Energy cascade in multi-mode stretched spiral vortex and viscoelastic effect

Kiyosi Horiuti (Tokyo Institute of Technology, Japan)
Collaborators: Y. Takagi, T. Fujisawa, M. Koike, K. Saitou, K. Kawamura, K. Matsumoto
Temporal development of coherent structures in isotropic turbulence box

Red isosurfaces: tubular object; White isosurfaces: planar object

Motivation

- Existence of organized vortical structures, termed ribbons, blobs, and worms has been known (e.g., Jimenez \& Wray 1998).
- The primary elements of vortical structures are the tube-like object and the sheet (or layer)-like object. These objects are not separable since local dissipation is particularly strong, not within vortex tubes, but rather in their neighbourhood (e.g. Kerr 1985).
- A model of generalized Burgers vortices for the small-scale structure of turbulence was introduced in Lundgren (1982). In this model (LSV), vortex sheets are stretched in the spiral to continually tighten, and this mechanism causes an energy cascade. The LSV model gives the $k^{-5 / 3}$ energy spectrum

Objective

- Extract LSVs and analyse their complete creation process in homogeneous isotropic turbulence.
- Explore the roles of the LSVs on generation of turbulence energy cascade and dissipation.
- Explore a possibility of achieving turbulence control through the suppression of formation of LSV (in polymer-diluted flow).

Motivation

- Existence of organized vortical structures, termed ribbons, blobs, and worms has been known (e.g., Jimenez \& Wray 1998).
- The primary elements of vortical structures are the tube-like object and the sheet (or layer)-like object. Local dissipation is particularly strong, not within vortex tubes, but rather in their neighbourhood (e.g. Kerr 1985). - A model of generalized Burgers vortices for the small-scale structure of turbulence was introduced in Lundgren (1982). In this model (LSV), vortex sheets are stretched in the spiral to continually tighten, and this mechanism causes an energy cascade. The LSV model gives the Kolmogorov $k^{-5 / 3}$ energy spectrum

Objective

Extract LSVs and analyse their complete creation process in homogeneous isotropic turbulence

- Explore the roles of the LSVs on generation of turbulence energy cascade and dissipation.
- Explore a possibility of achieving turbulence control through the suppression of formation of LSV (in polymer-diluted flow).

Identification method for turbulent structures (1)

Tubular structure in biaxial elongational flow

Sheet structure in planar elongational flow

Vortex tube: $\quad \Omega_{i k} \Omega_{i k} \gg S_{i k} S_{k i}$

- Pressure, p.
- $2^{\text {nd-order }}$ invariant of the velocity gradient tensor, Q

Vortex sheet: $\quad \Omega_{i k} \Omega_{i k} \sim S_{i k} S_{k i}$
Eigenvalue of the $2^{\text {nd }}$-order tensor of the velocity gradient tensor,

$$
\underset{\mathrm{PoF})}{\left[A_{i j}\right]_{+},},\left[A_{i j}\right] \equiv S_{i k} \Omega_{k j}+S_{j k} \Omega_{k i}
$$

(Horiuti \& Takagi 2005,

Identification method for turbulent structures (3)
Performance of identification method
Comparison with other fourth order velocity gradient invarients
Burgers' vortex layer

Burgers' vortex tube

Contours of $\left[A_{i j}\right]_{+}$ on Q

Newtonian

Identification method for turbulent structures (2)
Crossover of strain-rate tensor eigenvalues

Conventional ordering of eigenvalues: $\sigma_{1}>\sigma_{2}>\sigma_{3}$

Alignment of the eigenvector for the second largest eigenvalue with the vorticity vector (Kerr et al. 1985).

Profiles of homogeneous-isotropic DNS data

Grid- point \#		R_{λ}	$k_{\max } \eta$	$<K>$	$<\varepsilon>$	L	λ	η $\times 10^{-3}$
256^{3}	Decay	77.2	1.02	0.90	0.65	0.47	0.14	8.00
512^{3}	Decay (Low Re)	76.9	2.05	0.90	0.65	0.47	0.14	8.00
1024^{3}	Decay (Low Re)	77.4	4.09	0.90	0.65	0.47	0.14	8.00
1024^{3}	Decay (High Re)	122.5	1.35	0.96	0.30	0.47	0.09	2.63
512^{3}	Forced $(1.0<k<2.5)$	158.1	2.27	1.41	0.40	1.26	0.22	8.91
1024^{3}	Forced $(1.0<k<2.5)$	243.3	2.49	1.43	0.39	1.14	0.15	4.89

Assessment using the DNS data

- Homogeneous isotropic turbulence (decaying)

Initial energy spectrum:

$$
E(k)=C k_{p}^{-1}\left(\frac{k}{k_{p}}\right)^{8} \exp \left\{-2\left(\frac{k}{k_{p}}\right)^{2}\right\}, \quad k_{p}=2
$$

- Homogeneous shear turbulence

Advantage of use of eigenvalue, $\left[A_{i j}\right]_{+}$

Formation of vortex tube via conventional rolling-up
of a (single) vortex sheet

The vortex tube is formed through focusing of vorticity along a single vortex sheet (Neu 1984, Kerr \& Dold 1994).

White isosurface vortex sheet
Red isosurface: vortex tube
Red vectors:
vorticity vector

Vorticity vectors are always aligned with the longitudinal direction of the tube.

Origin of the tube in the development of the rolled-up vortex sheet

Traced back to the concentration of vorticity along the sheet in the initial velocity field.
The vortex tube is formed through focusing process (Neu 1984).

Multi-mode stretched spiral vortex

3-dimensional rendering

Topological classification with regards to vorticity alignment along the two sheets and the tube

Mode 1 (Lundgren 1982)

Mode 2

Mode 3
(Pullin \& Lundgren 2003)

A process of formation of stretched spiral vortex

Configuration in early stage

- Consists of a lot of stagnation flows caused by vortex sheets.
(Davila and Vassilicos 2003)
- Straining and stretching of the vortex blob along the sheets. (Gilbert 1993)

Mostly in Mode 3, converted into Mode 1 or Mode 2 with lapse of time.

A process of formation of stretched spiral vortex

Mostly in Mode 3

Summary of the process

- Appearance of the stagnation flow.
- Generation of recirculating flow.
- Straining and stretching of the sheets by the recirculating flow.
- Reorientation the vorticity directions along the stretched sheets due to the action of the pressure Hessian term.
- Creation of the vortex tube by concentration of the recirculating flow.

A process of formation of stretched spiral vortex

Initial configuration

Mostly in Mode 3

Summary of the process

- Appearance of the stagnation flow along the vortex sheets.
- Generation of recirculating flow through interaction with another sheet.
- Straining and stretching of the sheets by the recirculating flow
- Reorientation the vorticity directions along the stretched sheets due to the action of the pressure Hessian term.
- Creation of the vortex tube by axial straining and concentration of the low pressure region in the recirculating flow.

A process of formation of stretched spiral vortex

Summary of the process

- Different from rolling up of the layer due to Kelvin-Helmholz instability.
- Created through the interaction of several sheets.
- Convergence of recirculating flow and concentration of its low-pressure region.
: swirling flow,stagnation flow

Contours of vortex sheets and pressure

- Different from rolling up of the layer due to Kelvin-Helmholz instability.
- Created through the interaction of several sheets.
- Similar to the process considered for wall turbulence by Waleffe (2003)

Gray scale : vortex sheet, Vectors: velocity

$t=1.05$

- Initial configuration consists of by a stagnation flows caused by vortex sheets.(Davila and Vassilicos 2003)
- The following process is composed of by the three phases.

1. Genesis phase
2. Growth phase
3. Annihilation phase

Genesis phase of LSV
Generation of recirculating flow by convergence of the stagnation flow.

Interaction with the vortex

In Mode 3

Straining and stretching of vortex sheets by recirculating flow and the swirling flow caused by the vortex along S3.

Formation of
lower (L) and upper (U) sheets

- Absorption of the low pressure region in the recirculating flow into the lower sheet L - Stretching due to axially straining fields induced by the vortices in near neighbors
- Concentration of the vorticity in the low pressure region

Creation of vortex tube by axial straining and concentration of low pressure region

Entrainment of vortex sheets by the tube causing the sheets to form a spiral. Lowering of pressure and intensification of swirling motion.

- This spiral tightens and form spiral turns.

Fractal properties of spiral (Vassilicos \& Brasseur 1996)

Growth phase of LSV

- Decrease of the area of the cross section of the tube
- Concentration of the vorticity
- Further stretching of lower and upper sheets
- Entrainment of vortex sheets by the tube causing the sheets to form a spiral
- This spiral tightens and form spiral turns

[^0]Schematic sketch of streamwise vortex formation process in sheared turbulence
(Waleffe 2003)

Inter-mode transition in stretched spiral vortex
Initial configuration: Mode 3
\Rightarrow Occurrence of reorientation of vorticity vector

Converted to Mode 2

On upper sheet U .

$$
\widetilde{\Pi}_{z z}<0 \Rightarrow \sigma_{z} / \Rightarrow \sigma_{z}>0
$$

On lower sheet L

$$
\widetilde{\Pi}_{z z}>0 \Rightarrow \sigma_{z} \searrow \Rightarrow \sigma_{z}<0
$$

Mechanism for occurrence of reorientation of vorticity direction

Governing equation for σ_{z}
on the $\boldsymbol{e}_{7}, \boldsymbol{e}_{+}, \boldsymbol{e}_{-}$basis
$\frac{D}{D t} \sigma_{z}=-\sigma_{z}^{2}+\frac{1}{4}\left(\omega_{+}^{2}+\omega_{-}^{2}\right)-\widetilde{\Pi}_{z z}$
$\frac{D}{D t} \sigma_{+}=-\sigma_{+}^{2}+\frac{1}{4}\left(\omega_{z}^{2}+\omega_{-}^{2}\right)-\widetilde{\Pi}_{++}$

Horiuti \& Fujisawa (2008)
On upper sheet U :

$$
\widetilde{\prod}_{z z}<0 \Rightarrow \frac{D}{D t} \sigma_{z}>0 \Rightarrow \sigma_{z} \nRightarrow \sigma_{z}>0
$$

On lower sheet L

$$
\widetilde{\prod}_{z z}>0 \Rightarrow \frac{D}{D t} \sigma_{z}<0 \Rightarrow \sigma_{z} \nRightarrow \sigma_{z}<0
$$

Inter-mode transition of stretched spiral vortex
Example of Mode 3 - Mode 1 transition

Formation of recirculating flow by an interaction of three sheets
$\widetilde{\Pi}_{a}$

$\widetilde{\Pi}_{s}>0$ on both sheets
\rightarrow Occurrence of reorientation on both sheets

Appearance for Mode 3-2 and 3-1 transitions

Pressure distribution is convex near the branching point (B) of pressure.
$\widetilde{\Pi}_{z z}<0$ on upper sheet
$\Pi_{z z}>0$ on lower sheet
\rightarrow Occurrence of reorientation only on lower sheet

Mode 3-1 transition

Pressure distribution is concave on both sheets.
$\tilde{\Pi}_{z}>0$ on both sheets
\rightarrow Occurrence of reorientation on both sheets

Initial configuration: Mode 3
\Rightarrow Occurrence of reorientation of vorticity vector direction

Vortex stretching term: $\sigma_{z} \omega_{z}{ }^{2}$

Velocity direction on S3

The same as those on S1 and S2 Mode 3 = Mode 1
Opposite to those on S1 and S2: No reorientation takes place
$\frac{D}{D t} \sigma_{z}=-\sigma_{z}^{2}+\frac{1}{4}\left(\omega_{+}^{2}+\omega_{-}^{2}\right)-\prod_{z z}$

Velocity direction on S3
Governing equation for σ_{z}

$$
\begin{aligned}
& \frac{D}{D t} \sigma_{z}=-\sigma_{z}^{2}+\frac{1}{4}\left(\omega_{+}^{2}+\omega_{-}^{2}\right)-\Pi_{z z} \\
& \frac{D}{D t} \sigma_{+}=-\sigma_{+}^{2}+\frac{1}{4}\left(\omega_{z}^{2}+\omega_{-}^{2}\right)-\Pi_{++}
\end{aligned}
$$

The same as those on S1 and S2:

$$
\widetilde{\prod}_{z z}>0 \Rightarrow \frac{D}{D t} \sigma_{z}<0 \Rightarrow \sigma_{z} \Rightarrow \Rightarrow \sigma_{z}<0
$$

Opposite to those on S1 and S2:

$$
\widetilde{\prod}_{z z}<0 \Rightarrow \frac{D}{D t} \sigma_{z}>0 \Rightarrow \sigma_{z} / \Rightarrow \sigma_{z}>0
$$

Mechanism for stretching of the vortex sheet

 and formation of spiral turnsDistribution of the D term
Differential rotation induced by the tube and that self-induced by the sheet
\Rightarrow stretching, thinning and spiralling of vortex sheets to extreme length.
(Lundgren 1982)

A measure for the strength of the differential rotation

$$
D=r \frac{\partial}{\partial r}\left(\frac{u_{\theta}}{r}\right)
$$

Persistence of three modes

Schematic of configuration on lower and upper sheets in Mode 2

Intense azimuthal velocity is induced by the vortex sheet on the lower sheet L .

Differential rotation induced on the two sheets:
Lower sheet >> Upper sheet
Persistence of Mode 1 configuration

Estimate of average thickness of the vortex sheet, δ
Decrement $\delta(t)$ obtained by fitting the energy spectra with the functional form as $E(k, t)=c(\mathrm{t}) k^{n(t)} e^{-2 \delta(t) k}$
(Passot et al. 1995)

No apparent tendency for convergence of the average thickness observed.

Process of formation of stretched spiral vortex (3)

Generation of intense dissipation along the stretched spiral sheets

Interaction of strain and vorticity

$$
\begin{aligned}
& \frac{D}{D t}\left(\frac{1}{2} S_{i j} S_{j i}\right)=-S_{i k} S_{k j} S_{j i}-\omega_{i} \omega_{k} S_{i k}-S_{i j} \frac{\partial^{2} p}{\partial x_{i} \partial x_{j}}+\nu S_{i j} \frac{\partial^{2} S_{i j}}{\partial x_{k} \partial x_{k}} \\
& \frac{\mathbb{I}}{D t}\left(\frac{1}{2} \omega_{i} \omega_{i}\right)= \\
& 2 \omega_{i} \omega_{k} S_{i k}
\end{aligned} \quad-2 \nu \Omega_{i j} \frac{\partial^{2} \Omega_{i j}}{\partial x_{k} \partial x_{k}} .
$$

Enhancement of vorticity implies reduction of strain (Tsinober et al.(1997))

Strain production term > Vortex-stretching term

Existence of a region with large (concentrated) vorticity:

indispensable for transformation of flat sheet region into vorticity-dominant region

Dissipation and vortex-stretching terms

Dissipation rate $\mathcal{E} /\langle\varepsilon\rangle$

Vortex-stretching term

Annihilation phase

The term representing the energy cascade

- Governing equations of the strain rate and enstrophy

$$
\begin{aligned}
& \frac{D}{D t}\left(\frac{1}{2} S_{i j} S_{j i}\right)=-S_{i k} S_{k j} S_{j i}-\Omega_{i k} \Omega_{k j} S_{j i}-S_{i j} \frac{\partial^{2} p}{\partial x_{i} \partial x_{j}}+v S_{i j} \frac{\partial^{2} S_{i j}}{\partial x_{k} \partial x_{k}} \\
& \frac{1}{2} \frac{D}{D t}\left(\frac{1}{2} \omega_{i} \omega_{i}\right)=2 \Omega_{i k} \Omega_{k j} S_{j i} \quad-2 v \frac{\partial^{2} \Omega_{i j}}{\partial x_{k} \partial x_{k}}
\end{aligned}
$$

- Strain production term + enstrophy production term

$$
-S_{i k} S_{k j} S_{j i}+\Omega_{i k} \Omega_{k j} S_{j i}
$$

Cf. Estimate obtained using the nonlinear SGS model in LES

Estimate of the magnitude of energy cascade into small scale

Correlation between vortex sheet and vortex-stretching term

$\Omega_{i k} \Omega_{k j} S_{j i}$ term

PIV measurements
B. Ganapathisubramani (2010) JFM

FGures 10. (a) An individual example of a sheet of $\omega_{j} S_{i j} \omega_{j}$. (b) The same sheet of enstrophy
production rate from (a) shown with isosurfaces of $\left[A_{i j}\right]_{+}=1.43\left(v / \eta^{2}\right)^{2}$.

Distributions for indicator for the (small scale) turbulence generation.

Production term for strain and vorticity: $-S_{i k} S_{k j} S_{j i}+\Omega_{i k} \Omega_{k j} S_{j i}$

Energy cascade in multi-mode stretched spiral vortex Kiyosi Horiuti (Tokyo Institute of Technology, Japan)
Y. Takagi, T. Fujisawa, K. Saitou, K. Kawamura, K. Matsumoto

Dissipation field in decaying homogeneous isotropic turbulence
$\mathrm{Re}_{\lambda} \sim 87.0$
Grid resolution:
Run $1 \quad k_{\max } \underline{\bar{\eta}}=4.0 \quad\left(1024^{3}\right)$
Run $2 k_{\max } \bar{\eta}=2.0$ (512 ${ }^{3}$)
Run $3 k_{\text {max }} \bar{\eta}=1.0$ (2563)
$\bar{\eta}$: Averaged Kolmogorov scale
Objective

- Identify the vortical structure responsible for causing turbulent energy dissipation.
- Reveal the formation process for the identified structure.
- Examine the grid resolution requirement for the structures.

Mechanism for stretching of the vortex sheet and formation of spiral turns

Distribution of the D term
Differential rotation induced by the tube and that self-induced by the sheet
\Rightarrow stretching and spiralling of vortex sheets (Lundgren 1982)
A measure for the strength of the differential rotation

$$
D=r \frac{\partial}{\partial r}\left(\frac{u_{\theta}}{r}\right)
$$

Stretching and thinning of the spiral sheet to extreme length.
\Rightarrow intense turbulent energy cascade and dissipation

Note: Differential rotation induced on the sheets in Mode 2 :
Lower sheet >> Upper sheet
Persistence of Mode 1 configuration

Model for turbulence energy cascade

Instability cascade along spiral sheets

$1^{\text {st }}$ generation: LSV with intense vorticity
Confinement of large circulation in the recirculating flow into small cross section
$2^{\text {nd }}$ generation: LSV carrying smaller vorticity
Stretching of the spiral arms by $1^{\text {st }}$ generation LSV \rightarrow Instabily of the spial sheet
$3^{\text {rd }}$ generation:
Straining and stretching of the vorticity blobs \rightarrow Tertiary instability \rightarrow Rolling up of sheets
Formation of hierarchical cluster of self-similar LSV networks
Intermittent cascade of energy to small scales

Scenario for turbulence energy cascade

- Formation of hierarchical cluster of self-similar LSV networks
- Cascade of energy to small scales

Richardson's scenario for cascade

Frish et al. (1978)

LSV formation at a higher Reynolds number

Higher Reynolds numbers:
Rolling up of the stretched sheets

Occurrence of instability cascade

Energy spectrum

Decomposition of the strain production and vortex-stretching terms in the three regions $(\mathrm{t}=2.75)$

Region	$\frac{\langle-S S S>+\langle\Omega \Omega S\rangle}{\left\langle-S S S>_{t}+\left\langle\Omega \Omega S>_{t}\right.\right.}$	$\frac{\left\langle\Omega \Omega S>_{t}\right.}{\langle-S S S>t}$	Strain production term fraction	Vortex stretching term fraction
Curved sheet	0.32	0.07	0.39	0.09
Flat sheet	0.41	0.28	0.42	0.36
Tubecore	0.27	0.99	0.18	0.55

Decomposition of turbulence statistics in three regions

Region	Grid point fraction	Energy fraction	Dissipation fraction	Energy individual	Dissipation individual	Taylor micro scale Re
Curved	0.26	0.27	0.33	1.04	0.80	80.5
Flat	0.39	0.38	0.39	1.00	0.65	85.8
Core	0.35	0.34	0.28	0.97	0.50	95.1

Isosurfaces of dissipation
Isosurfaces of vortex sheet

Requirement for the grid point numbers: $R_{\lambda}{ }^{2}$ is more feasible than $R_{\lambda}^{3 / 2}$.
(Sreenivasan 2004)

Formation process of LSV in homogeneous isotropic turbulence

Large scale circulation
(lateral
extent: comparable
to L).
Initial
configuration
is in Mode 3

Mode 3

Transformed
into Mode 1
or Mode 2.

Formation process of spiral vortices in homogeneous isotropic turbulence

$$
\mathrm{u}=\mathrm{u}^{+}+\mathrm{u}^{-}
$$

LSV formation at higher Reynolds number

Run 4: Initial velocity field from Run 1 at $t=1.75, v=0.00138 \rightarrow 0.00024$

Vortex-stretching term

Run $4\left(R e_{\lambda} \sim 122.5\right)$

At high Re , the stretched sheets are thinner, and spiral has more turns.
\rightarrow Instability of sheets \rightarrow Creation of extra LSVs along the stretched sheets.

Formation process different from that due to Kelvin-Helmholz instability
Inter-mode transition of stretched spiral vortex
Appearance of spiral turns

$\omega_{z}=\omega \cdot \mathbf{e}_{z}, \omega_{+}=\omega \cdot \mathbf{e}_{+}, \omega=\omega \cdot \mathbf{e}$

Initial configuration: Mode 3
\rightarrow Occurrence of reorientation of vorticity direction along lower sheet

Mode 3 - Mode 2 transition

Generation of intense dissipation along the stretched spiral sheets

A process for formation of vortex tube along flat sheet
Distributions of decomposed vortex-stretching terms
Strain-rate eigenvalue σ_{z} (negative)

Occurrence of compression in the stretching(z-) direction along the flat sheet.

Roles of the pressure for the sheet-tube transformation process
Relaxation of occurrence of compression through the pressure Hessian terms.

Pressure Hessian Π_{++}

Cross-section of pressure and flat sheet

Generation of local minimum pressure \Rightarrow Formation of the core region of tube \Rightarrow Generation of vortex tube with transverse vorticity

Stretching (z) direction (negative) $\sigma_{z} \omega_{z}{ }^{2}(-7500)$

Azimuthal (+) direction (positive)
$\sigma_{+} \omega_{+}{ }^{2}$ (12000)

Role of the pressure Hessian term for vorticity generation

Governing equations for vorticities, $\omega_{z_{2}}, \omega_{ \pm}, \omega_{-}$

Pressure Hessian term reacts to relax an occurrence of compression in z-dir. by converting the ω_{z} vorticity into the transverse component, ω_{+}

Statistical measure for frequency of occurrence of mode transitions
$\widetilde{\Pi}_{z}$ (Conditionally sampled
in the sheet region)
p.d.f. of $\sigma_{z} \omega_{z}{ }^{2}$

At an earlv stage: skewed to positive values
\rightarrow Occurrence of reorientation of vorticity direction At a later time: skewed to negative values
\rightarrow The vorticity in the converted direction grows.

Appearance of a markedly large proportion of negative $\sigma_{z} \omega_{z}{ }^{2}$
\rightarrow Occurrence of reorientation of vorticity direction

Inter-component energy exchange in Mode 2

Governing equations for energy: $u_{z}{ }^{2}, u_{+}{ }^{2}$

$$
\begin{gathered}
\left\{\begin{array}{l}
\frac{D}{D t}\left(\frac{1}{2} u_{z}^{2}\right)=-\frac{1}{4} \frac{u_{z} u_{+}}{\sigma_{z}-\sigma_{+}}\left(\omega_{z} \omega_{+}-\widetilde{\Pi}_{z+}\right) \\
\frac{D}{D t}\left(\frac{1}{2} u_{+}^{2}\right)=+\frac{1}{4} \frac{u_{z} u_{+}}{\sigma_{z}-\sigma_{+}}\left(\omega_{z} \omega_{+}-\widetilde{\Pi}_{z+}\right) \\
-\frac{1}{4} \frac{u_{z} u_{+}}{\sigma_{z}-\sigma_{+}}\left(\omega_{z} \omega_{+}-\widetilde{\Pi}_{z+}\right)<0,\left(\sigma_{z}-\sigma_{+}<0\right) \\
u_{z}^{2}, u_{+}^{2}
\end{array}\right.
\end{gathered}
$$

Energy transfer from the z-component, $U_{z}{ }^{2}$, to the transverse component, $U_{+}{ }^{2}$. Mode 1 LSV is more persistent than Mode 2 LSV.

Correlation between the vortex sheet and dissipation rate
Isosurfaces of dissipation
Isosurfaces of vortex sheet

Resolution of spiral turns

Run $1\left(k_{\text {max }} \bar{\eta}=4.0\right)$

x

Requirement for the grid point numbers: $R_{\lambda}{ }^{2}$ is more feasible than $R_{\lambda}{ }^{3 / 2}$.

LSV formation at higher Reynolds number

Run 4: Initial velocity field from Run 1 at $t=1.75, v=0.00138 \rightarrow 0.00024$
Vortex-stretching term

Run $4\left(R e_{\lambda} \sim 122.5\right)$

At high Re, the stretched sheets are thinner, and spiral has more turns.
\rightarrow Instability of sheets \rightarrow Creation of extra LSVs along the stretched sheets.

Mode 3

Mode 3
Represented by
$\frac{D h}{D t}=-\left[\frac{\partial}{\partial x_{i}}\left(p-\frac{1}{2} u_{k} u_{k}\right)\right] \cdot \omega_{0}$
$\equiv-P_{h}$
（Holm \＆Kerr 2002）
elicity production term P_{h}

295500step	295500 step
$\mathrm{Q}=500$	$\mathrm{Q}=500$
Heli＋：黄色	$\mathrm{H}+: ⿳ ⿱ 卄 一 由 八 由 八$
Heli－：水色	$\mathrm{H}-:$ 水色

296500step
Q＝500
Heli＋：黄色
Heli－：水色

Pullin and Lundgren（2001）：

$$
\left.\left.E(k)=\frac{1}{\Gamma(2 / 3)}(2 / 3)^{\frac{2}{3}} \frac{\varepsilon}{v^{\frac{1}{3}} a^{\frac{2}{3}}} k^{-\frac{5}{3}}+\frac{1}{\Gamma(1 / 3}\right)^{(2 / 3}\right)^{\frac{1}{3}} \frac{\varepsilon}{v^{\frac{2}{3}} a^{\frac{1}{3}}} k^{-\frac{7}{3}}
$$

Define the stretching parameter a using the Kolmogorov scaling：$a=\left(\frac{\varepsilon}{15 v}\right)^{\frac{1}{2}}$

$$
\begin{aligned}
& E(k)= \frac{1}{\Gamma(2 / 3)}(20 / 3)^{\frac{1}{3}} \varepsilon^{\frac{2}{3}} k^{-\frac{5}{3}}+\frac{1}{\Gamma(1 / 3)}(2 / 3)^{\frac{1}{3}} 15^{\frac{1}{6}} \underline{v}^{-\frac{1}{2}} \boldsymbol{\varepsilon}^{\frac{5}{6}} k^{-\frac{7}{3}} \\
& \text { Diverge as } v \longrightarrow 0 \text { unless } \varepsilon \longrightarrow 0
\end{aligned}
$$

Removal of divergence by using a large scale shear rate，S ．

$$
E(k) \sim \varepsilon^{1 / 3} S k^{-7 / 3} \quad\left(a \approx\left(\frac{\varepsilon}{v}\right)^{2} S^{-3}\right)
$$

$$
\begin{aligned}
& E_{12}(k)-\varepsilon^{1 / 3} S k^{-7 / 3} \\
& \text { (Ishihara et al. 2002) }
\end{aligned}
$$

Hierarchical spectrum and multi－mode spiral vortex

Spiral vortex in Mode 1

Mode 2：intermediate between $-5 / 3$ and $-7 / 3$

Derivation of－7／3 energy spectrum（2）

－Stretching of axial vorticity $\omega_{z} \rightarrow E(k) \propto k^{-5 / 3}$
－Stretching of azimuthal vorticity $\omega_{\theta} \rightarrow \propto k^{-7 / 3}$
（Ohkitani 2004）
－Stretching of azimuthal vorticity $\omega_{r} \rightarrow \propto k^{-9 / 3}$

Enstrophy spectrum：

$$
\begin{aligned}
& \Omega(k) \approx\left(l_{0}{ }^{11} \omega_{0}{ }^{10} / a^{7}\right)^{1 / 3} k^{-1 / 3} \\
& \dot{K}=-\varepsilon \rightarrow \dot{\varepsilon} \approx-\frac{\varepsilon^{2}}{K} \\
& \left(\frac{l_{0}{ }^{11} \omega_{0}{ }^{10}}{a^{7}}\right)^{1 / 3} \approx \frac{\varepsilon^{2}}{K} \varepsilon^{-2 / 3} \approx \dot{\varepsilon} \varepsilon^{-2 / 3} \\
& \quad E(k) \propto \dot{\varepsilon} \varepsilon^{-2 / 3} k^{-7 / 3}
\end{aligned}
$$

[^1]\qquad \rangle

Mode 3

Mode 1

- Mode 3 (or 2) tends to be converted to Mode 1 (Horiuti et al. 2008)
- Rolling-up of the stretched sheet \Rightarrow Creation of Mode 1 spiral vortices
\Rightarrow Mode 1 spiral vortex predominates in Phase 2.

Time variations of energy and dissipation rate

Period of oscillation ~ Eddy turnover time due to forcing: T

Conditional sampling of energy spectrum

Extracted spectra

Energy flux and transfer function: Average in Phases 1 and 2

Flux and transfer function: Average in Phase T

Extracted spectra

Non-equilibrium energy spectrum (Kovasnay model)

$$
\begin{aligned}
E(k) & \approx C_{K} \varepsilon^{2 / 3} k^{-5 / 3}+\frac{2}{3} C_{K}^{2} \dot{\varepsilon} \varepsilon^{-2 / 3} \underline{k^{-7 / 3}}+\frac{1}{3} C_{K}^{3}\left[\ddot{\varepsilon} \varepsilon^{-1}-(\dot{\varepsilon})^{2} \varepsilon^{-2}\right] \underline{k^{-9 / 3}}+\cdots \\
& =C_{K} \varepsilon^{2 / 3} k^{-5 / 3}+\frac{2}{3} C_{K}{ }^{2} \frac{d(\log \varepsilon)}{d t} \varepsilon^{1 / 3} k^{-7 / 3}+\frac{1}{3} C_{K}^{3} \frac{d^{2}(\log \varepsilon)}{d t^{2}} k^{-9 / 3}+\cdots
\end{aligned}
$$

\rightarrow Long-time average of the spectrum: $\langle E(k)\rangle=C_{k} \varepsilon^{2 / 3} k^{-5 / 3}$

Objective

- Extract the $k^{-7 / 3}$ and $k^{-9 / 3}$ spectrum using conditional sampling of the spectrum in quasi-steady turbulence DNS data
- Discuss on the effect of non-locality in the transfer function.
- Elucidate the roles of the $k^{-7 / 3}$ and $k^{-9 / 3}$ spectrum in generation of energy transfer and examine the non-equilibrium/unsteady effect.

Multi-mode stretched spiral vortex
Topological classification with regards to vorticity alignment along the two sheets and the tube

Horiuti \& Fujisawa (2008)

Mode 2

Multi-mode stretched spiral vortex
3-dimensional rendering
Topological classification with regards to vorticity alignment along the two sheets and the tube

Mode 1 (Lundgren 1982)

Mode 2
(Pullin \& Lundgren 2003)

Possibility in reduction of turbulence generation

 by means of termination of the occurrence of LSV formationTom's effect : Drag reduction in the polymer-diluted flows
Investigation of the effect of viscoelasticity on the formation process
Characteristic features of the viscoelastic fluids

1. Inhibition of the vortex generation.
2. Normal stress difference (appearance of elongational viscosity).
3. Shear-rate dependent viscosity (shear thinning).

How these viscoelastic features affect the LSV formation process.

Weissenburg effect (Rod clibming)

a dilute solutionof polystyrene polymer is dissolved in newtonian solvent (Piccolastic).
(HP: Prof. MKKinley, MIT) (HP: Prof. McKinley, MIT)

Characteristic features of the viscoelastic fluids

1. Inhibition of the vortex generation.
2. Normal stress difference (appearance of elongation rate and viscosity).
3. Shear-rate dependent viscosity (shear thinning).

In this video clip a dilute ($0.025 \mathrm{wt} \%$) solution of a high molecular weight ($2 \hbar 10^{6} \mathrm{~g} / \mathrm{mol}$) polystyrene polymer (Polysciences Inc) is dissolved in a low molecular weight ($\sim 100 \mathrm{~g} / \mathrm{mol}$) newtonian viscous (~30 Pa.s) solvent (Piccolastic, Hercules Inc).
In the experiment a rod is rotated with its end immersed in the fluid outlined above. In the Newtonian case inertia would dominate an fluid would move to the edges of the container, away from the rod. Here however the elastic forces generated by the rotation of rod (and the consequent stretching of the polymer chains in solut result in a positive normal force - the fluid rises up the rod. The bulbous shape remaining at the end of the video is the diditiseepobifinon polystyrene polymer is instability as the mass that has been forced up the rod a) relaxes and b) overcomes the force pushing from below.

Incorporation of non-affine effect into the constitutive equation

Assumption of complete affinity

$$
\begin{aligned}
& \underline{\dot{\boldsymbol{Q}}=\boldsymbol{Q} \cdot \nabla \boldsymbol{u}} \\
& \frac{D}{D t}\left\langle Q_{i} Q_{j}\right\rangle=\left\langle Q_{i} Q_{k}\right\rangle \frac{\partial u_{j}}{\partial x_{k}}
\end{aligned}
$$

< Elastic dumbbell >
\boldsymbol{Q} : connector vector
$\longmapsto \quad$ Upper-convective Oldroyd-B constitutive equation
Introduction of non-affinity
$\dot{\boldsymbol{Q}}=\boldsymbol{Q} \cdot[\nabla \boldsymbol{u}-2 \alpha \boldsymbol{S}] \quad(\alpha:$ slip parameter, $0 \leq \alpha \leq 1)$
$\longrightarrow \quad$ Johnson-Segalman constitutive equation

Governing equation for motion of viscoelastic fluid

$$
\frac{\partial u_{i}}{\partial t}+\frac{\partial\left(u_{i} u_{j}\right)}{\partial x_{j}}=-\frac{\partial p}{\partial x_{i}}+\beta v \frac{\partial^{2} u_{i}}{\partial x_{j} \partial x_{j}}-\frac{\partial \tau_{i j}}{\partial x_{j}}
$$

Constitutive equation for the polymer stress tensor $\tau_{i j}$

Johnson-Segalman constitutive equation (JS model)

$$
\begin{aligned}
\frac{D \tau_{i j}}{D t} & =(1-\alpha)\left(\tau_{i k} \frac{\partial u_{j}}{\partial x_{k}}+\frac{\partial u_{i}}{\partial x_{k}} \tau_{k j}\right)-\alpha\left(\tau_{i k} \frac{\partial u_{k}}{\partial x_{j}}+\frac{\partial u_{k}}{\partial x_{i}} \tau_{k j}\right) \\
& -\frac{1}{\lambda} \tau_{i j}-\frac{v(1-\beta)}{\lambda} 2 S_{i j}+\kappa \frac{\partial^{2} \tau_{i j}}{\partial x_{k} \partial x_{k}}
\end{aligned} \quad \text { Cf. Vaithianathan et al. (2006) } \quad l
$$

Introduction of non-affinity
\boldsymbol{Q} : connector vector

$$
\dot{\boldsymbol{Q}}=\boldsymbol{Q} \cdot \nabla \boldsymbol{u} \Longrightarrow \dot{\boldsymbol{Q}}=\boldsymbol{Q} \cdot[\nabla \boldsymbol{u}-2 \alpha \boldsymbol{S}]
$$

α : slip parameter

$\alpha=0$: reduced to Oldroyd-B eq. (Review in Procaccia \& Sreenivasan 2008) $\alpha=1$: reduced to Oldroyd-A eq.

Parameters of the viscoelastic homogeneous-isotropic DNS data

- Grid point numbers: 128^{3}
- Molecular discosity : $\quad v=0.00$
- Polymer relaxation time : $\quad \lambda=0.45$ (Taylor: 0.66 , Kolmogorov: 0.098)
- Non-affine slip parameter: $\alpha=0.0,0.5,1.0$
- Solvent viscosity contribution: $\beta=0.8$
- Artificial viscosity: $\quad \kappa=0.05$
- External forcing: Random phase with an energy spectrum

$$
E_{f}(k, t)=\left\{\begin{array}{lc}
C_{f}, & (1.0 \leq k \leq 2.5) \\
0, & \text { otherwise }
\end{array}\right.
$$

- Initial condition: Newtonian steady turbulence ($\mathrm{R}_{\lambda} \sim 90.0$)
- No damping function for the polymer stress is employed
- Work provided by the forcing to sustain the steady state

$\left\langle u_{i} f_{i}\right\rangle$		
Newtonian	$\alpha=0.0$	$\alpha=1.0$
0.470	0.468	0.457

Temporal development of vortex sheets and tubes (Newtonian)

Temporal development of vortex sheets and tubes (viscoelastic)
$\alpha=0.0$
$\alpha=1.0$

$\alpha=0.0$
$\alpha=1.0$

Roles of normal stress difference on the vortex tube generation

$$
\left(\tau_{r r}-\tau_{\theta \theta}\right) \approx\left(\tau_{++}-\tau_{--}\right)
$$

Pressure gradient in the radial direction
$r \frac{d}{d r}\left(p-\tau_{z z}\right)=r \frac{d}{d r}\left(\tau_{r r}-\tau_{z z}\right)+\left(\tau_{r r}-\tau_{\theta \theta}\right)+\cdots$ Distribution of $\left(\tau_{++}-\tau_{--}\right)$on the tube $\left(\tau_{++}-\tau_{--}\right)$: predominantly negative

$$
\therefore \frac{d p}{d r}<0
$$

Pressure bulges out in tube core region
\Rightarrow Reduction of lowering of pressure
in the tube core.
\Rightarrow Reduction of growth of the tube.
Inhibition of the vortex generation

Decomposition of the pressure into those due to solvent p_{s} and polymer p_{τ}

$$
\Delta p_{s}=2 Q, \quad \Delta p_{\tau}=-\frac{\partial}{\partial x_{i}}\left(\frac{\partial \tau_{i j}}{\partial x_{j}}\right) \equiv-T
$$

∇p_{τ} tends to oppose to $\nabla p_{\mathrm{S}} \Rightarrow$ Reduction of stretching of tube and sheet

Alignment of $\left[A_{i j}\right]_{+}$
eigenvectors with vortex sheet
\boldsymbol{a}_{+}eigenvector is mostly perpendicular to the vortex sheet.
Vortex sheet is approximately spanned by the a_{S} and \boldsymbol{a}_{-}eigenvectors.

First and second normal stress differences along the vortex sheet

First normal stress difference

$$
\left(\tau_{11}-\tau_{22}\right) \approx\left(\tau_{s s}-\tau_{++}\right)
$$

Second normal stress difference

$$
\left(\tau_{22}-\tau_{33}\right) \approx\left(\tau_{++}-\tau_{--}\right)
$$

Note: When the vorticity of sheet is large \Rightarrow First normal stress difference

$$
\left(\tau_{11}-\tau_{22}\right) \approx\left(\tau_{--}-\tau_{++}\right)
$$

\Rightarrow Second normal stress difference
$\left(\tau_{22}-\tau_{33}\right) \approx\left(\tau_{++}-\tau_{\mathrm{ss}}\right)$

First and second normal stress differences along the vortex sheet
First: $\left(\tau_{11}-\tau_{22}\right) \approx\left(\tau_{\mathrm{ss}}-\tau_{++}\right)$
Second: $\left(\tau_{22}-\tau_{33}\right) \approx\left(\tau_{++}-\tau_{--}\right)$

Predominantly positive
Stretching and alignment of the polymer molecules along the streamlines \Rightarrow
\Rightarrow Extra tension exerted along the sheet \Rightarrow Snap back of the sheet to the original form

Effect of viscoelasticity on the occurrence of a role reversal between the eigenvalues

$$
\begin{aligned}
& \frac{D S_{i j}}{D t}=-\frac{1}{2}\left(\frac{\partial u_{k}}{\partial x_{j}} \frac{\partial u_{i}}{\partial x_{k}}+\frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{j}}{\partial x_{k}}\right)-\Pi_{i j}-\frac{1}{2} \mathrm{~T}_{i j} \\
& \mathrm{~T}_{i j}=\frac{\partial^{2} \tau_{i k}}{\partial x_{j} \partial x_{k}}+\frac{\partial^{2} \tau_{j k}}{\partial x_{i} \partial x_{k}} \\
& \mathrm{~T}=\mathrm{E}^{\top}\left(\mathrm{T}_{i j}\right) \mathrm{E}, \mathrm{E}=\left(e_{+}, e_{-}, e_{z}\right) \\
& \begin{array}{l}
\text { Off-diagonal component of } \\
\text { pressure Hessian }
\end{array} \\
& \frac{D e_{+}}{D t} \bullet e_{z}=\frac{1}{\left(\sigma_{+}-\sigma_{z}\right)}\left\{-\Pi_{+z}-\frac{1}{2} \mathrm{~T}_{+z}\right\} \\
& \text { The rate of rotation in the plane defined } \\
& \text { by } \boldsymbol{e}_{+} \text {and } \boldsymbol{e}_{z} \text { (Nomura \& Post 1998) }
\end{aligned}
$$

Predominantly negative

Computed cases in pipe flow DNS

	Newtonian J	Johnson-Segalman model	
α	-	$0.0,0.1,0.5,0.9,1.0$	
$\mathrm{Re}_{\tau 0}$	$180\left(\mathrm{Re}_{b 0} \approx 5300\right)$	180	
$\mathrm{We}_{\tau 0}$	-	25	$u_{\tau} R$
Domain	$10 R \times R \times 2 \pi R$	$20 R \times R \times 2 \pi R$	${ }_{\tau 0}=\frac{v_{0}}{v_{0}}$
$L_{z}{ }^{+}$	1,800	3,600	
Grid	$128 \times 64 \times 64$	$256 \times 64 \times 64$	$\mathrm{We}_{\tau 0}=\frac{\lambda u_{\tau}}{v_{0}}$
β	1.0	0.9	ν_{0}
$\Delta t u_{\tau} / R$	2.0×10^{-4}	2.0×10^{-5}	

[^2]連続の式 $\quad \frac{\partial u_{i}}{\partial x_{i}}=0$
運動方程式 $\frac{\partial u_{i}}{\partial t}+\frac{\partial\left(u_{i} u_{j}\right)}{\partial x_{j}}=-\frac{\partial p}{\partial x_{i}}+\frac{\beta}{\operatorname{Re}_{\tau 0}} \frac{\partial^{2} u_{i}}{\partial x_{j} \partial x_{j}}+\frac{(1-\beta)}{\operatorname{Re}_{\tau 0}} \frac{\partial \tau_{i j}}{\partial x_{j}}+\Delta p \delta_{i}$
構成方程式 $\quad \frac{\partial \tau_{i j}}{\partial t}+u_{k} \frac{\partial \tau_{i j}}{\partial x_{k}}=(1-\alpha)\left(\tau_{i k} \frac{\partial u_{j}}{\partial x_{k}}+\frac{\partial u_{i}}{\partial x_{k}} \tau_{k j}\right)-\alpha\left(\tau_{i k} \frac{\partial u_{k}}{\partial x_{j}}+\frac{\partial u_{k}}{\partial x_{i}} \tau_{k j}\right)$
Johnson－
Segalmanモデル

$$
-\frac{\operatorname{Re}_{\tau 0}}{\mathrm{We}_{\tau 0}} f(\tau) \tau_{i j}+\frac{\operatorname{Re}_{\tau 0}}{\mathrm{We}_{\tau 0}}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)
$$

$f(\tau)=\frac{L^{2}}{L^{2}-3}+\frac{\mathrm{We}_{\tau 0}}{\mathrm{Re}_{\tau 0}} \frac{1}{L^{2}}\left|(1-2 \alpha) \tau_{k k}\right|:$ dumbbellの無限伸長を抑制するために導入したdumping項（Peterlin function） \rightarrow FENE－Pモデル $(\alpha=0)$
$f(\tau)=1 \rightarrow$ Oldroyd－Bモデル $(\alpha=0)$

$$
\mathrm{We}_{\tau 0}=\frac{\lambda u_{\tau}^{2}}{v_{0}}
$$

Dependence of drag reduction rate on slip parameter

Mean velocity profiles in pipe flow

Mean shear stress profiles in pipe flow

Budget of the shear stress

$$
\begin{aligned}
& \frac{r}{2} \frac{\partial \bar{p}}{\partial \mathrm{z}}=-\overline{u_{z}^{\prime} u_{r}^{\prime}}+\frac{\beta}{\operatorname{Re}_{\tau 0}} \frac{\partial \bar{u}_{z}}{\partial r}+\frac{1-\beta}{\operatorname{Re}_{\tau 0}} \bar{\tau}_{z r} \\
& \text { Reynolds Viscous Polymer stress }
\end{aligned}
$$

非アファイン粘弾性流体における渦構造

抵抗削減機構（ $\alpha=0.0$ ）：Bulge out effect
Drag Reduction Mechanism at $\alpha=0.0$ ：Bulge out effect

Roles of normal stress difference on the vortex tube generation in pipe

$$
\left(\tau_{r r}-\tau_{\theta \theta}\right) \approx\left(\tau_{++}-\tau_{--}\right)
$$

Pressure gradient in the radial direction
$r \frac{d}{d r}\left(p-\tau_{z z}\right)=r \frac{d}{d r}\left(\tau_{r r}-\tau_{z z}\right)+\underline{\left(\tau_{r r}-\tau_{\theta \theta}\right)}+\cdots$
Weissenburg effect

$\left(\tau_{++}-\tau_{--}\right)$：predominantly negative

$$
\cdot \frac{d p}{d r}<0
$$

Pressure bulges out in tube core region \Rightarrow Reduction of lowering of pressure in the tube core．
\Rightarrow Reduction of growth of the tube．

$$
\text { Distribution of }\left(\tau_{++}-\tau_{--}\right) \text {on the tube }
$$

[^3]Similar to homogeneous isotropic turbulence

$$
\text { First: }\left(\tau_{11}-\tau_{22}\right) \approx\left(\tau_{--}-\tau_{++}\right)
$$

$$
\text { Second: }\left(\tau_{22}-\tau_{33}\right) \approx\left(\tau_{++}-\tau_{s 5}\right)
$$

Predominantly positive

Predominantly negative

Stretching and alignment of the polymer molecules along the streamlines \Rightarrow
\Rightarrow Extra tension exerted along the sheet $\Rightarrow \underline{\text { Snap back of the sheet to the original form }}$

Approximate solution of the JS model

Approximate solution of the JS model (up to $3^{\text {rd }}$-order)
Production term of the solvent kinetic energy

\[

\]

Derivative flatness
Large in sheet region

Assume the steady state (the solution up to $2^{\text {nd }}$-order)

$$
\begin{aligned}
\tau_{i j} \approx & -v(1-\beta) 2 S_{i j} \\
& +2 \lambda v(1-\beta)\left\{-(1-2 \alpha) 2 S_{i k} S_{k j}+\left(S_{i k} \Omega_{k j}+S_{j k} \Omega_{k i}\right)\right\}
\end{aligned}
$$

Analogous to the nonlinear model for the Reynolds stress tensor

Approximate solution with $\tau_{i j}=0$ at $t=0$ (Bird et al. 1987)

$$
\begin{aligned}
\tau_{i j}(t) & \approx-\frac{v(1-\beta)}{\lambda} \int_{0}^{t} e^{-\frac{t-s}{\lambda}} 2 S_{i j}(s) d s \\
& +2 \frac{\nu(1-\beta)}{\lambda}(1-\alpha) \int_{0}^{t} d r \int_{0}^{r} d s e^{-\frac{t-s}{\lambda}} 2\left(S_{i k}(s) \frac{\partial u_{j}}{\partial x_{k}}(r)+\frac{\partial u_{i}}{\partial x_{k}}(r) S_{k j}(s)\right) \\
& -2 \frac{v(1-\beta)}{\lambda} \alpha \int_{0}^{t} d r \int_{0}^{r} d s e^{-\frac{t-s}{\lambda}} 2\left(S_{i k}(s) \frac{\partial u_{k}}{\partial x_{j}}(r)+\frac{\partial u_{k}}{\partial x_{i}}(r) S_{k j}(s)\right)
\end{aligned}
$$

Assume the steady state (the solution up to 3rd-order)
$\tau_{i j} \approx-2 v(1-\beta) S_{i j}+\lambda v(1-\beta)\left\{-(1-2 \alpha) 4 S_{i k} S_{k j}+2\left(S_{i k} \Omega_{k j}+S_{j k} \Omega_{k i}\right)\right\}$
$+\lambda^{2} v(1-\beta)\left[-(1-2 \alpha)^{2} 8 S_{i k} S_{k l} S_{l j}+(1-2 \alpha)\left\{\left(S_{i k} S_{k l} \Omega_{l j}+S_{j k} S_{k l} \Omega_{i i}\right)-\left(\Omega_{i k} S_{k l} S_{l j}+\Omega_{j k} S_{k l} \Omega_{l i}\right)\right\}\right]$
$-2 \lambda^{2} v(1-\beta)\left\{\left(S_{i k} \Omega_{k k} \Omega_{l j}+S_{j k} \Omega_{k l} \Omega_{l i}\right)-\left(\Omega_{i k} S_{k l} \Omega_{l j}+\Omega_{j k} S_{k \mid} \Omega_{i i}\right)\right\}$

Analogous to the nonlinear model for the Reynolds stress tensor

Production term of the elastic energy

$$
P_{e}= \pm(1-2 \alpha)\left(-P_{k}\right)\left\{\begin{array}{l}
+: \alpha \leq 0.5 \\
-: \alpha>0.5
\end{array}\left(k_{p}= \pm \frac{1}{2} \tau_{i i}\right)\right.
$$

Production term of the solvent kinetic energy

$$
\begin{gathered}
\tau_{i j} S_{i j} \approx-v(1-\beta) 2 S_{i j}-4 \lambda v(1-\beta)(1-2 \alpha) S_{i k} S_{k j} S_{i j} \\
\alpha=0.0 \\
\tau_{i j} S_{i j} \approx-v(1-\beta) 2 S_{i j} S_{i j}-4 \lambda v(1-\beta) \frac{S_{i k} S_{k j} S_{i j}}{<0} \\
\text { Effective shear viscosity } \\
\quad \begin{array}{c}
\text { Shear thinning } \\
\alpha=1.0 \\
\tau_{i j} S_{i j} \approx-v(1-\beta) 2 S_{i j} S_{i j}+4 \lambda v(1-\beta) S_{i k} S_{k j} S_{i j} \\
\quad \text { Effective shear viscosity }
\end{array}
\end{gathered}
$$

Reduction of kinetic Energy and conversion to elastic energy

Limitations of $2^{\text {nd }}-$ order approximate JS model

$2^{\text {nd }}$－order steady solution of the JS model

$$
\tau_{i j} \approx 2 \lambda v(1-\beta)\left\{-(1-2 \alpha) 2 S_{i k} S_{k j}+\left(S_{i k} \Omega_{k j}+S_{j k} \Omega_{k i}\right)\right\}
$$

$3{ }^{\text {rdd－order steady solution（Bird et al．1987）}}$

$$
\begin{aligned}
& \tau_{i j} \approx 2 \lambda\left\{-(1-2 \alpha) 2 S_{i k} S_{k j}+\left(S_{i k} \Omega_{k j}+S_{j k} \Omega_{k k}\right)\right\} \\
& -2 \lambda^{2}\left\{4 S_{i k} S_{k l} S_{l j}+\left(S_{i k} \Omega_{k l} \Omega_{l j}+S_{j k} \Omega_{k l} \Omega_{l i}\right)-\left(\Omega_{i k} S_{k l} \Omega_{l j}+\Omega_{j k} S_{k l} \Omega_{l i}\right)\right\} \\
& -2 \lambda^{2}(2 \alpha-1)\left\{\left(S_{i k} \Omega_{k l} \mathrm{~S}_{l j}+S_{j k} \Omega_{k l} \mathrm{~S}_{l i}\right)+3\left(\mathrm{~S}_{i k} S_{k l} \Omega_{l j}+\mathrm{S}_{j k} S_{k l} \Omega_{l i}\right)\right\}
\end{aligned}
$$

3次定常近似解によるエネルギ一変換の見積もり

Energy Exchange（ $3^{\text {rd }}$－order Steady Solution）

$$
\begin{aligned}
& P_{k}^{(\tau)}=-\frac{1-\beta}{\operatorname{Re}_{\tau 0}} \tau_{i j}^{(3)} S_{i j}=-\frac{1-\beta}{\mathrm{Re}_{\tau 0}} 2 \breve{s}_{i j}^{\prime} S_{i j}-\frac{(1-\beta) \mathrm{We}_{\tau 0}}{\operatorname{Re}_{\tau 0}^{2}} 4(1-2 \alpha) S_{i k} S_{k j} S_{j i} \\
&-\frac{(1-\beta) \mathrm{We}_{\tau 0}^{2}}{\operatorname{Re}_{\tau 0}^{3}} 8(1-2 \alpha)^{2} S_{i k} S_{k l} S_{l j} S_{j i}-\frac{(1-\beta) \mathrm{We}_{\tau 0}^{2}}{\mathrm{Re}_{\tau 0}^{3}} 2 A_{i j} A_{j i}
\end{aligned}
$$

＞第3項

$\begin{aligned} S_{i k} S_{k l} S_{l j} S_{j i}: & \text { derivative skewness } \\ & \text { と比較して大きな正値 }\end{aligned}$

$>$ 第4項

渦層：$\left[A_{i j}\right]_{+} \approx \sqrt{A_{i j} A_{j i} / 2}$
（Horiuti et al．，2005）
$>$ 渦層上で $P_{k}^{(\tau)}$ の負値の増加，DNSと整合

弾性エネルギー生成項
上符号：$\alpha<0.5 \quad P_{e}^{(t)}= \pm(1-2 \alpha)\left(-P_{k}^{(\tau)}\right)$ ：渦層上での生成

Comparison of energy production terms (2 $2^{\text {nd }}-$ order model)

	$\alpha=0$ (Oldroyd-B)	$\alpha=0.5$	$\alpha=1$ (Oldroyd-A)
Solvent kinetic energy $u_{i} u_{i} / 2$	$P_{\mathrm{s}}=\tau_{i k} \mathrm{~S}_{i k}>0$	$\mathrm{P}_{\mathrm{s}}=\tau_{i k} \mathrm{~S}_{\text {ik }}=0$	$\begin{gathered} P_{\mathrm{s}}=\tau_{i k} \mathrm{~S}_{i k}<0 \\ \mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} / 2 \end{gathered}$
Elastic energy $-\tau_{\mathrm{i} 1} / 2$	$P_{\mathrm{e}}=-\tau_{i k} S_{i k}<0$	$\begin{aligned} P_{\mathrm{e}} & =-(1-2 \alpha) \tau_{i k} S_{i k} \\ & =0 \end{aligned}$	$\begin{aligned} P_{\mathrm{e}} & =\tau_{i k} \mathrm{~S}_{i k}<0 \\ & -\tau_{\mathrm{ij}} / 2 \end{aligned}$

Enhancement of turbulence
Close to Newtonian
Reduction of turbulence

Summary

- A stretched spiral vortex is identification using DNS data for homogeneous isotropic turbulence. Its genesis, growth and annihilation are elucidated .
- Existence of two symmetric modes and a third asymmetric of configurations is extracted. They are achieved through the interaction of several sheets.
- Mechanism of mode transition and persistence of each mode is shown.
- By tightening of the spiral turns, spiral sheets are stretched to extreme lengths. Intense energy cascade and dissipation occurs along the spiral sheets.
- Effect of viscoelasticity on the formation of spiral vortex is studied using the constitutive equation for the polymer stress. It is shown that viscoelastisity works to resist extensional motions of the turbulent flow.

Interaction of multiple tubular vortical structures

(Transverse: Holm \& Kerr 2002; Anti parallel: Goto 2008)

Reconnection of two orthogonally offset cylindrical vortices

$$
t=1.5
$$

$t=3.0$

$t=3.5$

$t=4.5$

$t=5.0$

$t=5.5$

$t=6.5$

Time evolution of helicity density and $P_{h}{ }^{s}$ term

$t=0$ Helicity density

Intense dissipation event via an interaction and reconnection of the two vortices

Candidate for non-affine polymers

1. DNA: exhibits marked drag reduction

t
2. Surfactant (with high concentration)

- A stretched spiral vortex is identification using DNS data for homogeneous isotropic turbulence. Its genesis, growth and annihilation are elucidated.
- Aside from the two symmetric modes of configurations studied in previous works, a third asymmetric mode is extracted, which is achieved through the interaction of several sheets.
- By tightening of the spiral turns, spiral sheets are stretched to extreme lengths. Intense dissipation occurs along the spiral sheets The local dissipation rate exhibits a strong intermittency.
- At a higher Reynolds number, the hierarchical cluster of spiral vortices is formed due to the instability cascade induced by the stretching of vortex sheets.
- Similarity in the fractal properties of the vortex sheet region and the dissipative region is shown.

Nonlinear model (Newtonian case)

$$
\tau_{i j} \approx \frac{\bar{\Delta}^{2}}{12}\left\{\left(\bar{S}_{i k} \bar{S}_{k j}-\bar{\Omega}_{i k} \bar{\Omega}_{k j}\right)-\left(\bar{S}_{i k} \bar{\Omega}_{k j}+\bar{S}_{j k} \bar{\Omega}_{k i}\right)\right\}
$$

$\underline{2}^{\text {nd }}$-order steady solution of the JS model (Viscoelastic case)

$$
\tau_{i j} \approx 2 \lambda v(1-\beta)\left\{-(1-2 \alpha) 2 S_{i k} S_{k j}+\left(S_{i k} \Omega_{k j}+S_{j k} \Omega_{k i}\right)\right\}
$$

Assessment of $2^{\text {nd }}$-order model in homogeneous isotropic turbulence
256^{3} grid points, $\beta=0.8, \lambda=0.36, \mathrm{We}=7.8, \mathrm{Re}_{\lambda}=80$

Classification of structures in turbulent flows

Tube-like structure similar to Burgers' vortex tube

Sheet-like structure similar to Burgers' vortex layer

Comparison of energy production terms (2 $2^{\text {nd }}$-order model)

	$\alpha=0$ (Oldroyd-B)	$\alpha=0.5$	$\alpha=1$ (Oldroyd-A)
Solvent kinetic energy $u_{i} u_{i} / 2$	$\begin{aligned} & P_{s}=\tau_{i k} S_{i k} \\ & -4(1-\beta) v \lambda S_{i k} S_{k j} S_{j i}>0 \end{aligned}$	$P_{\mathrm{s}}=\tau_{i k} \mathrm{~S}_{i k}=0$	$\begin{aligned} & \begin{array}{l} P_{\mathrm{s}}=\tau_{i k} S_{i k} \\ =4(1-\beta) v \lambda S_{i k} S_{k j} S_{j i}<0 \\ \quad u_{i} u_{i} / 2 \end{array} \end{aligned}$
Elastic energy $-\tau_{\mathrm{ij}} / 2$	$\begin{aligned} & P_{\mathrm{e}}=-\tau_{i k} S_{i k} \\ & 4\left(1-\beta^{\prime}\right) v \lambda S_{i k} S_{k j} S_{j i}<0 \end{aligned}$	$\begin{aligned} P_{\mathrm{e}} & =-(1-2 \alpha) \tau_{i k} S_{i k} \\ & =0 \end{aligned}$	$\begin{aligned} & \begin{array}{l} P_{\mathrm{e}}=\tau_{i k} S_{i k} \\ =4(1-\beta) v \lambda S_{i k} S_{k j} S_{j i}<0 \\ \quad-\tau_{\mathrm{ij}} / 2 \end{array} \end{aligned}$

Eigenvaluevalues for $A_{i j}$

- Characteristic equation

$$
\begin{array}{l|l}
x^{3}-\frac{1}{2}\left(A_{i j} A_{j i}\right) x-\frac{1}{3}\left(A_{i j} A_{j k} A_{k i}\right)=0 \quad \operatorname{tr}\left[A_{i j}\right]=0
\end{array}
$$

where

$$
\begin{aligned}
A_{i j} A_{j i} & =\frac{-6 S_{i k} \Omega_{k l} \Omega_{l j} S_{j i}+S_{i k} S_{k i} \Omega_{j l} \Omega_{l j}}{\omega_{z}^{2}}\left(\sigma_{+}-\sigma_{-}\right)^{2}+\frac{\omega_{+}^{2}}{2}\left(\sigma_{z}-\sigma_{-}\right)^{2}+\frac{\omega_{-}^{2}}{2}\left(\sigma_{z}-\sigma_{+}\right)^{2},
\end{aligned}
$$

$$
A_{i j} A_{j k} A_{k i}=\frac{3}{4}\left(\sigma_{+}-\sigma_{-}\right)\left(\sigma_{z}-\sigma_{-}\right)\left(\sigma_{z}-\sigma_{+}\right) \omega_{z} \omega_{+} \omega_{-}
$$

- DNS data shows that $A_{i j} A_{j i} \gg A_{i j} A_{j k} A_{k i}$, thus

$$
\left[A_{i j}\right]_{ \pm} \cong \pm \sqrt{A_{j i} A_{j i} / 2}, \quad\left[A_{i j}\right]_{z} \cong 0
$$

Invariants of fourth-order moments of velocity gradients

- $I_{1}=\left(S_{i k} S_{k i}\right)\left(S_{j l} S_{l j}\right)$
$I_{2}=-2 S_{i k} S_{k i} \Omega_{j l} \Omega_{l j}$
$I_{3}=4 S_{i k} \Omega_{k j} \Omega_{j l} S_{l i}-2 S_{i k} S_{k i} \Omega_{j l} \Omega_{l j}$
$I_{4}=8 \Omega_{i k} \Omega_{k l} \Omega_{l j} \Omega_{j i}$
(Siggia, 1981)
All fourth-order moments are linear combination of \boldsymbol{I}_{i} ($i=1,2,3,4$).
- $A_{i j} A_{j i}=I_{2}-\frac{3}{2} I_{3}$

Fractal properties of the vortex sheet and dissipation region (1)

A set of adjucent points satisfying the thresholding criterion

Moisy and Jimenez (2004)
$N \varepsilon$: Number of boxes containing some point of large dissipative structures
$N \varepsilon(L) \sim L^{-d} \quad d$: Fractal dimension

Fitting in the range, $6 \bar{\eta}<L<\mathrm{L}_{\text {max }}$

Fractal properties of the vortex sheet and dissipation region (2)

Mean value of $d \varepsilon$ averaged over structures as a function of threshold and fractal dimension for $\left[A_{i j}\right]_{+}$

Correlation between the vortex sheet and dissipation rate

Statistical property of the educed region: Fractality

Statistical property of the educed region: Fractality of $\left[A_{i j}\right]_{+}$

Fractal dimension of $\left[A_{i j}\right]_{+} \sim 1.7$, close to that of strain rate.
$\square\left[A_{i j}\right]_{+}$educes the region in which intense dissipation takes place.

W

$\mathrm{W}\left(512^{3}, \tau=3.0 _2 \mathrm{nd}, D=1.96\right) \mathrm{W}\left(512^{3}, \tau=8.0 _1 \mathrm{nd}, \mathrm{D}=1.55\right)$

S

$\mathrm{S}\left(512^{3}, \tau=2.8 _2 \mathrm{nd}, \mathrm{D}=1.89\right)$
$\mathrm{S}\left(5123, t=4.2 _2 \mathrm{nd}, \mathrm{D}=2.01\right)$

SWSW

マルチフラクタル解析

－Subbox average
－一般化次次䎹 $\left.p^{\left(\frac{\varepsilon^{(i)}}{L}\right.}\right)\left(\frac{r}{d}\right)^{d} \quad(d=3)$

$$
D_{q}=\lim _{r / L \rightarrow 0} \frac{\ln \sum_{i} p_{i}^{q}}{(q-1) \ln (r / L)}
$$

D_{q} は $\left(\Sigma_{i} p_{i}^{q}\right)^{(1 /(q-1))}$ と r / L のスケーリング関係 より求まる

マルチフラクタル特性
－q－Dq曲線
散逸構造と渦層構造は相似な分布
－等 α 集合のフラクタル次元 $f(\alpha(q))$
$p_{i} \sim\left(\frac{r}{L}\right)^{\alpha-1+d}$ ，
$\alpha(q)=\frac{d}{d q}\left\{(q-1)\left(D_{q}-d+1\right)\right\}$, $f(\alpha(q))=q \alpha(q)-(q-1) D_{q}$
$+q(d-1)$ ．
散逸構造と渦層構造は相似なマルチ フラクタル特性を有している。

ひずみ速度と渦度のジョイント・マルチフラク タル

－結合一般化次元 $D(q, p)$

$$
\left(\frac{r}{L}\right)^{d(q+p)} \sum_{i}\left(\frac{s_{r}^{(i)}}{s_{L}}\right)^{q}\left(\frac{w_{r}^{(i)}}{w_{L}}\right)^{p}=\left(\frac{r}{L}\right)^{-(q-1)(p-1) D(q, p)}, \quad \frac{r}{L} \rightarrow 0
$$

Subbox 内の平均ひずみ速度，平均渦度 ：$s_{r}{ }^{(i)}, w_{r}{ }^{(i)}$

$$
\begin{aligned}
& \tau(q, p)=-(q-1)(p-1) D(q, p) \\
& \alpha(q, p)=\frac{\partial}{\partial q} \tau(q, p)+1-d \\
& \beta(q, p)=\frac{\partial}{\partial p} \tau(q, p)+1-d, \\
& f(\alpha, \beta)=-\tau(q, p)+(\alpha-1+d) q+(\beta-1+d) p
\end{aligned}
$$

ひずみ速度と渦度の結合フラクタル次元

DNSの結果

[^0]: Generation of intense dissipation along the spiral arms

[^1]: K ：turbulent energy
 $\dot{\varepsilon}$ ：Time derivative of ε

[^2]: Peterlin damping function (FENE-P)

 $$
 f(\tau)=\frac{L^{2}}{L^{2}-3}+\frac{\mathrm{We}_{\tau 0}}{\mathrm{Re}_{\tau 0}} \frac{1}{L^{2}}\left|(1-2 \alpha) \tau_{k k}\right|
 $$

[^3]: Inhibition of the vortex generation

