Application of wall forcing methods in a turbulent channel flow using Incompact3d

S. Khosh Aghdam

Department of Mechanical Engineering - University of Sheffield

- 2 Drag reduction
- 3 Maths framework

Flow control	Drag reduction	Maths framework	Simulations
Phenomenology			

Most of large scale engineering flows are turbulent

- Atmosphere
- Transportation (automobile, airplanes, ships,...)
- Blood flow in heart

Aim of flow control \rightarrow modify the characteristics of a flow field favourably

- Suppression or enhancement of turbulence
- Dissipation of kinetic energy by turbulent flow around objects
- Increase of resistance to their motion \rightarrow Drag
- Component of the force experienced by a body, parallel to the direction of motion

Enhancement of turbulence

- Mixture in combustion: quality of the fuel-air mixture determines power generation efficiency
- Process industry: quality of mixtures affects chemical reaction rates and purity of final products

Reduction of turbulence

- Drag reduction techniques \Rightarrow energy consumption issues
- Half of the total drag experienced by an aircraft accounts for skin-friction
- Aircraft industry demonstration test: Coverage of fuselage surface with riblet films ⇒ ∖, resistance by 2%
- Fuel cost savings (Airbus A320) ⇒ 5 × 10⁴ L/year ⇔ saving 200 million \$/year

Techniques

Difficulty in control design \Rightarrow turbulence \rightarrow multiscale phenomenon \Leftrightarrow coupling of system macroscopic size (*L*) & Kolmogorov scale (η) by the chaotic process of vortex stretching

- Two main groups \Rightarrow active and passive
- Categorisation relying on energy expenditure
- Passive ⇒ no energy added in the flow → longitudinal grooves or riblets on a surface
- Active ⇒ input of energy in the flow → blowing and suction jets in opposition control [1]
- Based on the control loops → active techniques categorisation:
 - open-loop (predetermined)
 - closed-loop (interactive)

¹H. Choi, P. Moin, J. Kim, Active turbulence control for drag reduction in wall-bounded flows, J. Fluid Mech.,262, 75–110, 1994

• Skin-friction coefficient

$$C_f = \frac{2\tau_w^*}{\rho^* U_b^2} \tag{1}$$

Friction velocity

$$u_{\tau}^{*} = \sqrt{\frac{\tau_{w}^{*}}{\rho^{*}}} = \sqrt{\nu^{*} \frac{\partial u^{*}}{\partial y^{*}}} \Big|_{\text{wall}}$$
(2)

- Reduction of velocity gradient \Rightarrow reduction in drag
- Spanwise wall oscillations (active/open-loop)
- Steady rotating discs [2] (active/open-loop)
- Oscillating rotating discs (active/open-loop)
- Hydrophobic surfaces

 $^2 \rm Keefe,$ Method and apparatus for reducing the drag of flows over surfaces - US Patent - 1998

Functional analysis

• Applying control to

Navier-Stokes - continuity equations \Rightarrow (PDEs)

- PDEs state-space \Rightarrow infinite-dimensional $\rightarrow u_x = 0 \Rightarrow \text{any } f(y)$ solution \Rightarrow infinite dimensional solutions space \neq ODEs state-space $\rightarrow dy/dt = 0 \Rightarrow$ solutions in \mathbb{R}^p
- Right framework to deal with infinite-dimensional state space solutions ⇒ Functional analysis
- Functional analysis framework: functions studied as part of normed and complete + inner product ⇒ Hilbert
- Why Functional Analysis? ⇒ Banach-*L*^{*p*} spaces too broad for analysing PDEs solution
- **Regularity** properties not always verified in *L^p* spaces
- Further assumptions ⇒ higher order derivatives to ensure regularity (and boundedness) of solutions
- "Higher-order" spaces \Rightarrow Sobolev \rightarrow energy spaces

Motivation: design control laws to stabilise a specified equilibrium for the NSE

- NSE \rightarrow nonlinear \Rightarrow nonlinear stability analysis
- Depart from a Lyapunov function \rightarrow energy of the system
- Choose the right norm
- **Example**: function f(t,x) (perturbed variable) with $x \in (0,1)$, within $L^2(0,1) \rightarrow$ prove that:

$$\|f(t)\|_{L^2(0,1)} \le C_1 e^{-C_2 t} \|f(0)\|_{L^2(0,1)}$$
(3)

 $C_1 \ge 1$ overshoot coefficient - $C_2 > 0$ decay rate

• Find conditions for stability \rightarrow not necessarily nonlinear

Application

• **Previous work**: Control law in 2D channel flow → based on wall-tangential actuation (Balogh *et al.* [3]):

$$u(x, y = \pm 1, t) = \mp k \frac{\partial u}{\partial y}(x, \pm 1, t)$$
(4)

- Extension to 3D channel flow carried out
- Link the mathematical formulation with a physical problem ⇒ hydrophobic surfaces ⇒ modification of no-slip condition:

$$u = L_s \frac{\partial u}{\partial y} \bigg|_{\text{wall}}$$
(5)

- \Rightarrow Mathematical parameter in [3] \Leftrightarrow slip-length
- Relevant scales for MEMS → embedded sensors and actuators in the walls to measure local shear

³A. Balogh, W. Liu, M. Krstic, Stability Enhancement by boundary control in 2D channel flow - IEEE Transactions on Automatic Control, Vol.46, No.11 - 2001

Flow control	Drag reduction	Maths framework	Simulations
Application			

- **Objective** \Rightarrow stabilize a parabolic profile
- Boundary control laws \Rightarrow decaying kinetic energy w.r.t time \bigotimes
- Lyapunov-based approach using Lyapunov function:

$$E(\mathbf{w}) = \|\mathbf{w}\|_{L^{2}(\Omega)}^{2} = \int_{0}^{L_{z}} \int_{-1}^{+1} \int_{0}^{L_{x}} (u^{2} + v^{2} + w^{2}) dx dy dz$$
(6)

- \bigotimes translates as $\|\mathbf{w}(t)\|_{L^2(\Omega)} \leq C_1 e^{-C_2(t-t_0)} \|\mathbf{w}(t_0)\|_{L^2(\Omega)}$
- Procedure: (a) take time derivative of Eq.(6) (b) apply control (c) prove regularity of solutions (involving Sobolev spaces)

L _x	Ly	L_z	Re _p	Δt	time scheme
4π	2.0	$4\pi/3$	4200.0	$2.5 imes 10^{-3}$	AB2

$$L^{+} = L \times \operatorname{Re}_{\tau} \quad U^{+} = U \times \frac{\operatorname{Re}_{p}}{\operatorname{Re}_{\tau}} \quad T^{+} = T \times \frac{\operatorname{Re}_{\tau}^{2}}{\operatorname{Re}_{p}}$$

Parabolic profile, constant mass flow rate, stretched wall-normal

Simulations

Benchmark

Database of [4] used for comparison at $\text{Re}_{\tau} = 180$

 $^4 \rm R.$ Moser, J. Kim, N. Mansour, Direct Numerical Simulations of turbulent channel flow up to $\rm Re_\tau=590, Phys.$ of Fluids,1999

$\left\langle \frac{\partial u}{\partial y} \right\rangle_{x,z}$ walls	Re_{τ}	$C_{f,0}$
7.64	179.1	8.18×10^{-3}

S. Khosh Aghdam Application of wall forcing methods in a turbulent channel flow to

Drag reduction

Maths framework

Simulations

Spanwise wall oscillations: Overview

- DNS of channel flow with this forcing $[5] \Rightarrow$ Drag reduction
- Structure of forcing $\rightarrow w = W_m \sin\left(\frac{2\pi}{T}\right)$
- Dependent on magnitude and period of forcing
- Maximum DR of 40% for $T_{opt}^+ = 100$
- Experimentally [6] found DR $\sim 35\%$

⁵Jung *et. al*, Physics of Fluids, 4, pp 1605–1607 - 1992 ⁶Laadhari *et. al*, Physics of Fluids, 6, pp 3218–3220 - 1994

S. Khosh Aghdam

Application of wall forcing methods in a turbulent channel flow u

⁷M. Quadrio, P. Ricco, J. Fluid Mech., 521, pp 251–271 - 2004

S. Khosh Aghdam

Application of wall forcing methods in a turbulent channel flow u

Flow control		Drag reduction	Maths	framework	Simulations
Vorticity map at	the wall				
		1.	4 8 12 16 20 095 22.29		
					2 3.0 4.0
					.0 1.0 2
	20	15	10	5	0
		5 4.59	6 7 8 96 8.147		
	1991	1 1 1 1 2	17-11		4.0

Steady discs rotation: overview

- Active method for $DR \Rightarrow$ injecting vorticity
- Proposed as part of a patent by Keefe. Numerical study in [8]
- Relevant parameters \rightarrow (*D*, *W*), diameter and maximum tip velocity of the disc

⁸P. Ricco, S. Hahn, J. Fluid Mech., 722, pp 267–290, 2013

Steady discs rotation: implementation

Steady discs rotation: simulations

 $L_x \times L_y \times L_z = 6.79\pi \times 2.0 \times 2.26\pi - Re_p = 4200 - Nd_x \times Nd_z = 6 \times 2 - \Delta t = 0.0025 - D^+ = 640 - W^+ = 9$

 $\mathbf{KMM} \rightarrow C_f.10^3 = 8.18$

BASE CASE \rightarrow nx \times ny \times nz = 384 \times 129 \times 256

$C_{f,0}.10^3$	$C_{f,0}.10^3$	$C_{f}.10^{3}$	$C_{f}.10^{3}$
Ricco-Hahn	Incompact3d	Ricco-Hahn	Incompact3d
8.25	8.15	6.64	6.62

HIGH RESOLUTION IN $x \rightarrow nx \times ny \times nz = 480 \times 129 \times 224$

$C_{f,0}.10^3$	$C_{f,0}.10^3$	$C_{f}.10^{3}$	$C_{f}.10^{3}$
Ricco-Hahn	Incompact3d	Ricco-Hahn	Incompact3d
8.25	8.13	6.65	6.62

HIGH RESOLUTION IN $z \rightarrow nx \times ny \times nz = 384 \times 129 \times 320$

$C_{f,0}.10^3$	$C_{f,0}.10^3$	$C_{f}.10^{3}$	$C_{f}.10^{3}$
Ricco-Hahn	Incompact3d	Ricco-Hahn	Incompact3d
8.24	8.13	6.63	6.61

HIGH RESOLUTION IN $x, y, z \rightarrow nx \times ny \times nz = 512 \times 257 \times 320$

$C_{f,0}.10^3$	$C_{f,0}.10^3$	$C_{f}.10^{3}$	$C_{f}.10^{3}$
Ricco-Hahn	Incompact3d	Ricco-Hahn	Incompact3d
N/A	8.13	N/A	6.63

S. Khosh Aghdam Application of wall forcing methods in a turbulent channel flow of

Steady discs rotation: flow visualisations

• $\mathbf{u} = \mathbf{u}_{\mathrm{m}} + \mathbf{u}_{\mathrm{d}} + \mathbf{u}_{\mathrm{t}} \Rightarrow \text{Disc flow: } \mathbf{u}_{\mathrm{d}} = (u_{\mathrm{d}}, v_{\mathrm{d}}, w_{\mathrm{d}}) = \overline{\mathbf{u}} - \mathbf{u}_{\mathrm{m}}$

• Mean flow:
$$\mathbf{u}_{\mathbf{m}}(y) = \langle \overline{\mathbf{u}} \rangle$$
 with $\overline{\mathbf{f}} \triangleq \frac{1}{t_{j} - t_{i}} \int_{t_{i}}^{t_{j}} \mathbf{f} dt$ and $\langle \mathbf{f} \rangle \triangleq \frac{1}{L_{x} L_{x}} \int_{0}^{L_{x}} \int_{0}^{L_{x}} \mathbf{f} dx dz$

• Compute 3D $\sqrt{u_d^2 + w_d^2}$ in diagnostic tool + ParaView

Steady discs rotation: flow visualisations

Isosurface representation
$$\sqrt{u_d^2 + w_d^2} = 0.09$$

S. Khosh Aghdam Application of wall forcing methods in a turbulent channel flow a

- 11		1	
- 14 1	COM/	control	
		control	

Steady discs rotation: flow visualisations

- Time average of the streamwise wall friction $\frac{\partial u}{\partial y}\Big|_{y=0}$ in time window $[t_i h/U_p; t_f h/U_p] = [750; 2250]$
- Large regions of negative wall-shear stress

Flow control	Drag reduction	Maths framework	Simulations
Oscillating discs			

• Rotating discs subject to an oscillatory motion

• Disc tip velocity
$$\rightarrow W = W_m \cos\left(\frac{2\pi t}{T}\right)$$

• Case giving optimal drag reduction

xlx	yly	zlz	nx	ny	nz	Δt	Re _p
6.79π	2.0	3.39π	384	129	384	2.5×10^{-3}	4200.0

Nd_x	Nd _z	D^+	W^+	T^+
4	2	960	12.0	10^{3}

Ricco (Conf.)	Incompact3d	Ricco (Conf.)	Incompact3d
$C_{f,0}.10^3$	$C_{f,0}.10^3$	$C_{f}.10^{3}$	$C_{f}.10^{3}$
8.18	8.13	6.54	6.52

Flow control	Drag reduction	Maths framework	Simulations
Oscillating discs			
			î
			and the second second
			Transfer
	0		//
	A State Stat		
		× ·	

Isosurface representation
$$\sqrt{u_d^2 + w_d^2} = 0.09$$

Drag reduction

Maths framework

Simulations

Hydrophobic surface: finite slip length

- Studied by Min-Kim (2004) with BC forcing term: $u = L_s \frac{\partial u}{\partial y} |_{\text{wall}}$
- *u*, *w* and (*u*, *w*) can be forced but *u* gives optimal DR

•
$$u^{n+1}|_{\text{wall}} = u^n|_{\text{wall}} + L_s \frac{\partial u^n}{\partial y}|_{\text{wall}}$$

- Problem: Enforce BC at each time step ⇒ Generation of a thin boundary layer [10] ⇒ Numerical instability
- Solution in [10] → (1) keep the same BC for several time steps (2) continuous update
- Solution adopted:
 - compute ∂u/∂y at 1st time step pass it as BC ∀t (L_s = 10⁻³ (s), L_s = 2 × 10⁻³ (s) and L_s = 10⁻² (s))
 compute ∂u/∂y at each time step pass it as BC (L_s = 10⁻³ (s), L_s = 2 × 10⁻³ (s) and L_s = 10⁻² (u))

¹⁰C. Lee, P. Moin, J. Kim, Control of the viscous sulayer for drag reduction, J. Fluid Mech., 14, 2523–2529, 2002

Hydrophobic surface: preliminary results

 $\begin{array}{l} L_{s} = 0.001 \, \cdot \, \text{update} \, 1^{\text{st}} \, \text{step} & \\ L_{s} = 0.002 \, \cdot \, \text{update} \, 1^{\text{st}} \, \text{step} & \\ L_{s} = 0.001 \, \cdot \, \text{update} \, 1^{\text{st}} \, \text{step} & \\ L_{s} = 0.001 \, \cdot \, \text{update} \, \text{for all t} & \\ L_{c} = 0.002 \, \cdot \, \text{update for all t} & \\ \end{array}$

Hydrophobic surface: statistics

Hydrophobic surface: Summary

L _s	0.001	0.002	0.01
test_1	updated	updated	crashed
test_2	constant	constant	constant

L _s	<u>ди</u> ду	DR	DR (Kim-Min 2004)
0.001	updated	2.1%	2%
0.001	constant	2.4%	2%
0.002	updated	4.9%	5%
0.002	constant	4.9%	5%
0.01	updated	NA	18%
0.01	constant	17%	18%

Flow control	Drag reduction	Maths framework	Simulations
Summary			

- Incompact3d efficiently dealing with various drag reduction methods
- High scalability allows for future control studies with larger Reynolds number