UPL and HYD in EC7

Brian Simpson Imperial College, 31 August 2017

UPL and HYD

- UPL
 - Uplift
 - Buoyancy problems
 - Generally static water
- HYD
 - Hydraulic heave
 - Disturbance of the soil caused by upward seepage of water
- Internal erosion

Fundamental limit state requirement

$$E_{d} \leq R_{d}$$

$$E\{F_{d} ; X_{d}; a_{d}\} = E_{d} \leq R_{d} = R\{F_{d} ; X_{d}; a_{d}\}$$

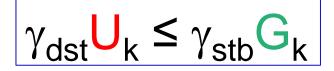
$$E\{\gamma_{F} F_{rep}; X_{k}/\gamma_{M}; a_{d}\} = E_{d} \leq R_{d} = R\{\gamma_{F} F_{rep}; X_{k}/\gamma_{M}; a_{d}\}$$
or $E\{\gamma_{F} F_{rep}; X_{k}/\gamma_{M}; a_{d}\} = E_{d} \leq R_{d} = R_{k}/\gamma_{R} = R_{n}\phi_{R} \text{ (LRFD)}$
or
$$\gamma_{E} E_{k} = E_{d} \leq R_{d} = R_{k}/\gamma_{R}$$
so in total
$$\gamma_{E} E\{\gamma_{F} F_{rep}; X_{k}/\gamma_{M}; a_{d}\} = E_{d} \leq R_{d} = R\{\gamma_{F} F_{rep}; X_{k}/\gamma_{M}; a_{d}\}/\gamma_{R}$$

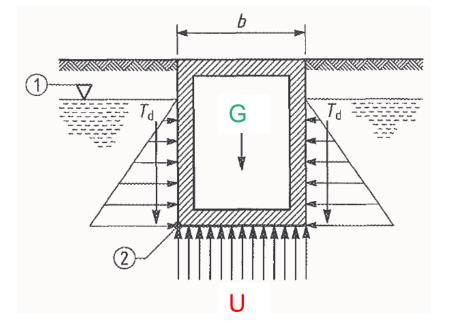
$$E = \text{action effects} \qquad d = \text{design (= factored)}$$

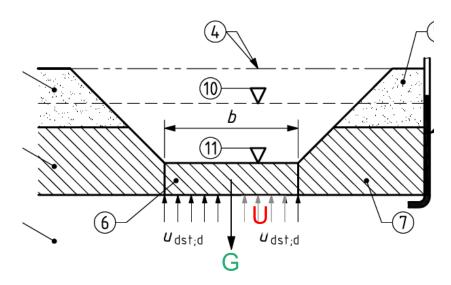
$$F = \text{actions (loads)} \qquad k = \text{characteristic (= unfactored)}$$

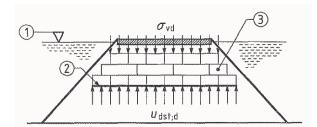
R = resistance (=capacity)

X = material properties

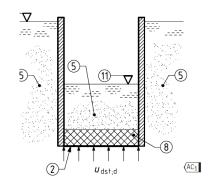

a = dimensions/geometry

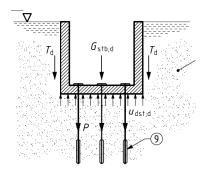

– umacioncu


rep = representative

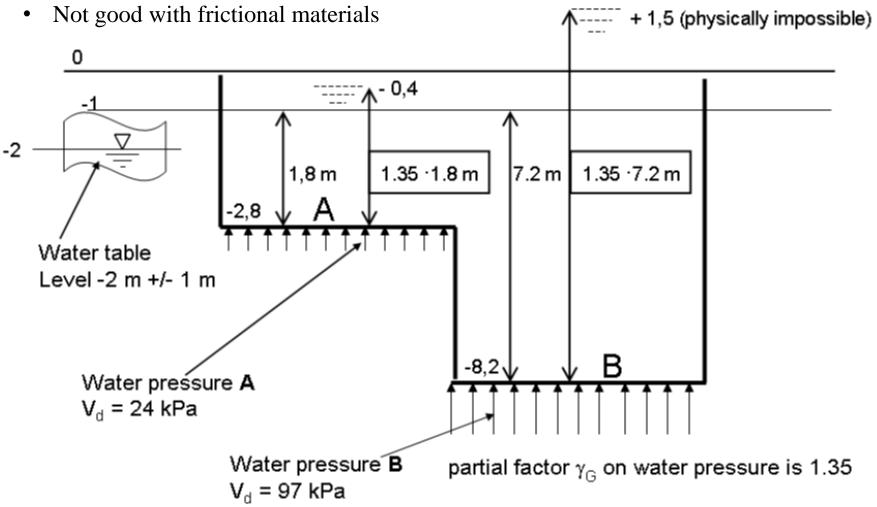


Existing EC7 – Uplift (UPL)

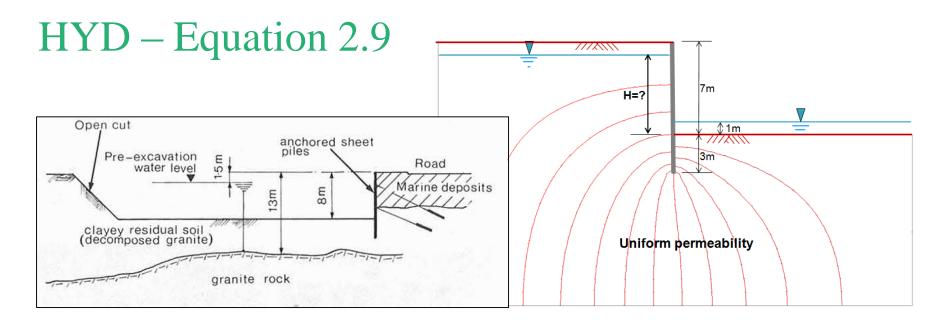




b) Uplift of a lightweight embankment during flood



e) Structure anchored to resist uplift



Problems with factoring water pressure

• Leads to impossible situations

Simpson, B, Vogt, N & van Seters AJ (2011) Geotechnical safety in relation to water pressures. Proc 3rd Int Symp on Geotechnical Safety and Risk, Munich.

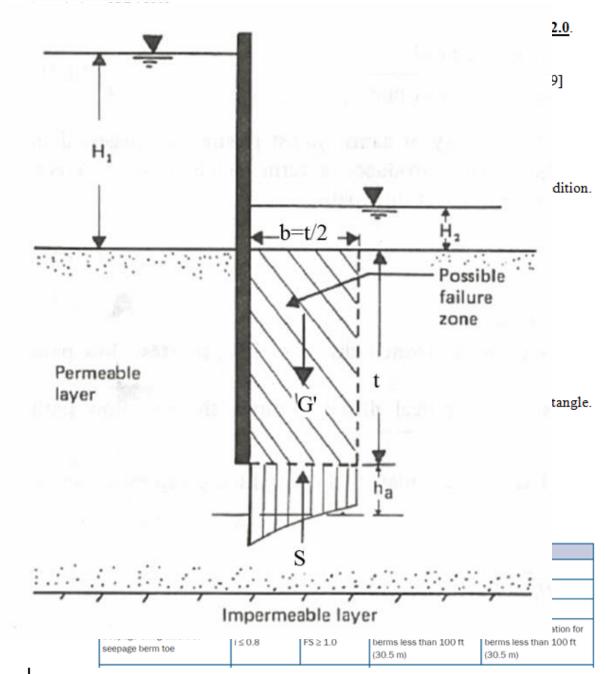
 $u_{dst;d} \leq \sigma_{stb;d}$ (2.9a) - total stress (at the bottom of the column) $S_{dst;d} \leq G'_{stb;d}$ (2.9b)" - effective weight (within the column)

$$\gamma_{G;dst} u_{dst;k} \leq \gamma_{G;stb} \sigma_{stb;k}$$
 (2.9a)

$$\gamma_{G;dst} S_{dst;k} \leq \gamma_{G;stb} G'_{stb;k} \qquad (2.9b)$$

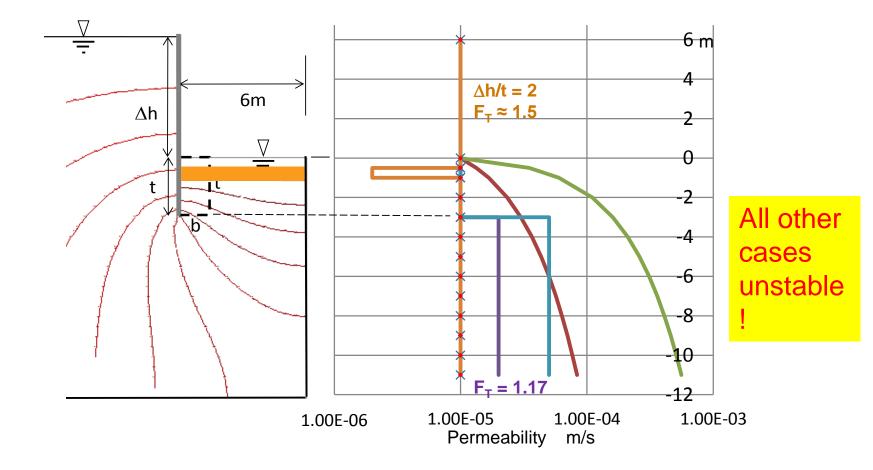
Apply $\gamma_{G;dst} = 1.35$ to:	Apply $\gamma_{G;stb} = 0.9$ to:	Н
Pore water pressure <i>u</i> _{dst;k}	Total stress $\sigma_{stb;k}$	2.78
Seepage force <i>S</i> _{dst;k}	Buoyant weight <i>G</i> _{stb;k}	6.84

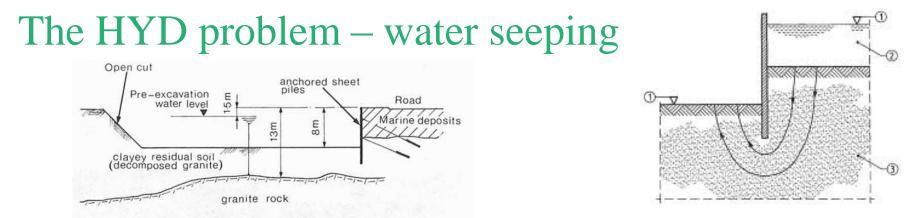
Existing EC7 - Internal erosion


(6)P The critical hydraulic gradient for internal erosion shall be established taking into consideration at least the following aspects:

- direction of flow;
- grain size distribution and shape of grains;
- stratification of the soil.
- No further advice or instruction.
- Nothing about safety margins needed.

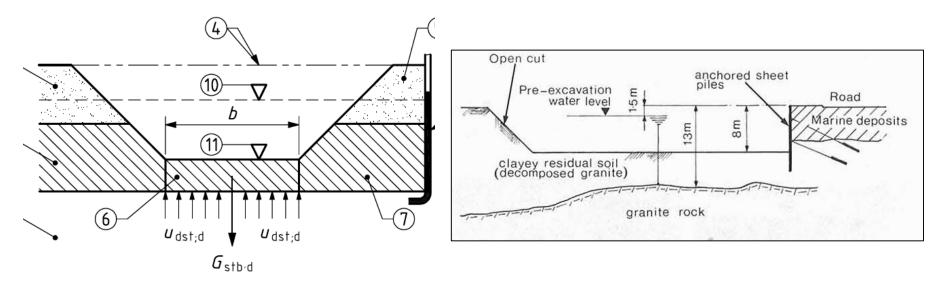
Factors of safety for HYD


Williams BP & Waite D (1993) The design and construction of sheet-piled cofferdams. Special publication 95. London: Construction Industry Research and Information


Das (1983) Fig 2.47

Essential to assess correct water pressures (permeabilities)

...then F_T seems to be irrelevant



- What are the real limit states what are we afraid of ?
- Wall stability may be a dominating issue and, but this is dealt with separately.
- We don't want effective stress to fall to zero. $\sigma' \ge 0$
- In fact, we don't want the design value of effective stress, calculated for a continuum, to get close to zero:
 - The real material is likely to be less continuous (possibly gap graded)
 - There are usually performance requirements: people need to walk or drive vehicles on the surface.
 - $\sigma' \ge ??$

 $\sigma'_d \ge \alpha \gamma'_d z$ or $u_{e;d} = u_d - \gamma_w z \le \gamma'_d z (1-\alpha) + q_d$

• α should be a material-dependent parameter (eg gap graded soils)

A possibility to combine UPL and HYD?

- Sometimes difficult to distinguish.
- Material-dependent parameter α

 $\sigma'_d \geq \alpha \gamma'_d Z$

	$\gamma kN/m^3$	β	α	$\gamma_{\rm UPL}$	FT
Dense sand (Germany)	20	2	0.18	1.10	<u>1.4</u>
Loose sand (Germany)	18	1.8	0.36	1.25	<u>1.8</u>
Silty, layered sand	18	1.8	0.54	1.43	<u>2.5</u>
Stiff clay (Germany)	20	2	0.175	<u>1.1</u>	1.39 *
NC clay (Germany)	16	1.6	0.15	<u>1.1</u>	1.35 *
Stiff clay (UK)	20	2	0.275	1.2	1.59
NC clay (UK)	16	1.6	0.225	1.2	1.48

Is this a good idea? Comments welcome.

ARUP

Internal erosion – critical gradient or velocity

PT1: An equation should be proposed in order to check this criterion in terms of hydraulic gradient or seepage velocity:

 $i_d < i_{c;d}$ or $v_d < v_{c;d}$.

 $i_{c;d}$ and $v_{c;d}$ are material-dependent parameters

- Which is the better form? PT2 chose hydraulic gradient.
- Might be worth considering which is the better constant as material grading varies unpredictably.
- Is critical gradient dependent on direction?
- How to derive its value?
 - International Levee Handbook?
 - Cross-over between geotechnics and dam design.
- How to give safety margins in practical cases?

UPL and HYD in EC7

Brian Simpson Imperial College, 31 August 2017

Thanks for your attention.

