
Clio: A Hardware-Software Co-Designed
Disaggregated Memory System

Zhiyuan Guo*, Yizhou Shan* (* equal contribution)

Xuhao Luo, Yutong Huang, Yiying Zhang

2

Hardware Resource Disaggregation:

Breaking monolithic servers into
distributed, network-attached

hardware components

3

4

Network

Workshop on Resource Disaggregation
and Serverless (WORDS 2022)

• Website: https://www.wordsworkshop.org/

• Submission deadline: 9/29/2022

• Workshop date: 11/17/2022 (virtual or hybrid)

• Types of papers

• Vision paper, completed new work (up to 5 pages)

• published work (2 page abstract)

• PC chairs

• Arvind Krishnamurthy, University of Washington

• Yiying Zhang, University of California San Diego

5

Existing Disaggregated Memory Systems

6

All existing works use server to

Build/Emulate disaggregated memory devices

Emulating
Emulate

• LegoOS [OSDI ’18]

• FastSwap [EuroSys ’20]

• AIFM [OSDI ’20]

• Semeru [OSDI '20]

….

7

How about real hardware?

Outline

• Introduction

• Motivation: Why do we need real hardware?

• Clio Overview: Interface and overall approach

• Design: How we remove “state”

• Implementation and evaluation results

8

9

Memory Resource

Network Port

Virtual Memory Access
System

Network
App1 App2 App3

Disaggregated Memory Hardware

Network Stack

Memory Controller

Features

Standalone

Host memory

Directly connect to network

Shared by applications

Desired goals

High throughput

Low avg and tail latency

Scalability and capacity

Low cost

Easy to use and versatile

- Unused resources in server

- Limited DRAM size

Could Server Emulation work?

Servers are overkill for
memory disaggregation.

10

OS

Memory Node (Server)

CPU

Storage Sys …

Low Cost

Capacity

PCIe

Disks

 …

Virtual Mem Sys

DRAMs

NIC

Process
mgmt

OS

Could RDMA work?

11

Virtual Mem Sys

Memory

RNIC

Page
Table

PTE
Cache

QP
Cache

CN MN(Server)

RNIC

Memory
Region

Page Fault
Handler

Page Fault
MR

Cache

-Limited NIC cache of OS management
structures

-Slow page fault operations in data path

16.8ms!

App

Scalability

Tail Latency

Queue
Pair

RDMA is not designed for standalone
memory disaggregation

CXL?
 Need specialized interconnect

 Not immediately available

What we build: Clio [ASPLOS’22]

a hardware-based disaggregated memory system that virtualizes, protects,
and manages disaggregated memory at standalone memory nodes

12

Outline

• Introduction

• Motivation: Why we need real hardware

• Clio Overview: Interface and overall approach

• Design: How we remove “state”

• Implementation and evaluation results

13

14

Regular Machine

Local DRAM

CPU CPU CPU

Network

Compute Node

Memory Node
(Clio Board)

Control Path
Allocation

Metadata

Distributed Support

virtual memory interface

SoC

On-Board DRAM

Data Path
Virtualize
Protect
Multiplex

App Process

Clio library

Offload Path
Computation

offload
Extended APIs

Clio Net (PHY+MAC)

remote_alloc(pid, size)
read/write(pid, VA)

key-value & other high-level API

15

Main Idea:

Eliminate state from hardware
“state”:

Metadata stored on the memory node that need to be
accessed or updated when processing requests.

External State

Benefit of Removing State

16

• Minimizing state can reduce cost, reduce tail latency, and improve scalability

• Avoiding inter-request state can make the pipeline smooth

Memory Node Hardware

StateClient Side Stack

Compute Node Memory Node

State
Cache

Inter-request State

Outline

• Introduction

• Motivation: Why we need real hardware

• Clio Overview: Interface and overall approach

• Design: How we remove “state”

• Implementation and evaluation results

17

How to eliminate state from MN hardware

Overall Approach: Co-designing hardware, network, and software

1. Reduce state in disaggregated memory protocol

2. Move state to compute node

3. Remove state from critical path

4. Optimize hard-to-remove state to bounded size

18

How to eliminate state from MN hardware

Overall Approach: Co-designing hardware, network and software

1. Reduce state in disaggregated memory protocol

2. Move state to compute node

3. Remove state from critical path

4. Optimize hard-to-remove state to bounded size

19

• Observation: accesses to MNs are always in the request-response style

20

RDMA Network

Client Side Stack

App Process

Virtual M
em

ory System

Compute Node Memory Node

Reliable
Network

O
n -B

oard D
R

AM

Per-Connection Metadata

Net Rx Buffer

Net Tx Buffer

Congenstion Control

Response ONLY

Request ONLY

Net Tx Buffer

Per-Connection Metadata

Reduce state in disaggregated memory protocol >
Asymmetric Memory Request Protocol

Asymmetric Memory Request Protocol

• Observation: accesses to MNs are always in the request-response style

21

RDMA Network

Client Side Stack

App Process

Virtual M
em

ory System

Compute Node Memory Node

Asymmetric

O
n -B

oard D
R

AM

Per-Connection Metadata

Net Rx Buffer

Net Tx Buffer

Congenstion Control

Response ONLY

Request ONLY

Reduce state in disaggregated memory protocol >

 Asymmetric RPC-style, connection-less network protocol

Network Ordering

• Observation: Memory requests can tolerate certain network reordering

22

RDMA Network

Client Side Stack

App Process

Virtual M
em

ory System

Compute Node Memory Node

O
n -B

oard D
R

AM

Per-Connection Metadata

Net Rx Buffer

Net Tx Buffer

Congenstion Control

Reduce state in disaggregated memory protocol >

Asymmetric

Net Rx Buffer (reorder)

P1/P2
One write with
two packets:

P1 P2

P2/P1

Network Ordering

• Observation: Memory requests can tolerate certain network reordering

23

RDMA Network

Client Side Stack

App Process

Virtual M
em

ory System

Compute Node Memory Node

O
n -B

oard D
R

AM

Per-Connection Metadata

Net Rx Buffer

Net Tx Buffer

Congenstion Control

Reduce state in disaggregated memory protocol >

 Release networking ordering requirements

Asymmetric
Allow reorderAsymmetric

How to eliminate state from MN hardware

1. Reduce state in system protocol

2. Move state to compute node

3. Remove state from critical path

4. Optimize hard-to-remove state to bounded size

24

Congestion and Flow Control

• Observation: CN knows the size of both requests and responses

25

RDMA Network

Client Side Stack

Virtual M
em

ory System

Compute Node Memory Node

O
n -B

oard D
R

AM

Per-Connection Metadata

Net Rx Buffer

Net Tx Buffer

Congenstion Control

Move state to Compute Node >

 Move congestion and in-cast control to CN side

Client
Requests

App ProcessApp ProcessApp Process

ClioLib (congestion/in-cast
ctrl)

Congenstion ControlAsymmetric
Allow reorder

Known
Responses

Handle Retry

• Observation: Network losses are rare and fully observed by CN

26

RDMA Network

Client Side Stack

Virtual M
em

ory System

Compute Node Memory Node

O
n -B

oard D
R

AM

Per-Connection Metadata

Net Rx Buffer

Net Tx Buffer

Congenstion Control

Move state to Compute Node >

 Let CN side software handling retry

App ProcessApp ProcessApp Process

ClioLib (congestion/in-cast
ctrl)

ClioLib (congestion/in-cast
ctrl, retry, …)

CN Request Drop

CN Request

MN Reply Drop

Asymmetric
Allow reorder

Handle Retry

27

RDMA Network

ETH & PHY

Virtual M
em

ory System

Compute Node Memory Node

O
n -B

oard D
R

AM

Per-Connection Metadata

Net Rx Buffer

Net Tx Buffer

Congenstion Control

Move state to Compute Node >

Asymmetric
Allow reorder

App ProcessApp ProcessApp Process

ClioLib (congestion/in-cast
ctrl)

ClioLib (congestion/in-cast
ctrl, retry, …)

Clio Network

Mainly only
PHY & ETH!

How to eliminate state from MN hardware

1. Reduce state in system protocol

2. Move state to compute node

3. Remove state from critical path

4. Optimize hard-to-remove state to bounded size

28

Splitting Fast Path and Slow Path

29

Remove state from critical path >

Clio
Net

Virtual Memory System

Memory Node

remote_alloc(pid, size)
read/write (pid, va)

Metadata requests

• Stateful, flexible, less strict latency

O
n -B

oard D
R

AM

• Observation: Metadata and data requests have different state and performance requirements

Data requests (Performance critical!)

• Strict latency and throughput

Splitting Fast Path and Slow Path

30

Remove state from critical path >

Clio
Net

Memory Node

O
n -B

oard D
R

AM

Virtual Memory System
(Slow Control Path)

Software on Processor
Virtual Memory System
(Fast Data Path)

Hardware Pipeline on ASIC

Splitting virtual memory system into fast path and slow path

remote_alloc(pid, size)
read/write (pid, va)

Splitting Fast Path and Slow Path

31

Remove state from critical path >

Memory Node

O
n -B

oard D
R

AM

Slow Path (ARM)

Fast Path (ASIC)

TLB + DRAM Access

Virt Mem Mgmt Phys Mem MgmtDistributed Mgmt

Solution: Splitting virtual memory system into fast path and slow path

remote_alloc(pid, size)
read/write (pid, va)

Clio
Net

Handling Page Fault

32

Remove state from critical path >

Memory Node

O
n -B

oard D
R

AM

Slow Path (ARM)

Fast Path (ASIC)

Distributed Mgmt

• Observation: Access requests with pagefault need stateful allocation operations

Clio
Net TLB + DRAM Access

Virt Mem Mgmt Phys Mem Mgmt
write (pid, va)

Physical page
not allocated

Handling Page Fault

33

Remove state from critical path >

Memory Node

O
n -B

oard D
R

AM

Slow Path (ARM)

Fast Path (ASIC)

Distributed Mgmt

• Observation: Access requests with pagefault need stateful allocation operations

Clio
Net TLB + DRAM Access

Virt Mem Mgmt Phys Mem Mgmt

Physical page
not allocated

write (pid, va)

PF
Handler

async buffers

Solution: Handle page fault pre-allocated physical pages in async buffers

Only add 4ns when page fault happens

How to eliminate state from MN hardware

1. Reduce state in system protocol

2. Move state to compute node

3. Remove state from critical path

4. Optimize hard-to-remove state to bounded size

34

Traditional Page Table Design (Strawman)

35

Optimize state to bundled size >
O

n -B
oard D

R
AM

Slow Path (ARM)

Fast Path (ASIC)

Clio
Net PF

HandlerTLB

PageTable Base
Pointer

Pid Base
Pid Base

…

PageTable
Walker

PT
PT

PT

write (pid, va) Miss
base_ptr

• Observation: Size of base pointer table and page tables grow with
number of clients, needs multiple DRAM accesses to walk page tables

Fetch PTE

Base

Hash-Based Page Table

36

Optimize state to bundled size >
O

n -B
oard D

R
AM

Slow Path (ARM)

Fast Path (ASIC)

PF
HandlerTLB

Hash

PageTable
FetcherMiss

Pid, VA

H
H = hash(pid, va)

Single
Hash
Page TableFetch Bucket

Single DRAM
access

Hash Page Table for bounded size and access time (single DRAM access)

Clio
Net

write AP_VA

No table selection

“eliminate state” summary

• Reduce state in system protocol: Disaggregated protocol, consistency model, …

• Move state to compute node: Congestion control, retry, dependency check, …

• Remove state from critical path: Hardware pagefault, memory region, …

• Optimize state to bounded size: Hash-based pagetable, atomic operations, …

37

Low Performance Overhead
Low Cost Scalability FlexibilityThroughput, Latency, Tail Latency ?

Extend computation offloading

38

AR
M

 (s
lo

w
 p

at
h)

AS
IC

 (f
as

t p
at

h)

App Process

Virtual Mem
Alloc

Memory
PT

TLB

AP_VA
-> PA

CN (server or device) MN (device)

Ethernet NIC

Page Fault
Handlerremote_alloc(size)

read/write AP_VA

library (req retry, ordering)

Phys Mem
Alloc

Net

as
yn

c
bu

ffe
r

Network

remote_alloc
read/write

atomic_rd/wr/cas

Extend computation offloading

39

AR
M

 (s
lo

w
 p

at
h)

AS
IC

 (f
as

t p
at

h)

App Process

Virtual Mem
Alloc

Memory
PT

TLB

AP_VA
-> PA

CN (server or device) MN (device)

Ethernet NIC

Page Fault
Handlerremote_alloc(size)

read/write AP_VA

library (req retry, ordering)

Phys Mem
Alloc

Net

as
yn

c
bu

ffe
r

Network

FP
G

A
(o
ffl

oa
d) App

Offload

Extended
API

App
Offload

as
yn

c
bu

ffe
r

remote_alloc
read/write

atomic_rd/wr/cas

pointer_chase
keyvalue_get/put

…

Flexibility

• Multiple Clio boards can form a distributed system, single virtual memory space
can span multiple memory nodes.

40

Client Side Stack

Virtual Memory
System

Compute Node Memory Nodes

On-
Board
DRAM

App ProcessApp ProcessApp Process

ClioLib (dispatch requests)

Virtual Memory
System

On-
Board
DRAM

Clio
Net

Distributed Mgmt

Clio
Net

Distributed Mgmt
Write 0xB000

Write 0xA000

Distributed System Support

Outline

• Introduction

• Motivation: Why we need real hardware

• Clio Overview: Interface and overall approach

• Design: How we remove “state”

• Implementation and evaluation results

41

Implementation and Application

• Fast path and extended path implemented in hardware using SpinalHDL

• Prototype with Xilinx ZCU106 ARM-FPGA board

• Implemented five applications

• Image compression

• Multi-version object store

• key-value store

• pointer dereferencing

• data analytics operation

42

Clio prototype on the Xilinx ZCU106 board

Ac
ce

ss
 L

at
en

cy

(µ
s)

0

0.95

1.9

2.85

3.8

Read Latency (16B)
43

• 100Gbps throughput, 2.8µs (avg) 3.2µs (p99) latency

• Orders of magnitude lower tail latency than RDMA
• Outperforms Clover [ATC’20], LegoOS [OSDI’18], and HERD [SIGCOMM’14]

Ac
ce

ss
 L

at
en

cy

(µ
s)

0

1.75

3.5

5.25

7

4B 64B 256B 512B 1KB

 Clio Clover HERD LegoOS

Remote Write Latency

16.8ms

2.8µs

Pa
ge

 F
au

lt

M
R

 M
is

s

PT
E

M
is

s

Pa
ge

 F
au

lt

PT
E

M
is

s

Evaluation Results
Basic Performance

44

• Clio provides bounded access time for data requests
• Clio scales well with concurrent clients and total memory size

Ac
ce

ss
 L

at
en

cy

(µ
s)

0

1.25

2.5

3.75

5

0 4 8 12 18 20

RDMA-CX3 RDMA-CX5 Clio

Number of Pages (2^n)
Ac

ce
ss

 L
at

en
cy

(µ

s)

0

1150

2300

3450

4600

1 200 400 600 800 1K

RDMA-CX3 RDMA-CX5 Clio

Number of Concurrent Clients

Bounded Tail Latency even under scale

Evaluation Results
Concurrent Clients and Memory Size

45

• Applications benefits from stable latency and scalability

• Extended path outperforms CPU based offloading [Herd-BlueField]

YC
SB

 L
at

en
cy

(µ

s)

0

10

20

30

40

YCSB Latency (1K)

Clio Clover HERD HERD-BF(SmartNIC)

2.5X faster

Evaluation Results
Disaggregated Applications

Ta
sk

 F
in

is
h

Ti
m

e
(s

)

14

16

18

20

22

0 200 400 600 800

RDMA Clio

Number of Concurrent Clients

Summary

We built Clio, a real hardware disaggregated memory system

Achieves all requirements of memory disaggregation: 
performance, cost, scalability and flexibility.

46

Conclusion

• Real benefits of hardware resource disaggregation comes from real hardware

• Building OS functionalities in hardware is feasible but needs new design

• The nature of disaggregation indicates new opportunities and challenges.

• Co-designing software and hardware systems is key in building real hardware.

47

Clio is a starting point for more real disaggregated hardware

Other Recent/Ongoing Disaggregation
Works

• Network disaggregation (hardware implementation)

• Serverless computing on disaggregation

• Secure disaggregation (hardware implementation)

• …

48

Thank you!
Get Clio at https://github.com/WukLab/Clio

wuklab.io

http://wuklab.io
https://github.com/WukLab/Clio
http://wuklab.io

