

Experimental research on internal erosion and its mechanical consequences for gap-graded soil

Tokyo Institute of Technology

Akihiro Takahashi

Workshop exploring recent developments considering seepage and instability in cohesionless soil, Imperial College London, UK, 31 Aug. - 1 Sept., 2017

Summary of experimental findings

Expected consequence of internal erosion

- If volume change due to erosion is not so large, internal erosion results in increase of void ratio.
 - > Reduction in strength and increase in permeability are expected.
 - > Leading to instability and/or malfunction of hydraulic structures.

Through tests on gap-graded soils, we found / confirmed that

- Internal erosion makes <u>drained strength smaller</u>, while <u>undrained strength larger</u>.
- Stiffness of eroded soil is larger than that without erosion.
 - > We try to explain mechanism through optical observation.
 - Attempt made by Higo and coworkers is also introduced; Observation made by micro X-ray CT by Higo *et al.* (2017).

Introduction

Seepage-induced internal erosion (suffusion)

 Migration of fine particles through matrix formed by coarse particles under seepage flow.

Top view of sample in upward seepage test

directior

Flow

Similar to Skempton & Brogan (1994) on Gap-graded soil (25% fines content; 60% relative density)

2

Acknowledgements

Experimental research at Tokyo Tech

- Conducted by the former PhD students:
 - Dr KE, Lin
 - Dr OUYANG, Mao
- Supported by JSPS KAKENHI Grants (23760440 and 25420498).

Experimental research at Kyoto Univ

- Dr Yusuke HIGO allows me to share their experimental results with you in this workshop.
 - > Y Higo, Y Hamada, S Iwanaga, Y Hisaizumi & R Kido:
 - Imaging fine soil particles transportation through soil skeleton caused by seepage flow, *3rd Int'l Conf. Tomography of Materials and Structures, Lund, Sweden, June 2017*

Since the work by Higo et al. (2017) contains unpublished test results, some slides were removed from the slide set used in the presentation.

Equipment (cont'd)

Plane strain erosion apparatus

 Observation of particle movement can be made through transparent window / membrane.

Materials Mixtures of Silica #3 (coarse) and Silica #8 (fine) • Fines content: 35%, 25%, 15% Relative density: 30%, 40% • Confining pressure: 50kPa, 100kPa, 200kPa Percentage passing by weight [%] 100 - --- Silica no. 3 85 15% fines content 80 - 25% fines content - d85f - 35% fines content ---- Silica no. 8 60 $\frac{D_{15c}}{100}=7.9>4.0$ 40 d_{85f} Internally unstable (Kezdi, 1979) 20 150 15 0.01 10 0.001 0.1 1.0 Particle size [mm]

6

strength of the eroded soil becomes smaller than that without erosion.

 Strength of eroded samples is smaller than those without erosion, especially soil with larger fines content.

Undrained triaxial compression tests

<u>Fc = 15, 25 & 35%</u>, $\sigma_c = 50 \text{ kPa}$

Peak strength of eroded soils is larger, while plateau after the peak, i.e., quasi-steady state, in stress-strain curve is longer for eroded soils. 13

Shearing stage

PS_WOE

5

PS_WE_N

PS WE N1

10

PS_WE_N2

10

Axial strain [%]

PS WE N2

PS WOE

20

PS WOE

PS WE N1

PS_WE_N2

PS_WOE

20

25

15

15

15

PS_WE_N1

PS_WE_N2

25

300

r 250

so 200

Ŧ

stre 150

riator 100

Je/

metric strain [%]

50

-2

-4

-6

-8

-10

-12

Overall response in plain strain drained tests

Stage 3

12000 16000

PS WE N2

38.57 g

38.32 0

Stage 2

8000

PS WE N1

PS_WE_N2

 $\begin{array}{c} & & \\ & &$ Initial Fc = 25%

Undrained triaxial compression tests (cont'd) Strength normalised by initial confining pressure

- Soil with smaller fines content shows larger normalised peak strength. ٠
- Normalised peak strength increases after internal erosion within the scope of this study.

okyo Tech

Optical observation using microscope Coloured fines are used

Original image

Individual particles

Segmented image

Tokyo Tech

14

4000 8000 12000 16000

Time [s]

Erosion stage

Stage

Flow rate [1 x 10⁻⁶m³/s]

6

5

4

3

2

50 ssem 40

soil

Cumulative

Estimation of fines engaged in force chain

Fines at contact point of coarse particles are evaluated

(1) Original image

(2) Enclose contact area [Contact area: 0.085 mm²]

Pick up coordinates of contact points

(4) Calculate average percentage of fines in contact area by image analysis.

17

Summary

(3) Fines in

contact area

Mechanical response of internally eroded soil

· Tests on gap-graded soils reveal that

174

- Internal erosion makes <u>drained strength smaller</u>, while <u>undrained strength larger</u>.
- Stiffness of eroded soil is larger than that without erosion.

Microscopic observation

- Fines trapped around contact point of coarse particles during seepage stage seem to be engaged in force chain at small strain level.
- Marked decrease in strength can occur even with localised / channelised internal erosion.

Change in percentage of fines in contact area

- At <u>small strain</u> level (strain of 0.6-1.0%), <u>more fines remain in the contact</u> <u>area for eroded soil</u> comparing with that without erosion.
 - More fines are engaged in force chain for eroded soil.
- At <u>medium strain</u> level (strain of 15%), <u>percentage of fines in contact area</u> for soil with erosion is smaller than that for soils without erosion.
 - As void size larger for eroded soil, fines released from force chain can easily disappear.

Related publications

18

- Ouyang, M. & Takahashi, A., Influence of initial fines content on fabric of soils subjected to internal erosion, *Canadian Geotechnical Journal*, Vol. 53, No. 2, 299-313, 2016. (DOI: 10.1139/cgj-2014-0344)
- Ouyang, M. & Takahashi, A., Optical quantification of suffosion in plane strain physical models, *Géotechnique Letters*, Vol. 5, No. 3, 118-122, 2015. (DOI: 10.1680/jgele.15.00038)
- Ke, L. & Takahashi, A., Drained monotonic responses of suffusional cohesionless soils, *Journal of Geotechnical and Geoenvironmental Engineering, ASCE*, Vol. 141, No. 8, 04015033, 2015. (DOI: 10.1061/(ASCE)GT.1943-5606.0001327)
- Ke, L. & Takahashi, A., Experimental investigations on suffusion characteristics and its mechanical consequences on saturated cohesionless soil, *Soils and Foundations*, Vol. 54, No. 4, 713-730, 2014. (DOI: 10.1016/j.sandf.2014.06.024)
- Ke, L. & Takahashi, A., Triaxial erosion test for evaluation of mechanical consequences of internal erosion, *Geotechnical Testing Journal, ASTM*, Vol. 37, No. 2, 347-364, 2014. (DOI: 10.1520/GTJ20130049)
- Ke, L. & Takahashi, A., Strength reduction of cohesionless soil due to internal erosion induced by one-dimensional upward seepage flow, *Soils and Foundations*, Vol.52, No.4, 698-711, 2012. (DOI: 10.1016/j.sandf.2012.07.010)