Turbulent channel flow

DNS with conjugate heat transfer

Cédric Flageul Supervised by Pr E. Lamballais, Pr D. Laurence and Dr S. Benhamadouche

The University of Manchester

Table of contents

1 Introduction

- 2 Developments & Benchmark
 - Developments
 - Benchmarks

3 Heat transfer

- Iso-thermal
- Iso-flux
- Conjugate heat transfer

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Conclusion

Conjugate heat transfer Introduction

EDF R&D team : RPV lifespan

Conjugate heat transfer Introduction

PTS: a scientific challenge

A multidisciplinary effort:

- Thermal analysis
- Hydraulic analysis
- Neutron field calculations

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Structural analysis

Conjugate heat transfer Developments & Benchmark

Table of contents

1 Introduction

- 2 Developments & Benchmark
 - Developments
 - Benchmarks

3 Heat transfer

- Iso-thermal
- Iso-flux
- Conjugate heat transfer

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Conclusion

Wall-normal diffusive term semi-implicit

• Compact finite difference scheme

$$\alpha f_{i-1}^{"} + f_{i}^{"} + \alpha f_{i+1}^{"} = a \frac{f_{i-1} - 2f_{i} + f_{i+1}}{h^{2}} + b \frac{f_{i-2} - 2f_{i} + f_{i+2}}{4h^{2}} + c \frac{f_{i-3} - 2f_{i} + f_{i+3}}{9h^{2}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Wall-normal diffusive term semi-implicit

- Compact finite difference scheme
- Tri-diagonal $\mathbf{M} \Rightarrow \mathsf{LU}$ algorithm
- Septa-diagonal **B**

$$\alpha f_{i-1}^{"} + f_{i}^{"} + \alpha f_{i+1}^{"} = a \frac{f_{i-1} - 2f_{i} + f_{i+1}}{h^{2}} + b \frac{f_{i-2} - 2f_{i} + f_{i+2}}{4h^{2}} + c \frac{f_{i-3} - 2f_{i} + f_{i+3}}{9h^{2}}$$

 $\mathbf{M}\partial_{yy}f = \mathbf{B}f$

Wall-normal diffusive term semi-implicit

•
$$F_i$$
 : convection $+ \times \& z$ diffusion

$$\begin{aligned} \frac{u_i^* - u_i^n}{dt} &= \frac{\partial_{yy} u_i^* + \partial_{yy} u_i^n}{2Re} + \frac{3}{2} F_i(u^n) - \frac{1}{2} F_i(u^{n-1}) - \partial_i p^n \\ \left(\frac{2Re}{dt} - \partial_{yy}\right) u_i^* &= r.h.s.(p^n, u^n, u^{n-1}) \\ \mathbf{M} \left(\frac{2Re}{dt} - \partial_{yy}\right) u_i^* &= \mathbf{M}r.h.s. \text{ and } \mathbf{M} \partial_{yy} f = \mathbf{B} f \\ \left(\mathbf{M} \frac{2Re}{dt} - \mathbf{B}\right) u_i^* &= \mathbf{M}r.h.s. \end{aligned}$$

 \bullet Septa-diagonal left hand side \Rightarrow LU algorithm

Solid thermal diffusion

- Solid on top (y < 0) and bottom $(y > L_y)$
- Fluid & solid : same grid in x and z
- Solid : Chebyshev grid in y

Solid thermal diffusion

Time and space discretization

• Chebyshev grid for $y \in [a, b]$ with N + 1 nodes :

$$y_i = \frac{a+b}{2} + \frac{b-a}{2} \cos\left(\frac{2(N-i)+1}{2N+2}\pi\right), 0 \le i \le N$$

• Semi-implicit in y, explicit in x and z :

$$\begin{array}{lll}
\rho C_{p} \partial_{t} T_{s} &= \kappa \nabla_{y}^{2} T_{s} + \kappa \nabla_{xz}^{2} T_{s} \\
\frac{T_{s}^{n+1} - T_{s}^{n}}{dt} &= \frac{\kappa}{\rho c_{p}} \left(\gamma \nabla_{y}^{2} T_{s}^{n+1} + (1 - \gamma) \nabla_{y}^{2} T_{s}^{n} \right) \\
&+ \frac{\kappa}{\rho c_{p}} \left(\frac{3}{2} \nabla_{xz}^{2} T_{s}^{n} - \frac{1}{2} \nabla_{xz}^{2} T_{s}^{n-1} \right)
\end{array}$$

Solid thermal diffusion

• Lagrange interpolation on Chebyshev nodes :

$$l_i(y) = \prod_{j=0, j\neq i}^k \frac{y - y_j}{y_i - y_j}$$
$$T_s(y) = \sum_{i=0}^k T_s(y_i) l_i(y)$$

• Diffusive term in $y \Rightarrow 2^{nd}$ derivative

$$\partial_{yy} T_s(y_j) = \sum_{i=0}^k T_s(y_i) l_i''(y_j)$$
$$\partial_{yy} T_s = \mathbf{M} T_s$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Solid thermal diffusion

- Non-compact finite difference schemes for x and z diffusion
- 6th order, avoid global MPI-communication bottleneck

$$\begin{aligned} \frac{T_s^{n+1} - T_s^n}{dt} &= \frac{\kappa}{\rho c_p} \left(\gamma \nabla_y^2 T_s^{n+1} + (1 - \gamma) \nabla_y^2 T_s^n \right) \\ &+ \frac{\kappa}{\rho c_p} \left(\frac{3}{2} \nabla_{xz}^2 T_s^n - \frac{1}{2} \nabla_{xz}^2 T_s^{n-1} \right) \\ \left(\frac{\rho C_p}{\kappa dt} - \gamma \mathbf{M} \right) T_s^{n+1} &= r.h.s.(T_s^n, T_s^{n-1}) \end{aligned}$$

• Full $(N + 1) \times (N + 1)$ left hand side \Rightarrow LAPACK

Conjugate heat transfer

• Fluid & Solid domain (G ratio of thermal diffusivity)

$$\partial_t T = -\partial_i (Tu_i) + \frac{1}{RePr} \nabla^2 T \text{ in } \Omega$$
$$\partial_t T_s = \frac{1}{GRePr} \nabla^2 T_s \text{ in } \Omega_s$$

• Fluid-solid interface (α ratio of thermal conductivity)

$$T = T_s \text{ in } \partial\Omega \cap \partial\Omega_s$$

$$\alpha \partial_n T = \partial_n T_s \text{ in } \partial\Omega \cap \partial\Omega_s$$

- First T^{n+1} , Dirichlet : $T^{n+1} = \frac{T^n + T_s^n}{2}$ in $\partial \Omega \cap \partial \Omega_s$
- Then T_s^{n+1} , Neumann : $\partial_n T_s^{n+1} = \alpha \partial_n T^{n+1}$ in $\partial \Omega \cap \partial \Omega_s$

Conjugate heat transfer Developments & Benchmark Benchmarks

Analytical benchmark : Taylor-Green vortex

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conjugate heat transfer Developments & Benchmark Benchmarks

Analytical benchmark : Taylor-Green vortex

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Conjugate heat transfer Developments & Benchmark Benchmarks

Analytical benchmark : solid thermal diffusion

SAC

Conjugate heat transfer Developments & Benchmark Benchmarks

Analytical benchmark : solid thermal diffusion

◆ 臣 ▶ 臣 • • • • •

Conjugate heat transfer Developments & Benchmark Benchmarks

Academic benchmark : channel flow, $Re_{ au} = 150$

Numerical setup, Pr=0.71		
	Present	Kasagi et al. (1991)
Domain	[12.8; 2; 4.26]	$[5\pi; 2; 2\pi]$
Grid	[256; 193; 256]	[128; 97; 128]
${\it Re}_{ au}$	148.8	150
dy ⁺ [min, max]	[0.49; 4.8]	[0.08; 4.9]
$[dx^+, dz^+]$	[7.4; 2.5]	[18.4; 7.36]
$dt^+ \left(\frac{\nu}{u_{\tau}^2}\right)$	2.10^{-4}	?
Final time	160	2100

Conjugate heat transfer Developments & Benchmark Benchmarks

Academic benchmark : channel flow, $Re_{ au} = 150$

Conjugate heat transfer Developments & Benchmark Benchmarks

Academic benchmark : channel flow, $Re_{ au} = 150$

🛯 ୬ବ୍ଚ

Conjugate heat transfer Developments & Benchmark Benchmarks

Academic benchmark : channel flow, $Re_{ au} = 150$

Conjugate heat transfer Developments & Benchmark Benchmarks

Kasagi et al. (1991), Budget R_{xx}

🛯 ୬ବ୍ଚ

Table of contents

Introduction

- 2 Developments & Benchmark
 - Developments
 - Benchmarks

3 Heat transfer

- Iso-thermal
- Iso-flux
- Conjugate heat transfer

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Conclusion

lso-thermal

Channel flow, $Re_{\tau} = 150$, Kasagi et al. (1991)

🗄 ୬ବ୍ଚ

lso-thermal

Channel flow, $Re_{\tau} = 150$, Kasagi et al. (1991)

Iso-thermal

Channel flow, $Re_{\tau} = 150$, Kasagi et al. (1991)

Conjugate heat transfer

Heat transfer

lso-thermal

Kasagi et al. (1991), Budget ut

🛯 ୬ବ୍ଚ

heat transie

Iso-flux

Channel flow, $Re_{\tau} = 150$, Tiselj et al. (2001)

🛯 ୬ବ୍ଚ

lso-flux

Channel flow, $Re_{\tau} = 150$, Tiselj et al. (2001)

- nac

Conjugate heat transfer

Heat transfer

Iso-flux

Channel flow, $Re_{\tau} = 150$, Tiselj et al. (2001)

Setup

• Solid domain (128 Chebyshev nodes)

$$-\delta < y_{\textit{solid}} < 0 < y_{\textit{fluid}} < 2\delta < y_{\textit{solid}} < 3\delta$$

- Outer solid boundary condition : heat flux imposed
- Fluid & Solid diffusivity (G = 1)

$$\partial_t T_s = \frac{1}{GRePr} \nabla^2 T_s \text{ in } \Omega_s$$

• Fluid & Solid conductivity ($\alpha = 1$)

$$\alpha \partial_n T = \partial_n T_s \text{ in } \partial \Omega \cap \partial \Omega_s$$

• 3-way comparison : conjugate, iso-flux, iso-thermal

< T >

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\overline{\langle T \rangle}$

- nac

< ut >

< vt >

ヨー わへの

< *tt* >

≣ ∽ ९ ୯

Budget < vt >

- nac

Budget < tt >

- nac

Turbulent Prandtl number

Correlation uT

Correlation vT

三 のへの

Table of contents

Introduction

- 2 Developments & Benchmark
 - Developments
 - Benchmarks

3 Heat transfer

- Iso-thermal
- Iso-flux
- Conjugate heat transfer

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

4 Conclusion

Conjugate heat transfer Conclusion

Explore new configurations

Present

• Imposed temperature (Kasagi, 1991)

- Imposed heat flux (Tiselj, 2001)
- Conjugate heat transfer (new)

Ongoing

- Frequency analysis
- Pulsating channel
- Buoyancy

Thank you for your attention.

Remarks, questions and suggestions are welcome.

