- 1) Simon Collander-Brown, DSTL
- 2) Anant Prakash, BP
- 3) Simon Cook, Southern Water Services
- 4) Rosalind West, DEFRA
- Specialist: Jan Kwakkel

1) Simon Collander-Brown, DSTL

2) Anant Prakash, BP
3) Simon Cook, Southern Water Services
4) Rosalind West, DEFRA
Specialist: Jan Kwakkel

Problem Statement

- How do we plan for the Future Requirements for Defence?
- Complexity of problem
 - Uncertain context
 - Knowledge of system is incomplete
 - Some systems are inherently uncertain
 - Systems change in response to our decisions
 - Systems change in response to other peoples decisions
 - Others may be trying to play the system to gain advantage
 - Others may be trying change the system to gain advantage

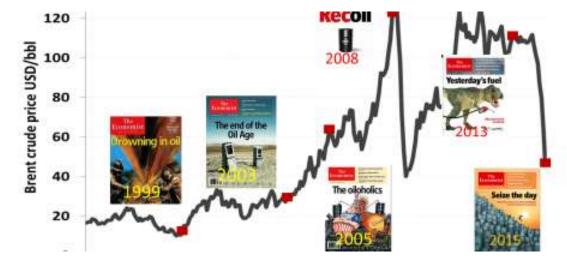
Approach

- Currently use "scenario" planning
 - Build small numbers of plausible futures
 - Complex analysis to identify which factors drive outcomes
 - Any shortfalls in capability
 - Process designed to tie in key decision makers

Results and Feedback

- Current method gives useful results
 - Slow
 - Expensive
 - Doesn't deal with uncertainty well
- Other methods being examined
 - Generally for simpler systems
 - Shorter time frames
 - No or constrained opposition
- Want to test hybrid methods in near future

1) Simon Collander-Brown, DSTL


2) Anant Prakash, BP

- 3) Simon Cook, Southern Water Services
- 4) Rosalind West, DEFRA
- Specialist: Jan Kwakkel

Problem Statement

What problem did/does your organisation face?

Planning price, or oil price assumption

- How was/is this problem complicated by elements of uncertainty?
 - ➤Uncertainty of oil price
 - Risk of sub economic investments and projects
 - Plenty of scenarios, forecasts, predictions and forward strips available – but huge range.
 - Strategic complications Commitment to dividend. Changing Geopolitics. Sector deflation.
 - Time horizon for typical oil and gas investments to turn cash flow +ve is 8-10 years

Approach

- How did/does your organisation make decisions in light of the uncertainty it faces?
 - Bottom up analysis
 - Price and profit calculations for various assets
 - Deterministic calculations and sensitivities
 - Development of scenarios, portfolio analysis

Results and Feedback

- What decision did your organisation make, and how was this informed by the preceding uncertainty analysis?
 > Allocation of capital: Projects, workforce, capex, opex
- What challenges or limits did your organisation experience in implementing the decision-making process?

> Uncertainty on realisations

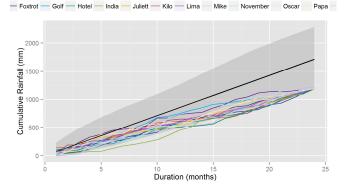
 How were the results of the decision-making process communicated to the ultimate decision makers/insiders/shareholders/public etc.?

Complex analysis. Simple charts.

- How could your decision-making process improve?
 Faster analysis and turnaround, less complexity. Probabilistic considerations.
- How can the research community support improvements in your decision-making process?

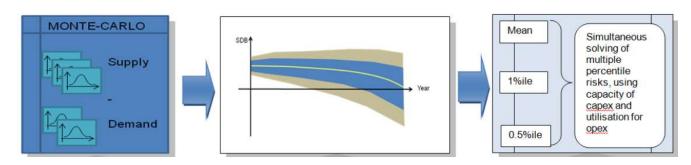
Simon Collander-Brown, DSTL
 Anant Prakash, BP
 Simon Cook, Southern Water Services
 Rosalind West, DEFRA
 Specialist: Jan Kwakkel

Risk and Uncertanity for Water Resource Planning


Simon Cook

Problem Statement

- Southern Water have a statutory obligation to produce a Water Resource Management Plan for a minimum of the next 25 years
 - Weather Variability and Drought
 - Climate Change
 - Impacts of New Technology
 - Source Behavior and Lack of good historic observations
 - Water Quality
 - Forecasts of Demand (Population Growth, Development, behavior)
 - Environmental Impacts
 - Limits of Resource Models (Data, Computing Power)
 - What Options are Available
 - Where and how should we invest for the future


Monthly Rainfall Totals 24 Month Drought

Approach

- Adopted a stochastic Approach to Weather Variability (Rainfall)
- Multiple Climate Change Scenarios (Perturbations)
- Multiple Growth Scenarios for Demand
- Integrated Monte Carlo Approach for Supply/Demand Balance
 - Target Headroom
 - Accounts for all major sources of uncertainty
- Investment model reflects multiple states of the world
 - Dry, Normal, Intermediate
- Investigated a Real Options approach for no regret investment
- Statutory Consultation Period + Informal engagement with regulators and stakeholders

Results and Feedback

- Weather Generator wasn't perfect (PET and Bias correction)
- Technically Difficult / Harder to communicate
- High degree of challenge from regulators
 - New and advanced techniques (lack of acceptance/confidence)
 - Southern Water were going it alone
- Approach has informed guidance for next set of Water Resource Management Plans for all companies
 - Better Accounting for uncertainty and risk
- Future Plans
 - Further develop and extend the approach
 - Improve estimates of Resilience (Reliability and Failure models)
 - Extend real options,
 - Better capture customer and environmental preferences
 - Better Environmental Forecasting
 - Sustainability and Resilence

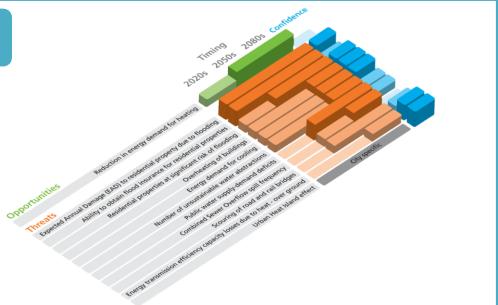
Simon Collander-Brown, DSTL
 Anant Prakash, BP
 Simon Cook, Southern Water Services
 Rosalind West, DEFRA
 Specialist: Jan Kwakkel

Identifying priority risks in the 2nd Climate Change Risk Assessment (2017)

Dr Rosalind West Defra Climate Change Adaptation Team

With thanks to Kathryn Humphrey & the Adaptation Sub-Committee of the Committee on Climate Change

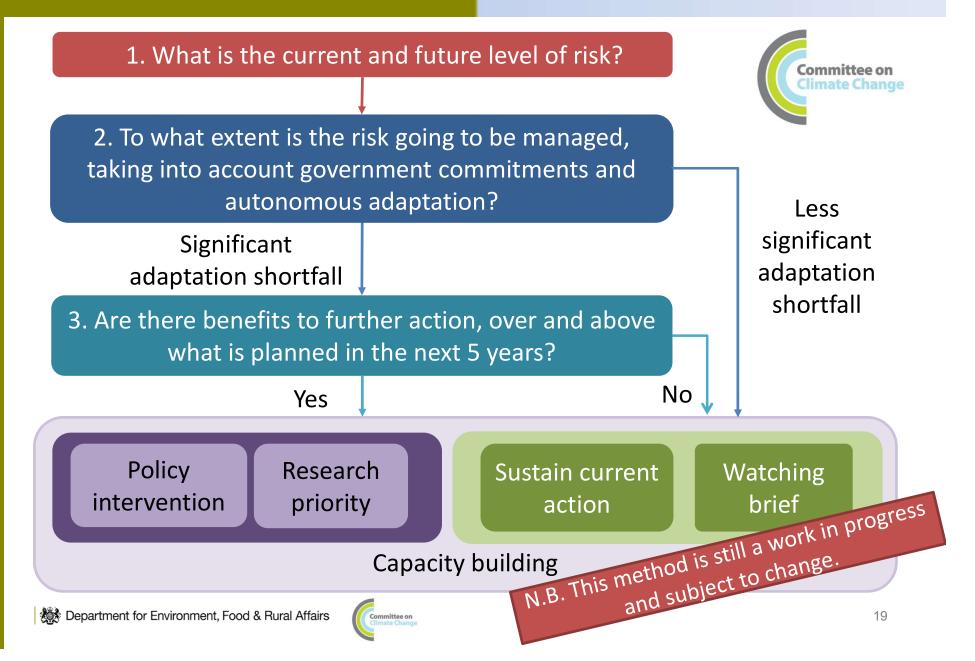
Problem Statement


- **The Problem:** How to identify the **most urgent risks** from climate change for government to consider in the next five years.
- Uncertainties at every stage:
 - 1. Assessing the current and future level of risk
 - 2. Estimating the effect of planned and autonomous adaptation on residual risk
 - 3. Assessing benefits of action in next 5 years
- **Outcomes** affect national adaptation plans of the UK government and devolved administrations

UK Climate Change Risk Assessment

CCRA 1 (2012)

- **100+ risks and opportunities** from climate change in the UK.
- Large programme of external evidence and research work
- 11 sectors


CCRA 2 (2017)

- Identify policy areas:
 - with barriers to adaptation and/or
 - where adaptation is most urgent during 2017 – 2022

Key issues for CCRA 2:

- How climate interacts with **socio**economic factors in affecting risk
- How the effects of adaptation actions are/could alter risk levels
- How climate change overseas could affect the UK

ASC's approach to urgency scoring

rosalind.west@defra.gsi.gov.uk

SESSION III: Q & A

- 1) Simon Collander-Brown, DSTL
- 2) Anant Prakash, BP
- 3) Simon Cook, Southern Water Services
- 4) Rosalind West, DEFRA

Specialist: Jan Kwakkel

