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Phenomenology

Most of large scale engineering flows are turbulent

Atmosphere

Transportation (automobile, airplanes, ships,· · · )

Blood flow in heart

Aim of flow control→ modify the characteristics of a flow field

favourably

Suppression or enhancement of turbulence

Dissipation of kinetic energy by turbulent flow around objects

Increase of resistance to their motion→ Drag

Component of the force experienced by a body, parallel to the

direction of motion
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Examples

Enhancement of turbulence

Mixture in combustion: quality of the fuel-air mixture

determines power generation efficiency

Process industry: quality of mixtures affects chemical reaction

rates and purity of final products

Reduction of turbulence

Drag reduction techniques⇒ energy consumption issues

Half of the total drag experienced by an aircraft accounts for

skin-friction

Aircraft industry demonstration test: Coverage of fuselage

surface with riblet films⇒ց resistance by 2%

Fuel cost savings (Airbus A320)⇒ 5× 104 L/year⇔ saving

200 million $/year
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Techniques

Difficulty in control design⇒ turbulence→ multiscale

phenomenon⇔ coupling of system macroscopic size (L) &

Kolmogorov scale (η) by the chaotic process of vortex stretching

Two main groups⇒ active and passive

Categorisation relying on energy expenditure

Passive⇒ no energy added in the flow→ longitudinal

grooves or riblets on a surface

Active⇒ input of energy in the flow→ blowing and suction

jets in opposition control [1]

Based on the control loops→ active techniques
categorisation:

open-loop (predetermined)

closed-loop (interactive)

1H. Choi, P. Moin, J. Kim, Active turbulence control for drag reduction in

wall-bounded flows, J. Fluid Mech.,262, 75–110, 1994
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Summary

Control

techniques

Passive

Active

Open-loop

Closed-loop

Feedback

Feedforward

Control theory

Optimal control
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Skin-friction coefficient

Cf =
2τ∗w

ρ∗U2
b

(1)

Friction velocity
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∂ u∗
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�

�

�

wall
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Reduction of velocity gradient⇒ reduction in drag

Spanwise wall oscillations (active/open-loop)

Steady rotating discs [2] (active/open-loop)

Oscillating rotating discs (active/open-loop)

Hydrophobic surfaces
2Keefe, Method and apparatus for reducing the drag of flows over surfaces - US

Patent - 1998
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Functional analysis

Applying control to

Navier-Stokes - continuity equations⇒ (PDEs)

PDEs state-space⇒ infinite-dimensional→ ux = 0⇒ any f(y)

solution⇒ infinite dimensional solutions space 6= ODEs

state-space→ dy/dt= 0⇒ solutions in Rp

Right framework to deal with infinite-dimensional state space

solutions⇒ Functional analysis

Functional analysis framework: functions studied as part of

normed and complete + inner product⇒ Hilbert

Why Functional Analysis? ⇒ Banach-Lp spaces too broad for

analysing PDEs solution

Regularity properties not always verified in Lp spaces

Further assumptions⇒ higher order derivatives to ensure

regularity (and boundedness) of solutions

"Higher-order" spaces⇒ Sobolev→ energy spaces
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Lyapunov stability analysis

Motivation: design control laws to stabilise a specified equilibrium

for the NSE

NSE→ nonlinear⇒ nonlinear stability analysis

Depart from a Lyapunov function→ energy of the system

Choose the right norm

Example: function f(t,x) (perturbed variable) with x ∈ (0,1),

within L2(0,1)→ prove that:

‖f(t)‖L2(0,1) ≤ C1e−C2t‖f(0)‖L2(0,1) (3)

C1 ≥ 1 overshoot coefficient - C2 > 0 decay rate

Find conditions for stability→ not necessarily nonlinear
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Application

Previous work: Control law in 2D channel flow→ based on

wall-tangential actuation (Balogh et al. [3]):

u(x,y = ±1, t) = ∓k
∂ u

∂ y
(x,±1, t) (4)

Extension to 3D channel flow carried out

Link the mathematical formulation with a physical problem⇒

hydrophobic surfaces⇒ modification of no-slip condition:

u = Ls

∂ u

∂ y

�

�

�

�

wall
(5)

⇒ Mathematical parameter in [3]⇔ slip-length

Relevant scales for MEMS→ embedded sensors and actuators

in the walls to measure local shear
3A. Balogh, W. Liu, M. Krstic, Stability Enhancement by boundary control in 2D

channel flow - IEEE Transactions on Automatic Control, Vol.46, No.11 - 2001
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Application

Objective⇒ stabilize a parabolic profile

Boundary control laws⇒ decaying kinetic energy w.r.t time
⊗

Lyapunov-based approach using Lyapunov function:

E(w) = ‖w‖2
L2(Ω)

=

Lz
∫

0

+1
∫

−1

Lx
∫

0

(u2 + v2 +w2)dx dy dz (6)

⊗

translates as ‖w(t)‖L2(Ω) ≤ C1e−C2(t−t0)‖w(t0)‖L2(Ω)

Procedure: (a) take time derivative of Eq.(6) - (b) apply control -

(c) prove regularity of solutions (involving Sobolev spaces)
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Benchmark

Lx Ly Lz Rep ∆t time scheme

4π 2.0 4π/3 4200.0 2.5× 10−3 AB2

L+ = L×Reτ U+ = U×
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Reτ
T+ = T×

Re2

τ
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Benchmark

Database of [4] used for comparison at Reτ = 180

# processors 256 512 1024 2048

runtime (s) 10348 7258 6561 6921
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4R. Moser, J. Kim, N. Mansour, Direct Numerical Simulations of turbulent

channel flow up to Reτ = 590,Phys. of Fluids,1999
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Benchmark
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Benchmark
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Benchmark
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Spanwise wall oscillations: Overview

DNS of channel flow with this forcing [5]⇒ Drag reduction

Structure of forcing→ w=Wm sin
�

2π

T

�

Dependent on magnitude and period of forcing

Maximum DR of 40% for T+opt = 100

Experimentally [6] found DR ∼ 35%

5Jung et. al, Physics of Fluids, 4, pp 1605–1607 - 1992
6Laadhari et. al, Physics of Fluids, 6, pp 3218–3220 - 1994
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Lx Ly Lz nx ny nz Reτ W+
m

T+

4π 2.0 4π/3 256 129 128 200 27.0 125.0

DR[7] = 44.5% vs DRIncompact3d = 44.8%
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7M. Quadrio, P. Ricco, J. Fluid Mech., 521, pp 251–271 - 2004
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Vorticity map at the wall

1.095 22.29

4 8 12 16 20

4.596 8.147

5 6 7 8
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Steady discs rotation: overview

replacemen

Lx

Lz

x
x

y
z

zW

D

δ

Ly

c

Mean flow

Active method for DR⇒ injecting vorticity

Proposed as part of a patent by Keefe. Numerical study in [8]

Relevant parameters → (D,W), diameter and maximum tip velocity

of the disc

8P. Ricco, S. Hahn, J. Fluid Mech., 722, pp 267–290, 2013
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Steady discs rotation: implementation

disk_phys.dat

(text file)

from cpp program

scr.sh

→ disk_phys_x.dat (text file)

→ disk_phys_z.dat (text file)

rfile.f90

→ disk_phys_opacx.dat

(binary direct open-access)

→ disk_phys_opacz.dat

(binary direct open-access)

voir_visu.f90

check process with ParaView

→ tampon_opac_x.vtr

→ tampon_opac_z.vtr

→ tampon_opac_sqr.vtr

decomp2d_read_var

interface reads

disk_phys_opacx.dat and

disk_phys_opacz.dat

velocity components

distributed on 2D

Cartesian topology

set as boundary conditions

2.1e-10 0.38519

0.1 0.2 0.3
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Steady discs rotation: simulations

Lx × Ly × Lz = 6.79π× 2.0× 2.26π - Rep = 4200 - Ndx ×Ndz = 6× 2 - ∆t = 0.0025 - D+ = 640 - W+ = 9

KMM→ Cf .103 = 8.18

BASE CASE→ nx× ny× nz= 384× 129× 256

Cf ,0 .103 Cf ,0.103 Cf .103 Cf .103

Ricco-Hahn Incompact3d Ricco-Hahn Incompact3d

8.25 8.15 6.64 6.62

HIGH RESOLUTION IN x→ nx×ny×nz = 480× 129× 224

Cf ,0 .103 Cf ,0.103 Cf .103 Cf .103

Ricco-Hahn Incompact3d Ricco-Hahn Incompact3d

8.25 8.13 6.65 6.62

HIGH RESOLUTION IN z→ nx× ny× nz= 384× 129× 320

Cf ,0 .103 Cf ,0.103 Cf .103 Cf .103

Ricco-Hahn Incompact3d Ricco-Hahn Incompact3d

8.24 8.13 6.63 6.61

HIGH RESOLUTION IN x,y,z→ nx×ny×nz = 512× 257× 320

Cf ,0 .103 Cf ,0.103 Cf .103 Cf .103

Ricco-Hahn Incompact3d Ricco-Hahn Incompact3d

N/A 8.13 N/A 6.63
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Steady discs rotation: flow visualisations

u= um + ud + ut⇒ Disc flow: ud = (ud,vd,wd) = u− um

Mean flow: um(y) = 〈u〉 with f ¬ 1

tf−ti

tf
∫

ti

fdt and 〈f〉 ¬ 1

LxLz

Lz
∫

0

Lx
∫

0

fdx dz

Compute 3D
p

u2
d
+w2

d
in diagnostic tool + ParaView

2.1e-10 0.38519

0.1 0.2 0.3
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Steady discs rotation: flow visualisations

Isosurface representation
p

u2
d
+w2

d
= 0.09
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Steady discs rotation: flow visualisations
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[tih/UP; tf h/UP] = [750;2250]

Large regions of negative wall-shear stress
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Oscillating discs

Rotating discs subject to an oscillatory motion

Disc tip velocity→ W =Wm cos
�

2πt

T

�

Case giving optimal drag reduction

xlx yly zlz nx ny nz ∆t Rep

6.79π 2.0 3.39π 384 129 384 2.5× 10−3 4200.0

Ndx Ndz D+ W+ T+

4 2 960 12.0 103

Ricco (Conf.) Incompact3d Ricco (Conf.) Incompact3d

Cf ,0.103 Cf ,0.103 Cf .103 Cf .103

8.18 8.13 6.54 6.52
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Oscillating discs

Isosurface representation
p

u2
d
+w2

d
= 0.09
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Hydrophobic surface: finite slip length

Studied by Min-Kim (2004) with BC forcing term: u = Ls
∂ u

∂ y

�

�

wall

u, w and (u,w) can be forced but u gives optimal DR

un+1
�

�

wall = un
�

�

wall + Ls
∂ un

∂ y

�

�

wall

Problem: Enforce BC at each time step⇒ Generation of a thin

boundary layer [10]⇒ Numerical instability

Solution in [10]→ (1) keep the same BC for several time steps - (2)

continuous update

Solution adopted:

compute ∂ u

∂ y
at 1st time step - pass it as BC ∀t (Ls = 10−3 (s),

Ls = 2× 10−3 (s) and Ls = 10−2 (s))

compute ∂ u

∂ y
at each time step - pass it as BC (Ls = 10−3 (s),

Ls = 2× 10−3 (s)and Ls = 10−2 (u))

10C. Lee, P. Moin, J. Kim, Control of the viscous sulayer for drag redcution, J.

Fluid Mech.,14, 2523–2529, 2002
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Hydrophobic surface: preliminary results
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Hydrophobic surface: statistics
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Hydrophobic surface: Summary

Ls 0.001 0.002 0.01

test_1 updated updated crashed

test_2 constant constant constant

Ls
∂ u

∂ y
DR DR (Kim-Min 2004)

0.001 updated 2.1% 2%

0.001 constant 2.4% 2%

0.002 updated 4.9% 5%

0.002 constant 4.9% 5%

0.01 updated NA 18%

0.01 constant 17% 18%
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Summary

Incompact3d efficiently dealing with various drag reduction

methods

High scalability allows for future control studies with larger

Reynolds number
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