Û(ϵ,Λ), the expectation value must transform as their clas-
sical field counterparts (the so called correspondence principle [48]) and hence,
an element of ISO(1, 3)↑ transforms the expectation value in three distinct
representations:

1. The coordinate transformation (infinite-dimentional):

(ϵ,Λ) : R1,3 → R1,3 (99)

x→ (ϵ,Λ)[x] = Λx+ ϵ (100)

2. The Fock Space representation (infinite-dimentional) by the operator
Û(ϵ,Λ):

Û(ϵ,Λ) : F → F (101)

|a⟩ → Û(ϵ,Λ) |a⟩ (102)

3. The finite-dimentional representation of the proper Lorentz group SO(1, 3)↑

by D(Λ), of an n-component field:

D(Λ) : Cn → Cn (103)

ϕ̂a → Da
b (Λ)ϕ̂

b, with a, b = {1, 2, ..., n} (104)

Now, a separate treatment can be applied to each counterpart of the rep-
resentation (one for space-time translations and one for SO(1, 3)↑), hence de-
ducing how the expectation value Φ(x) ∈ F transforms and finally identifying
the general form of the dual field:
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4.2.3 Space-time Translations R1,3

The space-time translations for the expectation value Φ(x) under R1,3 are given
by:

R1,3 : Φ(x) → Φ′(x′) = Φ(x) (105)

Φ′(x′) = ⟨a′|η̂ϕ̂(x′)|a′⟩ = ⟨a|Û †η̂ϕ̂(x)Û |a⟩ = ⟨a|η̂ϕ̂(x)|a⟩ (106)

By utilizing the pseudo-unitary condition and rearranging as Û †η̂Û = η̂ ⇒
Û †η̂ = η̂Û , the explicit transformation of the field is:

Û−1(ϵ)ϕ̂(x)Û(ϵ) = e−ϵµ∂µϕ̂(x) (107)

where Û(ϵ) = eiϵ
µP̂µ and then expanding both sides results in the following

bracket:

[ϕ̂(x), P̂µ] = i∂µϕ̂(x) (108)

describing the relationship of the translation generators and the field ϕ̂(x) in
F .

The complex conjugate of the above two expressions gives the transforma-
tion of ϕ̂†(x):

(Û−1(ϵ))†ϕ̂†(x)(Û(ϵ))† = e−ϵµ∂µϕ̂†(x) (109)

⇒ (η̂Û−1(ϵ)η̂−1)ϕ̂†(x)(η̂Û(ϵ)η̂−1) = e−ϵµ∂µϕ̂†(x) (110)

and

[ϕ̂(x), η̂P̂µη̂
−1] = i∂µϕ̂

†(x) (111)

Hence now, the dual field ˆ̃ϕ†(x), that transforms in the same representation
as Ĥ, can be defined by considering the transformation of the conjugate field
above 110 and rearranging:

Û−1(ϵ)(η̂−1ϕ̂†(x)η̂)Û (ϵ)) = e−ϵµ∂µ η̂ϕ̂†(x)η̂−1 (112)

and this gives:

[η̂ϕ̂†(x)η̂−1, P̂µ] = i∂µ(η̂ϕ̂
†(x)η̂−1) (113)

Thus by inspection, the general form of the dual field can be written as:

ˆ̃ϕ†(x) = π̂−1ϕ̂†(x)π̂ (114)
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4.2.4 SO(1.3)↑ transformations

For the proper Lorentz transformations, the matrix element for an n-component
field Φa(x) (with a = {1, 2, ..., n}) transforms as:

SO(1, 3)+ : Φ(x) → Φa′(x′) = Da
b (Λ)Φ

b(x) (115)

Φa′(x′) = ⟨a|Û †η̂ϕ̂a(x′)Û |a⟩ = Da
b (Λ) ⟨a|η̂ϕ̂b(x)|a⟩ (116)

where D(Λ) indicates the matrix representation of SO(1, 3)↑.
In a similar fashion as before, the transformation the field ϕ̂(x) is:

Û−1(Λ)ϕ̂a(x)Û(Λ) = e−
1
2
ωµνmµν

Da
b (Λ)ϕ̂

b(x) (117)

where mµν = xµ∂ν − xν∂µ are the generators (boosts/rotations) and they are

clearly Hermitian. With Û(Λ) = e
i
2
ωµν Ĵµν

and Da
b (Λ) = e

i
2
ωµν(Mµν)ab after ex-

panding, the resulting bracket reads:

[ϕ̂a(x), Ĵµν ] = ((Mµν)ab + imµνδab )ϕ̂
b(x) (118)

For the conjugate field ϕ̂†(x), the above two expressions are:

(η̂Û−1(Λ)η̂−1)ϕ̂†a(x)(η̂Û(Λ)η̂−1) = e−
1
2
ωµνmµν

ϕ̂†b(x)D†a
b (Λ) (119)

and

[ϕ̂†a(x), Ĵ†µν ] = ϕ̂†b(x)(−(M †µν)ab + imµνδab ) (120)

Hence, the dual field ˆ̃ϕ†(x) can be determined by considering the transfor-
mation 119 and using the rearranged pseudo-unitarity condition Û †η̂ = η̂Û :

Û−1(Λ)(η̂−1ϕ̂†a(x)η̂)Û(Λ) = ( ˆeta
−1
ϕ̂†b(Λx)η̂)D†a

b (Λ) (121)

and this gives:

[η̂−1ϕ̂†(x)η̂, Ĵµν ] = η̂−1ϕ̂†(x)η̂(−M †µν + imµν) (122)

Now, by assuming that the generators of the proper Lorentz groupMµν are
π-pseudo-Hermitian for some Hermitian matrix π : Cn → Cn, such thatM †µν =
πMµνπ

−1 (and indeed they are as proved in [33]), the dual field transformation
can be written as:

Û−1(Λ)(η̂−1ϕ̂†(x)η̂π)Û = (η̂−1ϕ̂†(Λ−1x)η̂π)D−1(Λ) (123)

which leads to:

[η̂−1ϕ̂†(x)η̂π, Ĵµν ] = η̂−1ϕ̂†(x)η̂π(−Mµν + imµν) (124)
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Hence finally, the general form of the dual field can be defined as:

ˆ̃
ϕ

†
(x) := η̂−1ϕ̂†(x)η̂π (125)

which is the main result of [33]. This expression transforms in the dual repre-
sentation of SO(1, 3)↑ and R1,3 and thus, is the dual of the full proper Poincarè
group ISO(1, 3)↑.

With this definition, the mass terms of a pseudo-Hermitian QFT, con-

structed by the bi-linear ˆ̃ϕ†(x)ϕ̂(x) are Poincarè invariant, as well as pseudo-
Hermitian.

4.2.5 Pseudo-Hermitian Representations of SO(1, 3)↑

Now, consider the n-dimensional matrix representation of the proper Lorentz
group:

D(Λ), Λ ∈ SO(1, 3)↑ : Cn → Cn (126)

ϕ̂a → Da
b (Λ)ϕ̂

b, with a, b = {1, 2, ..., n} (127)

where as already discussed, the Fock Space generators Jµν and the genera-
tors of finite-dimensional representationsMµν are non-Hermitian but π-pseudo-
Hermitian for some Hermitian n× n matrix π (ie. M †µν = πMµνπ−1).

The (complexified) Lie Algebra of of the Lorentz group so(1, 3)C can be
decomposed into the direct sum of two complex Special Linear group Lie Al-
gebras:

so(1, 3)C ≃ sl(2,C)⊗ sl(2,C) (128)

Hence, all finite-dimensional matrix representations of SO(1, 3)↑ can be ob-
tained by using the finite-dimensional representations of SL(2,C) [49, 50].

The complex Special Linear group consists of 2×2 matricesM with complex
entries and has the only constraint of having a unit determinant:

SL(2,C) = {M ∈ GL(2,C) | det(M) = 1} (129)

and the corresponding Lie Algebra is described by traceless complex 2 × 2
matrices X:

sl(2,C) = {X ∈ gl(2,C) | Tr(X) = 0} (130)

The generators of this algebra are the denoted by Ja = σa

2
where σa are the

Pauli matrices and as per usual, they obey the following commutation relations
[50]:

[J0, J±] = ±J± (131)

[J+, J−] = −2J0 (132)
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where the subscripts ± and 0 are common notation that stem from their ”lad-
der operator”-like structure and J+/J− are the raising and lower operators
respectively.

Then, considering a representation ρi(Ja) on some vector space Vi, a π-
pseudo-Hermitian representation can be defined:

ρi(Ja)
† = πρi(Ja)π

−1 (133)

which is implied by the pseudo-Hermicity of the operators Ja and their com-
mutation relations above, as the bracket:

[ρi(Ja)
†, ρi(Jb)

†] = ρi([Ja, Jb]) (134)

preserves the composition rule (by definition of the representation, ie. homo-
morphism).

Now, in terms of sl(2,C) representations, the general form of irreducible
representations of so(1, 3)C can be defined, for rotation generators:

κjk(Ra) = −i[ρj(Ja)⊗ I2k+1 + I2j+1 ⊗ ρk(Ja)] (135)

and for boost generators:

κjk(Ba) = −ρj(Ja)⊗ I2k+1 + I2j+1 ⊗ ρk(Ja) (136)

where they can be combined and written as a general element: M = aaRa +
βaBa ∈ so(1, 3) , with aa, ba ∈ R such that:

κjk(M) = aaκjk(Ra) + βaκjk(Ba) (137)

Finally, the representation of the proper Lorentz Lie Algebra can be written
[33]:

Djk = eκjk(M) = ea
aκjk(Ra)+βaκjk(Ba) (138)

4.2.6 An Example of a PT -Symmetric Scalar Field

In section 4.1, the problems with having a non-Hermitian Lagrangian where dis-
cussed, namely the problem with the dynamical solution of the Euler-Lagrange
equations, where the Lagrangian needed to be redefined by the PT -conjugate
field 110 but remained in the same representation and thus, the problem of

unitary time evolution arises. Now that the dual field ˆ̃ϕ†(x) has been obtained,
the ”correct” Lagrangian as used in [33] can be written as:

L̂(x) = ∂µ ˆ̃ϕ†(x)∂µ ˆϕ(x)− ˆ̃ϕ†(x)M2 ˆϕ(x) (139)

instead of the ”naive” Lagrangian 64 previously considered [24].
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The scalar field transforms in the trivial representation (as a pure number)
and using equation 138, the representation matrix D(Λ) is:

D00(Λ) = e0I = In×n, for all Λ ∈ SO(1, 3)↑ (140)

Therefore, D†
00 = πD00π

−1 = ππ−1 = 1, π ∈ R is π-pseudo-unitary and the
dual field operator form is, according to equation 125:

ˆ̃ϕ†(x) = η̂−1ϕ̂†(x)η̂Π (141)

with:

Π =

(
π1 0
0 π2

)
, π1, π2 ∈ R (142)

as the field ϕ̂(x) has 2-components.
In contrast with its previous treatment, the eom now can be defined directly:

□ ˆ̃ϕ†(x) + ˆ̃ϕ†(x)M2 = 0 (143)

with solution (in momentum space):

ˆ̃ϕ†(x) =

∫
d3p

(2π)3
√

2Ep

[â†(0,p)eip·x + ĉ(0,p)e−ip·x] (144)

where Ep =
√

p2I+M2 and it is related to the field ϕ̂(x) with the equation
125:

ˆ̃ϕ†(x) = P̂−1ϕ̂†(xP )P̂P (145)

where P denotes the parity matrix P =

(
1 0
0 −1

)
(see Appendix B: subsection

6.2 for the action of P and T on â and ĉ).
A naive but obvious choice for the intertwining operator η̂ is the parity

operator P̂ but the inner product ⟨·|P̂·⟩ is not invariant under space translations
in Fock space:

⟨a|P̂|b⟩ → ⟨a|e−iϵaP̂ †aP̂eiϵaP̂a⟩ (146)

as the operator P̂ flips the sign of the 3-momentum operator P̂ a, ie. P̂−1P̂ P̂ =
−P̂ .

As discussed in the leading subsections, in order for the space translation
operator to remain Hermitian, it needs to commute with the intertwining op-
erator [η̂, P̂ a] = 0. Hence, the right choice cannot be the parity operatorP̂ as
[P̂ , P̂ ] ̸= 0 and another choice for η̂ is needed, while also keeping in mind that
the Lagrangian must remain η̂-pseudo-Hermitian.
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As with the PT -Symmetric QM, the symmetry described by the C operator
can be exploited in order to acquire an invariant inner product under space-
translations and the appropriate η̂ can be defined.

The construction of the matrix C, as proposed in [33], can be done by
summing the eigenstates ϕn of the mass matrix M :

C =
∑
n

|ϕn⟩ ⟨ϕn|P (147)

Although this construction can be done numerically for the operator Ĉ, it re-
quires the construction of a biorthonormal basis for the Fock space F and then
the resulting sum will be infinite, as there are infinitely many states ϕ̂ ∈ F .
An easier way for this PT -Symmetric Lagrangian 139 is to identify that the
Ĉ operator can be taken to be the parity operator P̂ but in the basis where
M2 is non-diagonal, as the equation above 147 dictates. Assuming that the
mass matrix M2 is diagonalizable, then the Hamiltonian is diagonalizable and
therefore exists a Ĉ operator such that [Ĥ, Ĉ] = 0 and Ĉ2 = I [33]:

Ĥ =

∫
d3p

(2π)3
(
â†(0,p)Epâ(0,p) + c†(0,p)Epĉ(0,p)

)
⇒ Ĉ−1ĤĈ = Ĥ (148)

as Ĉ commutes with Ep and Ĉ2 = I.
Using the Baker-Campbell-Hausdorf formula (in a similar fashion as in sec-

tion 3.2.2), the form of the operator Ĉ can be determined. First, let two oper-
ators Â and B̂:

Â =

∫
d3p

(2π)3
â†(0,p) A â(0,p) (149)

B̂ =

∫
d3p

(2π)3
â†(0,p) B â(0,−p) (150)

where matrices A and B commute ([A,B] = 0). Then, it can be shown that:

eiaÂebB̂â(0,p)e−ibB̂e−iaÂ = cos (bB)[cos (aA)− i sin (aA)]â(0,p)

− i sin (bB)[cos (aA)− i sin (aA)]â(0,−p)
(151)

eiaÂebB̂â†(0,p)e−ibB̂e−iaÂ = â†(0,p)[cos (aA) + i sin (aA)] cos (bB)

+ iâ†(0,−p)[cos aA+ i sin (aA)] sin (bB)
(152)

and choosing the parameters for Ĉ as A = C (where C is just the matrix of Ĉ),
a = −π

2
, B = I and b = π

2
, the resulting expression is:

Ĉâ(0,p)Ĉ−1 = Câ(0,−p) (153)

Ĉâ†(0,p)Ĉ−1 = â†(0,−p)C (154)

It is worth noting that the above action is identical to that of the parity operator
P̂ but the major difference is that it commutes with the Hamiltonian.
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The useful property of the Ĉ operator is, like in the case with P̂ , that it flips
the sign of the operator P̂ a and thus, the correct choice for the intertwining
operator is:

η̂ = P̂Ĉ ⇒ (P̂Ĉ P̂ a P̂Ĉ) = P̂ a (155)

and consequently, the matrix Π is:

Π = PC (156)

where the restriction implied on the given form of Π 142 is π1 = −π2. The
appropriate inner product is therefore ⟨·|P̂Ĉ·⟩ and is indeed invariant under
spacetime translations.

Finally, the dual field is then:

ˆ̃ϕ†(x) = (P̂Ĉ)−1 ϕ̂†(x) (P̂Ĉ)PC (157)

and the scalar field theory construction is complete in a consistent manner.
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5 Conclusion

In this work, the notion of PT -Symmetry and pseudo-Hermicity are explored,
in the context of Quantum Theory. Namely, the use of complex Hamiltonians
that exhibit exact (or unbroken) PT -Symmetry are shown to produce real
spectra and the new inner product 14, that uses the symmetry described by
the C operator, is shown to produce positive probabilities. The equivalence with
the more general pseudo-Hermitian framework is discussed and the equivalence
with the η-inner product 41 is shown. The positive-definite CPT inner product
shows the signs of a ”healthy” QM theory, as it obeys the no-signaling principle
[36], despite previous claims.

In the final chapter, the ideas developed are generalized to field theories
with non-Hermitian mass terms. The well-studied route of defining a new field
110, that utilizes the PT -Symmetry of the Lagrangian [24] is discussed and the
corresponding variational method is shown. Although this method has been
proved to work (even when considering fermions), a new approach is given
that builds field that transforms in the ’dual’ representation of the proper
Poincarè group [33]. This method ensures that the time-evolution of each
field depends on the Hamiltonian and not its conjugate, as is the case when
considering the ”naive” Lagrangian 64 of the first method. Thus, (pseudo-
unitary) time evolution can be properly defined and the variational methods
are more straight forward. More importantly, this method provides a solid
foundation for building QFT’s from first principles and can prove useful when
trying to apply standard techniques to a non-Hermitian theory.

As PT -Symmetric Hamiltonians belong to the class of pseudo-Hermitian
Hamiltonians, the question of whether considering these theories instead of just
generalizing the discussion into pseudo-Hermicity arises. As was discussed in
section 3, the requirement for a Hamiltonian to have exact PT -Symmetry is
equivalent to the requirement of Hermicity when considering pseudo-Hermicity.
Furthermore, if the Hilbert space is finite dimensional, then a Hamiltonian can
have unitary time evolution, regardless of it being Hermitian or not. For an
infinite dimensional vector space, a non-Hermitian Hamiltonian can be mapped
onto its Hermitian counterpart [5], but locallity of the Hamiltonian operator
is lost. More specifically, (as pointed out in [5]) a non-Hermitian Hamiltonian
operator that is local, equipped with a (positive-definite) inner product can
produce unitary evolution with respect to a different inner product, only if its
Hermitian counterpart is Hermitian with respect to the initial inner product
but it is generally non-local.

Although the claim that PT -Symmetry is a more physical argument than
Hermicity [6] is valid in a sense, the study of these types of Hamiltonians may
be much more valuable in the context of non-local field theories, as potentially
a PT -Symmetric Hamiltonian (that is local) can be physically equivalent to a
non-local Hamiltonian. Hence, the field of non-local field theories can benefit
from such treatment, as they become much simpler to study.

There are still many problems to be resolved with non-Hermitian (and PT -
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Symmetric) field theories [51, 52], before reaching the point of ”phenomenolog-
ical” results. One major problem described in [52] is the violation of causality,
when cosnidering a 2 × 2 model of non-Hermitian scattering. Although the
calculations seemed promising, with even defining the Lehmann–Symanzik–
Zimmerman (LSZ) reduction formula (in this particular example there were no
problems defining such an expression, as the non-Hermitian Hamiltonian was
local and thus pertubation theory could be applied as usual), the final result
of the scattering amplitude violated causality as the resulting poles were in the
wrong direction.

All in all, PT -Symmetry and pseudo-Hermicity have seen great results in
the recent years but the field is still in its infancy. With many papers currently
being published, the problems with formulating a consistent theory could some
day be solved and then a new candidate for the ”final theory” could emerge.
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6 Appendices

6.1 Appendix A: Canonical Commutation Relations for
P and T

When P acts on the [x̂, p̂], it preserves the commutation relation:

P [x̂, p̂]P−1 = Px̂P−1P p̂P−1 − P p̂P−1Px̂P−1 = (−x̂)(−p̂)− (−p̂)(−x̂) = iℏ

It is a linear (unitary) operator, whereas T must be an anti-linear operator:

T [x̂, p̂]T −1 = T x̂T −1T p̂T −1 − T p̂T −1T x̂T −1 = (x̂)(−p̂)− (−p̂)(x̂) = −iℏ

Thus, T is anti-linear: T (−i)T −1 = (−i)∗

6.2 Appendix B: Creation/Annihilation Operators un-
der the action of P and T

For the creation operator:

P̂ ĉ(0,p)P̂−1 = ĉ(0,−p)P, P̂ ĉ†(p,p)P̂−1 = P ĉ†(0,−p) (158)

T̂ ĉ(0,pT̂ −1 = ĉ(0,−p, T̂ ĉ†(0,−p)T̂ −1 = ĉ† (159)

For the annihilation operator:

P̂ â(0,p)P̂−1 = P â(0,−p), P̂ â†(0,p)P̂−1 = â†(0,−p)P (160)

T̂ â(0,p)T̂ −1 = â(0,−p), T̂ â†(0,p)T̂ −1 = â†(0,−p) (161)
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