
Co-designing a Language,
Tool-chain, and Architecture:

Lessons Learnt from the POETS Project
David Thomas

University of Southampton (2021…)

Imperial College (1996..2021)

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 1

POETS : What it is

• EPSRC Programme Grant
• Running 2016 till 2022

• Four university partners:
• Newcastle

• Imperial

• Southampton

• Cambridge

This talk is a bit of a retrospective

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 2

POETS : The big idea

“Create a new framework for developing and executing event-driven
applications using asynchronous algorithms in distributed hardware”

Event-driven = millions of shared-nothing threads sending tiny messages

• Research challenges:
• Applications: what should event-first algorithms look like?
• Languages: what language do we use?
• Compilation: how do we describe and compile such applications?
• Hardware: what does this distributed hardware look like?

• Management challenges:
• We don’t have a target application, language, compiler or architecture
• How do we even get started?

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 3

POETS : What we achieved over six years

• Applications: portfolio of asynchronous event-based applications
• Flagship is “Dissipative Particle Dynamics (DPD)”

• Allowed us to provide speed-up for used in published chemical research

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 4

David Thomas (dbt1c21@soton.ac.uk)

DPD : Exploring phase transitions with POETS

1M particles for 1M time-steps

PEG Concentration (Yellow molecules) →

P

ro
te

in
 C

o
n

ce
n

tr
at

io
n

NANDA, 2023/09/05 5

POETS : What we achieved over six years

• Applications: portfolio of asynchronous event-based applications
• Flagship is “Dissipative Particle Dynamics (DPD)”
• Allowed us to provide speed-up for used in published chemical research

• Compilers: multiple compilers and simulators for one language
• Main back-end is “The Orchestrator”
• Performs place and route for applications with 1M+ logical threads

• Architecture: bespoke CPU architecture and network called “Tinsel”
• Custom RISC-V architecture with deeply embedded routed network
• Currently supports 50K hardware threads on 50 FPGAs

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 6

Tinsel : 50K hardware threads per rack

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 7

Lessons learnt
Experience of co-designing language, compiler, and hardware stacks

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 8

POETS : Lessons learnt

• Specific context:
• Co-design: languages, applications, compilers, and hardware

• Multi-partner team: 12-15 people across four universities

• Time-scale: 6 year project

• Changing team: no post-doc who started with project is still in post

• Who these lessons might be for
• PhD students considering combined hw+sw research (maybe)

• Long-term projects with a hardware+software stack

• Me (writing programme grants)

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 9

Lessons Learnt : stating the obvious
1. Abstractions:

1. Set the hardware free
2. Go formal or go home
3. Syntax doesn’t matter

2. Development:
1. Integration tests over unit tests
2. Waterfall sucks
3. Agile sucks
4. Document the “why”; show the “how”
5. Hardware in the loop verification is key

3. Management:
1. Once it all “works” most of the work is ahead of you
2. Everyone can see all the repos, all the time

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 10

POETS : The management challenge

Year 0
2016

Year 6
2022

Applications

Design
Automation

Hardware
Architecture

Language

“ISA” / “ABI”

?

?

?

?

?

Demo
Apps

Compiler

Architecture
Network

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 11

POETS : Compared with CUDA

Year 0

Applications

Design
Automation

Hardware
Architecture

Language

“ISA” / “ABI”

BLAS

?

GPU

Driver

C CUDA

NVCC

CU-BLAS

GP-GPU

PTX

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 12

POETS : Compared with FPGA HLS

Year 0

Applications

Design
Automation

Hardware
Architecture

Language

“ISA” / “ABI”

Image
Processing

?

FPGA

VHDL

C

Vivado
HLS

HLS-
OpenCV

C++ with
HLS Ext.

Versal

Vitis

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 13

POETS : Our approach

Year 0
2016

Year 6
2022

Applications

Design
Automation

Hardware
Architecture

Language

“ISA” / “ABI”

Apps

Compiler

Hardware

ABI

Language

Full
Apps

Complete
Compiler

Architecture
Network Vn

Simulators

Emulators

Demo
Apps

Prototype
Compiler

Architecture
Network V1

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 14

Abstractions: set the hardware free

• Temptation: narrow down language to support software
• Makes it much easier to write and compile applications

• Makes it easier to verify applications

• Software+tools people can move faster and break things

• Problem: you’re imposing constraints on hardware architects
• Everything that makes software easier makes hardware harder

• Initial assumptions become entrenched in apps and compilers

• You’ll end up with hardware that looks like everything else

• Hardware has a much slower cycle than software

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 15

POETS : Applications as graphs of FSMs

Applications are split into graphs of devices
• A device is a finite state machine

• Device state is a tiny part of the global state

• Only the device can read and write it’s state

• No shared memory – only messages

Receive: message m received by device d

d’ = receive_handler(d, m)

Send: device d sends a message m
(d’,m) = send_handler(d)

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 16

POETS: Inversion of control

class MyDevice
{

int state;

void run()
{

while(1){
msg = recv();
state = receive_handler(state, msg);

while(more_messages(state)){
(state,msg) = send_handler(state);
send(msg);

}
}

}
};

class MyDevice
{

int state;

void on_recv(const Message &msg)
{

state = receive_handler(state, msg);
}

bool ready_to_send() const
{

return more_messages(state);
}

void on_send(Message &msg)
{

(state,msg) = send_handler(state);
}

};

Software is “in control”
Devices are finite state
Hardware buffering is un-bounded

Hardware+compiler is “in control”
Software must wait for network capacity
Both devices and hardware can be finite state

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 17

Abstractions: set the hardware free

• Some key design decisions
• State changes only occur on send or receive

• Any message sent will eventually be delivered

• Devices must wait for an opportunity to send

• Devices can never delay receipt of a message

• Messages can arrive in any order

• This allowed hardware and compiler innovation during project
• Network: changed buffering model and back-pressure

• CPU design: messaging and scheduling primitives changed

• Portability: we were able to compile for other hardware (GPUs and HLS)

Makes software possible

Gives hardware flexibility

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 18

Abstractions: go formal or go home

• Temptation: define semantics in terms of the implementation
• Writing the compiler is hard

• Writing the applications is hard

• Language semantics are defined by the documentation

• Test-cases make sure everyone agrees on expected behaviour

• Reality: there are too many corner cases
• People interpret things differently: applications, compilers, hardware

• When developing in parallel these will cause problems

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 19

struct RunTime
{

vector<Device> devices;
vector<bool> ready;

void run()
{

while(1){
...
devices[i].on_recv(...);
ready[i] = devices[i].ready_to_send();
...

if(ready[i] && !network_full()){
devices[i].on_send(...);
ready[i] = devices[i].ready_to_send();

}
}

}
};

POETS : Mis-implementations five years on

struct RunTime
{

vector<Device> devices;
vector<bool> ready;

void run()
{

while(1){
...
devices[i].on_recv(...);
ready[i] |= devices[i].ready_to_send();
...

if(ready[i] && !network_full()){
devices[i].on_send(...);
ready[i] = devices[i].ready_to_send();

}
}

}
};

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 20

Abstractions: go formal or go home

• Writing formal specs is not enough
• We had formal semantics in year 1

• Dependently typed in Coq: a thing of beauty

• A more “readable” version in Haskell

• The formal specs need to be front and centre in the documentation

• They need to be in a form that everyone can read
• Five years later: expressed it in python

• When we used them, formal semantics had huge benefits
• Simulation, verification, model checking, equivalence checking, …

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 21

Abstractions: Syntax doesn’t matter

• What should the application language look like?
• Applications are described and specified in this language
• Compiler will consume language and map into hardware

• Temptation: create a beautiful language for graphs and compute
• Wonderful bespoke grammar and elegant extension points
• Describes both the functionality of nodes and topology of graphs
• Implement parser in C++. Then in Python. Then in JavaScript; then…

• Practical: describe it in dumb XML
• Everyone has an XML parser and generator
• Automatic versioning support: we went through 4 language revisions
• Can exploit existing XML schema tools to get free grammar checkers
• Downside: humans hate reading/writing XML, but they can if they have to

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 22

David Thomas (dbt1c21@soton.ac.uk)

Toolchain : appl. description

Application Specific

Graph Inst. (XML)

Graph Type (XML)

Instance Generator

NANDA, 2023/09/05 23

gals_heat_graph_type.xml
gals_heat_graph_inst.xml

Toolchain : development

Application Specific Debug, analysis, and visualisation

Graph Inst. (XML)

Graph Type (XML)

Instance Generator

Build C++ Model

Graph Type (C++)

Parallel simulator

Exec. Snaphots

Build JS Model

Graph Type (JS)

Web Simulator

Offline Visualisation

Videos

Offline Analysis

Perf. reports

Build TLA+ Model

Graph Type (TLA+)

Model Checking

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 24

Toolchain : execution

Application SpecificHardware Execution

Graph Inst. (XML)

Graph Type (XML)

Instance Generator

To Tinsel inst

Tinsel Inst (C)

Tinsel Type (C)

To Tinsel type

MPI Simulator RISC-V Compiler

Tinsel binary

Tinsel hardwareTinsel simulator

To Mem. Config

HW Config (binary)

RTL Type (VHDL)

To RTL type

Raw hardware

Place-and-Route

HW Type (bitfile)

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 25

Conclusion

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 26

Conclusion (?)

• Genuine co-research in languages and architectures
• Chicken and egg problem: which one to tackle first?

• Big hardware+software research is complicated
• Can learn from enterprise management

• Can put academic research into practice

• POETS got some stuff right, and some wrong
• We built a complete stack

• It worked, and we are using it to do science

• So probably mostly right…?

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 27

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 28

Abstractions: Integration tests beat semantics

• We have semantics+language: full speed ahead

• Temptation: work independently on apps, compiler, and architecture
• We all agree on the formal definition, it’s bound to work together

• Reality: everyone interprets things slightly differently
• “Application: always eventually we may send a message”

• “Compiler: always eventually you will send a message”

• Lesson: full-stack integration tests are incredibly valuable

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 29

Development: Waterfall sucks

• We have semantics+language: full speed ahead (again)

• Temptation: each part is a big software/hardware project
1. Write documentation

2. Write specifications

3. Write test-cases

4. Implement the software/hardware

5. Unit test the software/hardware

6. Integration test against other components

• Reality: it might be years before integration tests
• Very slow feedback for a research project

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 30

Development: Agile sucks

• We have semantics+language: full speed ahead (again)

• Temptation: sprints, story-points, stand-ups, oh-my!
• “We already have weekly meetings: those are stand-ups, right?”

• “This is research, we need to burst forwards and be incremental!”

• Reality: growing technical debt and unstable interfaces
• Different research strands have very different time-scales

• Applications: weeks

• Compilers: months

• Hardware: bi-yearly

• Recommendation: set project-wide targets; update them regularly

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 31

Development: document “why”; show “how”

• Documentation is awesome in big software+hardware projects
• Transmits project knowledge over time
• Transmits project know-how between researchers

• Temptation: write lots of documentation about “how” to do things
• Long written tutorials used to explain how things are supposed to work

• Reality: this is research; tools and languages are not stable
• Tutorials get out of date and rot quickly (on a multi-year timescale)
• We often have to get together and change software+hardware APIs
• The most important documentation is often why it changed

• Recommendation: document “why”; show “how”
• Have good processes for recording design decisions: git commit logs don’t count

• We used a process inspired by Python Enhancement Proposals
• Record video tutorials on how to use tools and get started

• Low overhead, and much easier to keep up to date

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 32

Development: hardware-in-loop verification

• Problem: research created hardware is finicky and scarce
• There may only be one test-chip or test-installation
• There is competition for access to the test-hardware
• It falls over all the time

• Temptation: “I’ll run hardware integration manually on commit”

• Reality: integration tests are rarely run on test hardware

• Recommendation: hardware-in-the-loop continuous integration
• It is painful to set up
• It breaks all the time
• It interferes with other research activities
• But: you get immediate notice of functional and performance regressions

NANDA, 2023/09/05 David Thomas (dbt1c21@soton.ac.uk) 33

