

Micro-scale modelling of internally unstable soils

Dr Tom Shire

School of Engineering, University of Glasgow

1st September 2017

Outline

Internal instability

Micro-scale modelling

- Hydromechanical criteria for erosion:
 - Stress reduction in finer particles
 - Coupled DEM-CFD Analysis

Internal Instability

Gap/broadly graded soils: Fine fraction preferentially eroded

Erosion of fines at **low hydraulic gradients** (i < 0.3)

Prerequisites:

- Cohesionless fines
- Load carrying matrix of coarse particles
- Fines under low stress
- Fines small enough to pass between coarse

Eurocode 7: Hydraulic Failure

"[Geometric] Filter criteria shall be used to limit the danger of material transport by internal erosion."

"If the filter criteria are not satisfied, the **hydraulic gradient** should be well below the critical gradient at which soil particles begin to move."

Aim of micro-scale analysis

Examine both elements of filter design:

Aim of micro-scale analysis

Examine both elements of filter design:

Geometric Filter Criteria: Kézdi (1979)

Split Gap-graded PSD into coarse and fine "PSDs"

Stable if: $D_{15}^{\text{coarse}} / d_{85}^{\text{fine}} < 4$

(D₁₅^{coarse} / 4) proxy for 'pore size'

Micro-scale modelling: Discrete Element Modelling

Micro-scale modelling

- DEM: Discrete Element Modelling
- Each element is a single soil particle
- Generally used for coarse-grained soils >100μm: Body forces dominate
- Used for virtual laboratory experiments

Discrete element method (DEM)

- Rigid particles which can overlap at contacts
- Overlap proportional to force acting at contacts
- Particles move at each timestep and make / break contact with neighbours

Measure variables unavailable in lab:

Hydromechanical potential for erosion: Stress reduction in finer particles

Critical hydraulic gradient and stress

For internally <u>stable</u> soils:

 $i_{crit(heave)}$: hydraulic gradient at which $\underline{\sigma_{\underline{v}}' = 0}$

$$i_{crit(heave)} = \gamma'/\gamma_w \approx 1.0$$
 (Terzaghi, 1925)

For internally unstable soils:

i_{crit(unstable)} < 1 (as low as 0.2)

How to predict i_{crit(unstable)}

Fig. 9. Material A: strong general piping of

Fig. 9. Material A: strong general piping of fines (i = 0.22, v = 0.27 cm/s) Skempton and Brogan (1994)

Hydromechanical criterion

Skempton and Brogan (1994):

Coarse particles transfer overburden

Fines carry reduced effective stress:

DEM Simulations

> 300,000 particles for large simulations

Servo-controlled **isotropic compression** to p' = 50kPa

Periodic cell – no boundary effects

Sample **density controlled** using interparticle friction: $\mu = 0.0$ (Dense), $\mu = 0.1$ (Medium dense), $\mu = 0.3$ (Loose)

Samples tested

Gap-graded samples

Study effect of:

- PSD (gap-ratio + fine-content)
- Relative density

DEM: Measurement of α -factor:

$$lpha = rac{p_{fine}'}{p'}$$
 Mean stress in Mean stress in

all particles

Effect of % fines and density

Results

Effect of gap-ratio

All Results

Stress reduction in fines: Summary

Three important factors:

- Fines content,
- Relative density
- Diameter ratio

Hydromechanical potential for erosion:

Coupled DEM-CFD analysis

Coupled DEM-CFD

Aim: model permeameter at micro-scale

Large permeameter for studying suffusion:

- Can vary top stress and hydraulic gradient
- Macro-scale measurements:
 - Hydraulic gradient (local)
 - Change in permeability
 - Visual observation of suffusion

University of British Columbia

Coupling DEM + Computational Fluid Dynamics

Soil-fluid interaction

DEM: soil particles

CFD: water seepage

Data exchange

CFD DEM

-Fluid velocity
-Fluid pressure -Drag force gradient

Coarse grid method proposed by Tsuji

(Tsuji et al., 1993, Xu and Yu, 1997)

Coarse grid method

Averaged Navier-Stokes equation

 f_{drag} calculated using empirical equation based on fluid velocity, porosity and particle diameter (Di Felice, 1994)

Simulating permeameter tests

Virtual stress-controlled permeameter

Compress to 50kPa, Apply gravity

Create fluid mesh, Fix boundaries,

Apply pressure gradient,
Monitor steady state response

Virtual permeameter simulations

- 4 Samples tested: Up to 35000 particles
- D^{coarse}₁₅ / d^{fine}₈₅ = 4.6 : Borderline unstable (Kezdi, 1979)
- 25% and 35% fines
 - Each Loose and Dense

Hydraulic gradient, i = 1, 2, 5, 10

• $k \approx 1.0x10^{-4}$ m/s to $2.3x10^{-4}$ m/s Similar to experimental data from UBC

Hydraulic gradient: i = 1

Normalised particle stress =
$$\frac{\sigma^{purt}}{\sigma'}$$

Results point towards different behaviour / fabric types:

Gap 25 Loose ($\alpha = 0.11$)

Coarse matrix transfers stress

Fines do not participate in stress transfer: Eroded *en masse*

Results point towards different behaviour / fabric types:

Coarse particles dominate stress-transfer

Understressed fines provide lateral support to coarse matrix

Coupled study examined only small range of possible states (due to computational expense of simulations)

Summary

DEM can be used to study internal instability at micro-scale

 Stress controls initiation of erosion and is linked to PSD and relative density

Coupled DEM-CFD can be used to study fluid-particle interactions

Acknowledgements

Imperial College London

Catherine O'Sullivan Kenichi Kawano

Shire, T., O'Sullivan, C., Hanley, K. J., & Fannin, R. J. (2014). Fabric and effective stress distribution in internally unstable soils. *Journal of Geotechnical and Geoenvironmental Engineering*, *140*(12), 04014072.