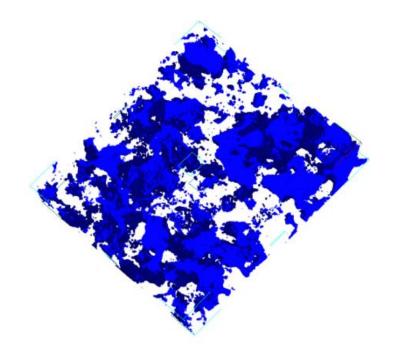
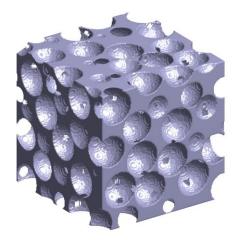
01 September 2017

Pore-scale characterisation of granular materials

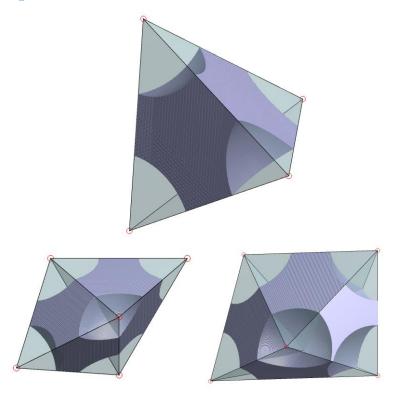

Insights into fluid flow, water retention and deformation patterns

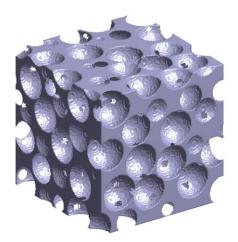

Adnan Sufian

Pore-scale Characterisation in Granular Materials

01 September 2017

Complexity of the pore space in real & idealised geomaterials

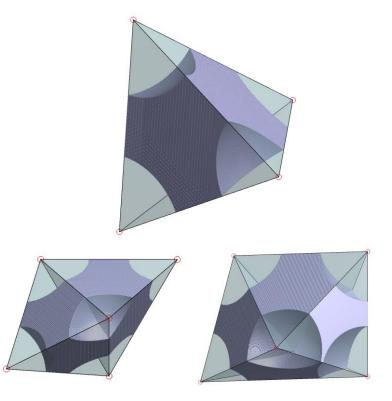

X-ray CT imaging of pore space in Gosford sandstone


Render of the pore space in a packing of spheres

Pore-scale Characterisation in Granular Materials

01 September 2017

Tessellating/discretising the continuous pore space



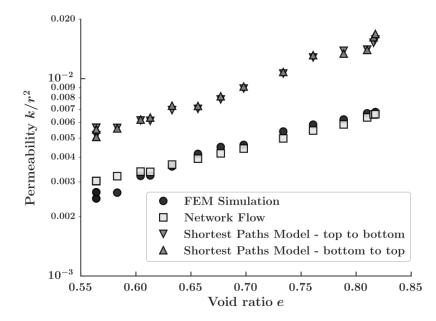
Pore-scale Characterisation in Granular Materials

01 September 2017

Imperial College London

Characterisation at the pore-scale

- Properties of individual pores at the pore-scale is more easily defined than considering the continuous pore space as a whole:
 - Volume
 - Area
 - Shape
 - Orientation
 - Connectivity


Pore-scale Characterisation in Granular Materials

Imperial College London

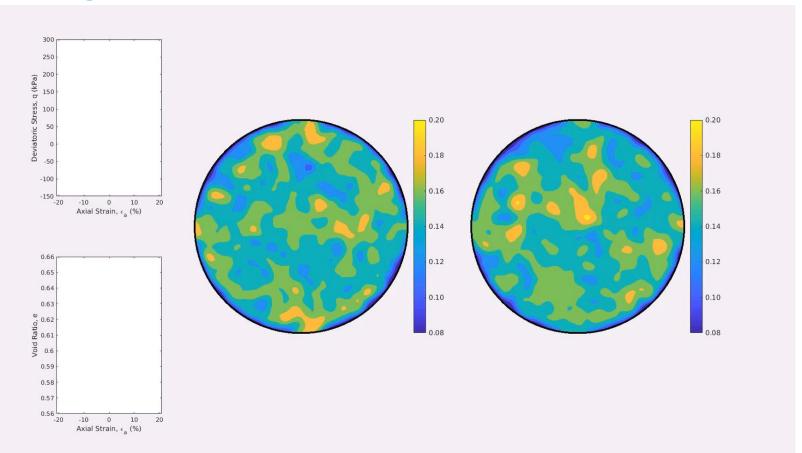
01 September 2017

Network description at the pore-scale to estimate permeability

- Network model of pore space Individual pores are connected to adjacent pores via their shared faces (or constrictions)
- Define a local conductance across constriction (based on the pore volumes and throat areas)
- Obtain an estimate of permeability by solving $Q = C \cdot \Delta P$
 - Refined models attempt to approximate preferential flow paths using concept of *shortest paths*

(Work conducted in collaboration with Joost van der Linden, Guillermo Narsilio and Antoinette Tordesillas at the University of Melbourne)

01 September 2017


Exploring deformation patterns using pore orientation

- Induces anisotropy in contacts and particles.
- Induced anisotropy in pores when looking at elementary pore units.
 - Smaller pores align perpendicular to the stress direction (direction of expansion)
 - Large pores align parallel to the stress direction (direction of compression)

Pore-scale Characterisation in Granular Materials

01 September 2017

Evolving stereonet of pore orientation

01 September 2017

Looking at internal erosion using pore-scale methods

- Network model to simulate migration of fines through a coarse matrix:
 - Fines enter and exit through constrictions/faces and are stored in the pore bodies
 - Stokes flow approach can dictate where fines travel
 - Can explore the influence of anisotropy by assigning pore orientation (relative to flow)
 - Percolation/clogging problem to look at critical fines content

- Limitations to using pore scale methods:
 - Assessment is off a purely geometric nature
 - Limited reference to the hydraulic effects (e.g. seepage velocity)
 - Use coupled CFD-DEM analysis to probe hydromechanical origins of instability

Pore-scale Characterisation in Granular Materials

01 September 2017

Thank you!

Collaborators:

- Adrian Russell (University of New South Wales)
- Andrew Whittle (Massachusetts Institute of Technology)
- Mohammad Saadatfar (Australian National University)
- Joost van den Linden, Guillermo Narsilio & Antoinette Tordesillas (University of Melbourne)