
Clio: A Hardware-Software Co-Designed 
Disaggregated Memory System 

Zhiyuan Guo*, Yizhou Shan* (* equal contribution)

Xuhao Luo, Yutong Huang, Yiying Zhang



2

Hardware Resource Disaggregation: 

Breaking monolithic servers into 
distributed, network-attached 

hardware components 
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Network



Workshop on Resource Disaggregation 
and Serverless (WORDS 2022)

• Website: https://www.wordsworkshop.org/


• Submission deadline: 9/29/2022


• Workshop date: 11/17/2022 (virtual or hybrid)


• Types of papers


• Vision paper, completed new work (up to 5 pages)


• published work (2 page abstract)


• PC chairs


• Arvind Krishnamurthy, University of Washington


• Yiying Zhang, University of California San Diego
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Existing Disaggregated Memory Systems
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All existing works use server to

Build/Emulate disaggregated memory devices  

Emulating
Emulate

• LegoOS [OSDI ’18] 

• FastSwap [EuroSys ’20] 

• AIFM [OSDI ’20] 

• Semeru [OSDI '20] 

….
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How about real hardware?



Outline

• Introduction


• Motivation: Why do we need real hardware? 

• Clio Overview: Interface and overall approach


• Design: How we remove “state”


• Implementation and evaluation results
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Memory Resource

Network Port

Virtual Memory Access 
System

Network
App1 App2 App3

Disaggregated Memory Hardware

Network Stack

Memory Controller 

Features


Standalone 


Host memory


Directly connect to network


Shared by applications

Desired goals


High throughput 


Low avg and tail latency


Scalability and capacity


Low cost


Easy to use and versatile



- Unused resources in server


- Limited DRAM size


Could Server Emulation work?

Servers are overkill for 
memory disaggregation.
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OS

Memory Node  (Server)
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Storage Sys …

Low Cost

Capacity
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 …

Virtual Mem Sys

DRAMs

NIC

Process 
mgmt



OS

Could RDMA work?
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Virtual Mem Sys

Memory

RNIC

Page 
Table

PTE 
Cache

QP 
Cache

CN MN(Server)

RNIC

Memory 
Region

Page Fault 
Handler

Page Fault
MR 

Cache

-Limited NIC cache of OS management 
structures


-Slow page fault operations in data path


16.8ms!

App

Scalability

Tail Latency

Queue 
Pair

RDMA is not designed for standalone 
memory disaggregation

CXL?  
  Need specialized interconnect

  Not immediately available



What we build: Clio [ASPLOS’22]

a hardware-based disaggregated memory system that virtualizes, protects, 
and manages disaggregated memory at standalone memory nodes
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Outline

• Introduction


• Motivation: Why we need real hardware


• Clio Overview: Interface and overall approach 

• Design: How we remove “state”


• Implementation and evaluation results
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Regular Machine

Local DRAM

CPU CPU CPU

Network

Compute Node

Memory Node 
(Clio Board)

Control Path
Allocation

Metadata

Distributed Support

virtual memory interface 

SoC

On-Board DRAM

Data Path
Virtualize
Protect
Multiplex

App Process

Clio library

Offload Path
Computation 

offload
Extended APIs

Clio Net (PHY+MAC)

remote_alloc(pid, size)  
read/write(pid, VA) 

key-value & other high-level API
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Main Idea: 

Eliminate state from hardware
“state”:

Metadata stored on the memory node that need to be 
accessed or updated when processing requests.



External State

Benefit of Removing State
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• Minimizing state can reduce cost, reduce tail latency, and improve scalability


• Avoiding inter-request state can make the pipeline smooth

Memory Node Hardware 

StateClient Side Stack

Compute Node Memory Node

State 
Cache

Inter-request State



Outline

• Introduction


• Motivation: Why we need real hardware


• Clio Overview: Interface and overall approach


• Design: How we remove “state” 

• Implementation and evaluation results
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How to eliminate state from MN hardware 

Overall Approach: Co-designing hardware, network, and software 

1. Reduce state in disaggregated memory protocol


2. Move state to compute node


3. Remove state from critical path


4. Optimize hard-to-remove state to bounded size
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How to eliminate state from MN hardware 

Overall Approach: Co-designing hardware, network and software 

1. Reduce state in disaggregated memory protocol 

2. Move state to compute node


3. Remove state from critical path


4. Optimize hard-to-remove state to bounded size
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• Observation: accesses to MNs are always in the request-response style
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RDMA Network
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Net Tx Buffer

Congenstion Control

Response ONLY

Request ONLY

Net Tx Buffer

Per-Connection Metadata

Reduce state in disaggregated memory protocol > 
Asymmetric Memory Request Protocol  



Asymmetric Memory Request Protocol  

• Observation: accesses to MNs are always in the request-response style
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RDMA Network

Client Side Stack
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Reduce state in disaggregated memory protocol > 

 Asymmetric RPC-style, connection-less network protocol



Network Ordering

• Observation: Memory requests can tolerate certain network reordering
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RDMA Network
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Reduce state in disaggregated memory protocol > 
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Net Rx Buffer (reorder)

P1/P2
One write with 
two packets:
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Network Ordering

• Observation: Memory requests can tolerate certain network reordering
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RDMA Network
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How to eliminate state from MN hardware

1. Reduce state in system protocol


2. Move state to compute node 

3. Remove state from critical path


4. Optimize hard-to-remove state to bounded size
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Congestion and Flow Control

• Observation: CN knows the size of both requests and responses
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Move state to Compute Node > 

 Move congestion and in-cast control to CN side

Client 
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App ProcessApp ProcessApp Process

ClioLib (congestion/in-cast 
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Congenstion ControlAsymmetric 
Allow reorder

Known 
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Handle Retry

• Observation: Network losses are rare and fully observed by CN
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Move state to Compute Node > 

 Let CN side software handling retry
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CN Request Drop
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MN Reply Drop
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Handle Retry
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RDMA Network

ETH & PHY

Virtual M
em

ory System

Compute Node Memory Node

O
n -B

oard D
R

AM

Per-Connection Metadata

Net Rx Buffer

Net Tx Buffer

Congenstion Control

Move state to Compute Node > 

Asymmetric 
Allow reorder

App ProcessApp ProcessApp Process

ClioLib (congestion/in-cast 
ctrl)

ClioLib (congestion/in-cast 
ctrl, retry, …)

Clio Network

Mainly only 
PHY & ETH!



How to eliminate state from MN hardware

1. Reduce state in system protocol


2. Move state to compute node


3. Remove state from critical path 

4. Optimize hard-to-remove state to bounded size
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Splitting Fast Path and Slow Path
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Remove state from critical path > 

Clio 
Net

Virtual Memory System

Memory Node

remote_alloc(pid, size) 
read/write (pid, va)

Metadata requests 

• Stateful, flexible, less strict latency

O
n -B

oard D
R

AM

• Observation: Metadata and data requests have different state and performance requirements

Data requests (Performance critical!) 

• Strict latency and throughput



Splitting Fast Path and Slow Path
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Remove state from critical path > 

Clio 
Net

Memory Node

O
n -B

oard D
R

AM

Virtual Memory System 
(Slow Control Path) 

Software on Processor 
Virtual Memory System 
(Fast Data Path) 

Hardware Pipeline on ASIC 

Splitting virtual memory system into fast path and slow path

remote_alloc(pid, size) 
read/write (pid, va)



Splitting Fast Path and Slow Path
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Remove state from critical path > 

Memory Node

O
n -B

oard D
R

AM

Slow Path (ARM) 

Fast Path (ASIC) 

TLB + DRAM Access 

Virt Mem Mgmt Phys Mem MgmtDistributed Mgmt

Solution: Splitting virtual memory system into fast path and slow path

remote_alloc(pid, size) 
read/write (pid, va)

Clio 
Net



Handling Page Fault
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Remove state from critical path > 

Memory Node

O
n -B

oard D
R

AM

Slow Path (ARM) 

Fast Path (ASIC) 

Distributed Mgmt

• Observation: Access requests with pagefault need stateful allocation operations

Clio 
Net TLB + DRAM Access 

Virt Mem Mgmt Phys Mem Mgmt
write (pid, va)

Physical page 
not allocated 



Handling Page Fault
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Remove state from critical path > 

Memory Node

O
n -B

oard D
R

AM

Slow Path (ARM) 

Fast Path (ASIC) 

Distributed Mgmt

• Observation: Access requests with pagefault need stateful allocation operations

Clio 
Net TLB + DRAM Access 

Virt Mem Mgmt Phys Mem Mgmt

Physical page 
not allocated 

write (pid, va)

PF 
Handler

async buffers

Solution: Handle page fault pre-allocated physical pages in async buffers

Only add 4ns when page fault happens



How to eliminate state from MN hardware

1. Reduce state in system protocol


2. Move state to compute node


3. Remove state from critical path


4. Optimize hard-to-remove state to bounded size
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Traditional Page Table Design (Strawman)
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Optimize state to bundled size > 
O

n -B
oard D

R
AM

Slow Path (ARM) 

Fast Path (ASIC) 

Clio 
Net PF 

HandlerTLB

PageTable Base 
Pointer

Pid Base
Pid Base

…

PageTable 
Walker

PT
PT

PT

write (pid, va) Miss
base_ptr

• Observation: Size of base pointer table and page tables grow with                      
number of clients, needs multiple DRAM accesses to walk page tables

Fetch PTE

Base



Hash-Based Page Table
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Optimize state to bundled size > 
O
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R
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PF 
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Hash

PageTable 
FetcherMiss

Pid, VA

H
H = hash(pid, va)

Single 
Hash 
Page TableFetch Bucket

Single DRAM 
access

Hash Page Table for bounded size and access time (single DRAM access)

Clio 
Net

write AP_VA

No table selection



“eliminate state” summary

• Reduce state in system protocol: Disaggregated protocol, consistency model, …


• Move state to compute node: Congestion control, retry, dependency check, …


• Remove state from critical path: Hardware pagefault, memory region, …


• Optimize state to bounded size: Hash-based pagetable, atomic operations, …
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Low Performance Overhead
Low Cost Scalability FlexibilityThroughput, Latency, Tail Latency ?



Extend computation offloading
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Extend computation offloading
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• Multiple Clio boards can form a distributed system, single virtual memory space 
can span multiple memory nodes.
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Client Side Stack

Virtual Memory 
System

Compute Node Memory Nodes

On-
Board 
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App ProcessApp ProcessApp Process
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Outline

• Introduction


• Motivation: Why we need real hardware


• Clio Overview: Interface and overall approach


• Design: How we remove “state”


• Implementation and evaluation results
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Implementation and Application

• Fast path and extended path implemented in hardware using SpinalHDL

• Prototype with Xilinx ZCU106 ARM-FPGA board


• Implemented five applications

• Image compression

• Multi-version object store

• key-value store

• pointer dereferencing

• data analytics operation 
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Clio prototype on the Xilinx ZCU106 board
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• 100Gbps throughput, 2.8µs (avg) 3.2µs (p99) latency

• Orders of magnitude lower tail latency than RDMA 
• Outperforms Clover [ATC’20], LegoOS [OSDI’18], and HERD [SIGCOMM’14]
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• Clio provides bounded access time for data requests  
• Clio scales well with concurrent clients and total memory size 
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• Applications benefits from stable latency and scalability 

• Extended path outperforms CPU based offloading [Herd-BlueField]
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Summary

We built Clio, a real hardware disaggregated memory system


Achieves all requirements of memory disaggregation: 
performance, cost, scalability and flexibility.
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Conclusion

• Real benefits of hardware resource disaggregation comes from real hardware


• Building OS functionalities in hardware is feasible but needs new design


• The nature of disaggregation indicates new opportunities and challenges.


• Co-designing software and hardware systems is key in building real hardware.
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Clio is a starting point for more real disaggregated hardware



Other Recent/Ongoing Disaggregation 
Works

• Network disaggregation (hardware implementation)


• Serverless computing on disaggregation


• Secure disaggregation (hardware implementation)


• …
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Thank you! 
Get Clio at https://github.com/WukLab/Clio

wuklab.io

http://wuklab.io
https://github.com/WukLab/Clio
http://wuklab.io

