SESSION II: Pop-Up Talks

Special presenter: John G Rees, NERC
1) Dennis Konadu, University of Cambridge
2) Ian Temperton, Ian Temperton Consulting
3) Alexandra Collins, Imperial College London
4) Julien Harou, University of Manchester
Specialist: Liz Varga

ATKINS CEP UKERC

Imperial College London

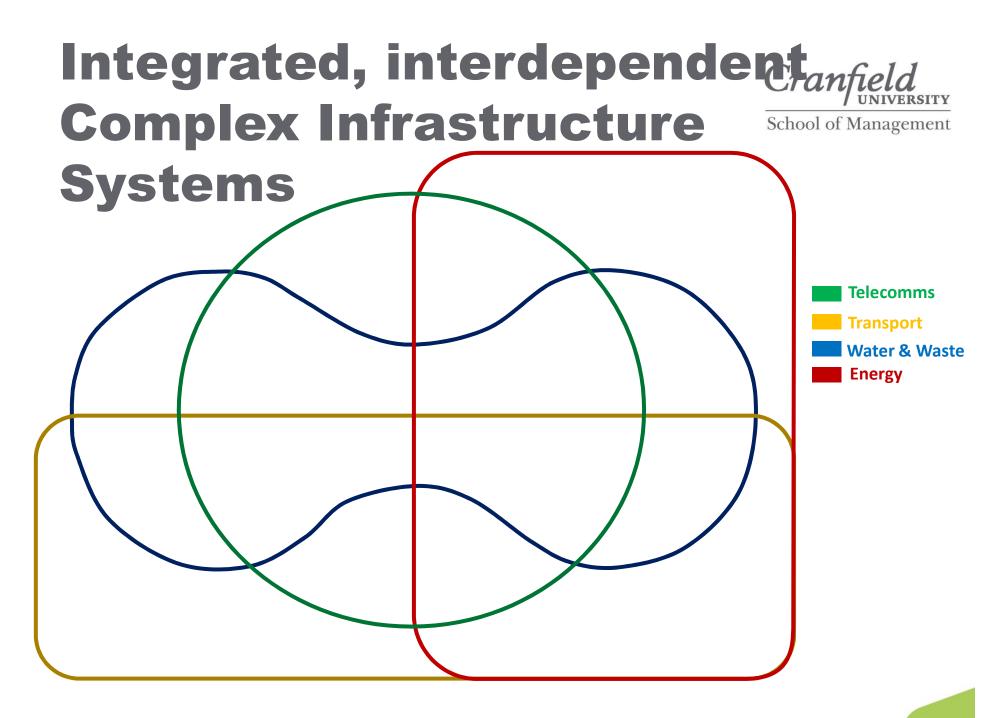
School of Management

into action

Decision-Making Under Risk & Uncertainty in Complex Infrastructure Systems Imperial College London Professor Liz Varga, liz.varga@cranfield.ac.uk 10th Feb 2016 Transforming knowledge

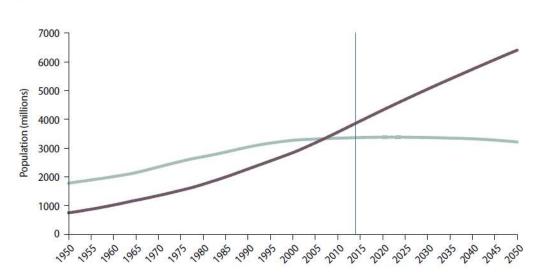
Energy, transport, water, School of Management waste and telecoms

Cranfield UNIVERSITY



Why complex?

- Networked and interacting
- Multi-scale and emergent
- Dynamic, adapting and evolving
- Involve people, so they are not deterministic



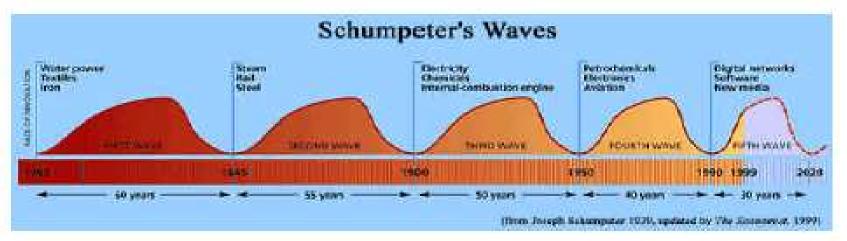
Cranfield UNIVERSITY School of Management

Futures

- Population growth
 - Pressure to build on flood plains
- Urbanization/ densification
 - Pressure to share
 existing capacity

Urban and rural population of the world, 1950–2050

United Nations. World Urbanization Prospective: 2014 Revision, New York, 2014.


- Regulation, legislation
 - Pressure to control carbon, nitrates, air quality,...

Technological discontinuities and creative destruction

- Firms innovate and create the technological trajectories in the environment, co-evolving with the environment in which they operate.
- The success of individual firms will be related to the compatibility of the firm to the technological trajectory of the extant paradigm.

Tushman, M. L. and Anderson, P. (1986), "Technological Discontinuities and Organizational Environments" Administrative Science Quarterly vol. 31, no. 3, no. 439-465

Risk vs uncertainty

- Knight was among the first to differentiate risk and uncertainty in his classic work¹
- Risk deals with situations and events to which we can assign probabilities of their future states
- Uncertainty deals with situations where we can't; it is a much trickier concept and a problem occurs when the idea of risk is overstretched to the extent that uncertainty becomes synonym for risk, known as the "delusion of control" explaining the hubris among some policymakers.

¹ Knight (1921) Risk, Uncertainty and Profit, Houston Mifflin.

Risk, Ambiguity, Uncertainty, Ignorance

Crar

School of Management

Knowledge about possibilities (reach of the knowledge required)

RISK - Known Known's There is a relevant body of knowledge to make the assessment and we have complete access to it.	AMBIGUITY - Known Unknown's There is a relevant body of knowledge to make the assessment but we do not have access to it (someone else has access to it).	(Quantitative)
UNCERTAINTY - Unknown Unknowns A body of knowledge needed to make the assessment does not exist at the moment, but it could be developed to an extent. (There are limits to understanding.)	IGNORANCE - Unknowable's There is no body of knowledge needed to make the assessment and it is impossible to develop it.	(Qualitative)

Risk-Ambiguity-Uncertainty-Ignorance (RAUI) matrix

Grubic et al (2013) Future utility services' (un)knowns framework: Knowledge existence and knowledge reach. *Futures* (Based on Snowden and Boone, 2007 and Stirling, 2010)

Decision-Making (DM)

- Buchanan and O'Connell (2006) trace back the general history of DM and development of managerial DM concepts such as the economic theory of risk and uncertainty by Knight (1921) and organizational DM from the theory of cooperation by Barnard (1938).
- Köksalan et al (2013) examine utility theory from the work of Edgeworth (1881), contribution of Frisch (1926) with his theory of ordinal and cardinal utility and the theory of subjective expected utility and probability by Ramsey (1926) and De Finetti (1937).
- Raiffa (1968) wrote a report on utilities with multi-attribute alternatives within RAND. Multi-attribute analysis was further elaborated by Keeney and Raiffa (1976) who formulated multi-attribute utility theory (MAUT). Prior to MAUT significant contributions to MCDM include the efficient vectors and contributions to multiple objective mathematical programming (Koopmans, 1951), the goal programming (Charnes et al, 1955), the outranking methods within the ELECTRE-project (Bernard, 1968), and the concept of multiple objective optimization (Cohon, 1978).
- Saaty (1977, 1996) developed Analytic Hierarchy Process and Analytical Network Process decision making methods which treat decision making structures as hierarchies and interdependent networks.
- Simon (1959) recognized **game theory** had a role in processes of concept formation.

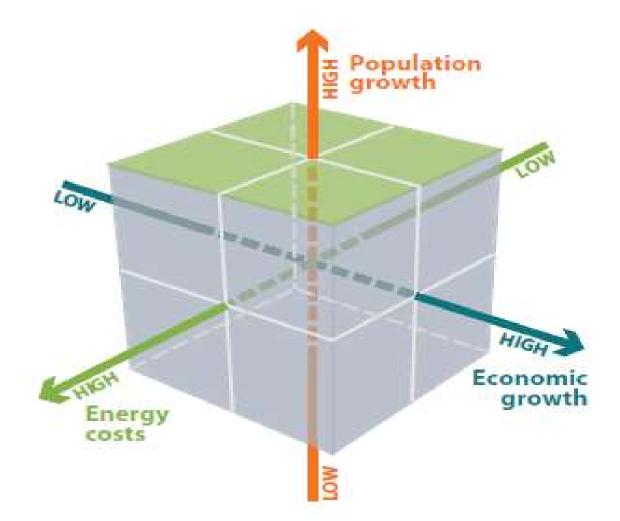
Durmagambetov, 2015, SLR

Decision-Making choices

- By whom? (CEO, regulator, cabinet, ...)
- Why? (cost avoidance, competitiveness, prevention, ...
- About what?
 - Capital investment/renewal, maintenance
 - CAPEX, OPEX, TOTEX
- At what scale? Where?
- For whose benefit and at whose cost?
- When?
- Why not (paralysis)?

Futures - scenarios

School of Management


DRAN	IATIC	
Speculative	Proximate	
mode (irony,	modality	
subversion):	(realism): "this is	
"whose future is	how the future	
this, anyway?"	might be (if this	
S	carries on)"	
SIS		Sig
DIEGESI		Ξ
DI		MIM
Normative	Positive modality	
modality	(sincerity,	
(idealism): "this	prophecy): "this	
is how the future	is how the future	
should be"	will be"	
SPECTA	CULAR	

Raven and Elahi (2015), Shaping of futures outputs, Futures

Futures - extrapolation

School of Management

http://www.itrc.org.uk/wordpress/wp-content/FTA/ITRC-FTA-Executive-summary.pdf p7

Typology for uncertainty

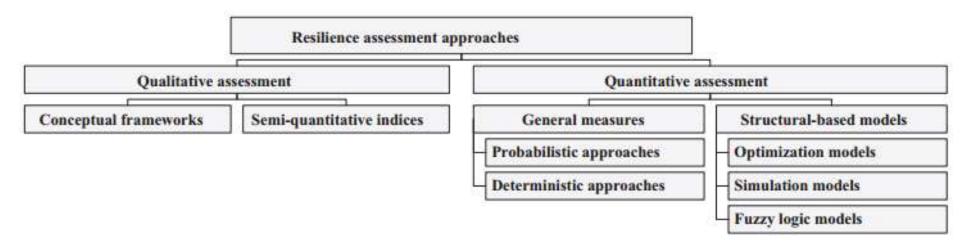
Category Definition difference between observation and reality Accuracy/error Precision exactness of measurement Completeness extent to which info is comprehensive extent to which info components agree Consistency conduit through which info passed Lineage temporal gaps between occurrence, info collection & use Currency/timing Credibility reliability of info source Subjectivity amount of interpretation or judgment included Interrelatedness source independence from other information

Thomson et al, A typology for visualizing uncertainty (2005)

Continuum quantified risk and qualified uncertainty

School of Management

Example 1: CCRA – high confidence


- Multiple sources of evidence that contain similar results
- Based on robust techniques
- Data used is of a high quality
- Evidence has been peer reviewed
- Published relatively recently.

Qualitative and quantitative methods

School of Management

Example 2: Resilience Assessment

Modeling and evaluating system resilience (Hosseini et al, 2016, p51)

Cranfield UNIVERSITY

Mixed methods

School of Management

Techniques	Qualitative	Mixed	Quantitative
Descriptive techniques describe data by categorisation or interpretation	 Word count Cognitive mapping Thick description Content analysis Theoretical Coding Grounded Coding Taxonomic analysis 	 Integrated data display C 	 Frequency count Correlation Cluster analysis Measures of central tendency and dispersion Principal components analysis
Comparative techniques compare two or more data sets	 Multi repertory grids Analytic induction Inter-rater analysis Concordancing 	 Data transformation Cross-Over analysis Data consolidation Results synthesis Pattern Matching 	 Mann-Whitney 'U' test t-tests ANOVA ANCOVA (co- variance)
Prescriptive techniques explain the data and attempt to predict future patterns	 Induction Theory building Abductive inference Framework development, e.g. BCG Matrix Qualitative models, e.g. Porter's 5 forces 		 Regression Path analysis Genetic algorithms Modeling Simulation Network Analysis Data mining

Modeling

- "A common method for making sense of a system which cannot be easily or safely experimented upon is to create a computational model of the system."
 Bale, Varga, Foxon, 2015
- A computational model in which "a system is modeled as a collection of autonomous decision-making entities called agents"

Bonabeau, 2014

Inter-disciplinary investigations

School of Management

- Decision making for innovation
 - Co-creation, user innovation (EU-Innovate)
 - Scale, replication, ... (Stepping Up)
 - Storage: solving the intermittency problem (Cryohub)
- Decision making for new business models
 - Multi-utility service companies (MUSCOs)
 - Interdependence infrastructure systems (ICIF)
- Decision making for efficiency
 - Big Data, IOT: sensors, actuators, algorithms (ABACUS)
 - Matching energy supply with demand (E-SIDES)
- Decision making for governance
 - With public policy (CECAN)
 - For engineering resilience (ENCORE)

School of Management

Transforming knowledge into action

Thank you

Professor Liz Varga, <u>liz.varga@cranfield.ac.uk</u> 10th Feb 2016