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Hardware acceleration for 
high parallelism and energy efficiency

How to perform hardware design?
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High-Level Synthesis: From Programs to Circuits

A completely new type of users for HLS!

Software application programmers
A completely new type of applications for HLS!

General-purpose code
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Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}

i

+

1

<

N

acc

Static 
controller

2 stages

LD x[i] LD c[n-i]

*

+

Program functionality

Operation 
schedule
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• Dynamic scheduling
– Maximum parallelism: Only serialize memory accesses on actual dependencies

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

1: x[0]=5 → ld hist[5]; st hist[5]; 
2: x[1]=4 → ld hist[4]; st hist[4]; 
3: x[2]=4 → ld hist[4]; st hist[4];

RAW dependency
• Static scheduling (standard HLS tool)

– Inferior when memory accesses cannot be disambiguated at compile time

The Limitations of Static Scheduling 
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A Different Way to Do HLS

Static scheduling (standard HLS tool): decide 
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide 
at runtime when each operation executes
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• Asynchronous circuits: operators triggered when inputs are available
– Budiu et al. Dataflow: A complement to superscalar. ISPASS’05.

• Dataflow, latency-insensitive, elastic: the synchronous version of it
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

– Carloni et al. Theory of latency-insensitive design. TCAD’01.

– Jacobson et al. Synchronous interlocked pipelines. ASYNC’02.

– Vijayaraghavan and Arvind. Bounded dataflow networks and latency-insensitive circuits. MEMOCODE’09.

Dataflow Circuits

High-level synthesis of 
dataflow circuits
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HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS
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Reaping the benefits of 
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution
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Component 1 Component 2

data

valid

ready

• We use the SELF (Synchronous ELastic Flow) protocol 
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

• Every component communicates via a pair of handshake signals

• Make scheduling decisions at runtime
– As soon as all conditions for execution are satisfied, an operation starts

Dataflow Circuits
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JoinFork

Fork

Branch Merge

Merge

Join

Branch

Dataflow Components

+ *

STORE
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Branch

Branch
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Merge

Join

Merge

Join

Dataflow Components

Fork
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Branch
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LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

Basic 
block

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017
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From Program to Dataflow Circuit

Single token on cycle, in-order 
tokens in noncyclic paths

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee

Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017
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Backpressure from slow paths prevents pipelining

From Program to Dataflow Circuit
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Reaping the benefits of 
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution
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Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

Fork

Buffers as registers to break 
combinational paths

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022
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Buffers as FIFOs to regulate 
throughput

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022
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Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

Mixed integer linear programming (MILP) model 
based on Petri net theory
• Analyze token flow through the circuit
• Determine buffer placement and sizing
• Maximize throughput for a target clock period
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• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

M1

for (i = 0; i < N; i++) {
a[i] = a[i]*x;
b[i] = b[i]*y;

}

* *

M2

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee
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• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
a[i] = a[i]*x;
b[i] = b[i]*y;

}

Sharing not possible without 

damaging throughput

M1 M2

Units fully utilized

(high throughput)

Use MILP (performance optimization) 
information to decide what to share

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee
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• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
a[i] = a[i]*x;
b[i] = b[i]*y;

}

Sharing mechanism for 
deadlock-free execution

FIFO

Branch

Token order: M1, M2

Inputs of M1, M2

*

M1/2

Units underutilized

(low throughput)

M1 M1/2M2

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee
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Backpressure from slow paths prevents pipelining

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
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Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

Buffers for high throughput
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RAW dependency
not honored!

Inserting Buffers

What about memory?

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

1: x[0]=5 → ld hist[5]; st hist[5]; 
2: x[1]=4 → ld hist[4]; st hist[4]; 
3: x[2]=4 → ld hist[4]; st hist[4];

RAW dependency
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• Traditional processor LSQs allocate memory instructions in program order

• Dataflow circuits have no notion of program order

We Need a Load-Store Queue (LSQ)!

Processor
datapath

(out of order)

Memory
Ordering 

(load-store 
queue)

Instruction 
fetch & decode

(in order)

loop: lw $t2, 0($t4) 

lw $t3, 100($t4) 

mul $t5, $t2, $t3

addi $t5, $t5, $t1

sw $t5, 100($t4)

addi $t1, $t1, 4 

bne $t6, $t1, loop

How to supply program 
order to the LSQ?

store x[i]

load y[i]

…

Dataflow (out of order)

Memory

…

…
…

…
… ???

load x[0]

load x[i]

Ordering 

(load-store 
queue)
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• An LSQ for dataflow circuits whose only difference is in the allocation policy:
– Static knowledge of memory access program order inside each basic block

– Dynamic knowledge of the sequence of basic blocks from the dataflow circuit

LSQ

Memory

BB1: LD, ST

LSQ Allocation

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x
LD weight

LD hist
ST hist

BB1

Josipović, Brisk, and Ienne. An Out-of-Order Load-Store Queue for Spatial Computing. CASES 2017 Best Paper Award Nominee
Josipović, Bhattacharrya, Guerrieri, and Ienne. Shrink It or Shed It! Minimize the Use of LSQs in Dataflow Designs. FPT 2019
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• An LSQ for dataflow circuits whose only difference is in the allocation policy:
– Static knowledge of memory access program order inside each basic block

– Dynamic knowledge of the sequence of basic blocks from the dataflow circuit

LD x
LD weight

LD hist
ST hist

BB1 is starting
LSQ

Memory

BB1: LD, ST

LD hist

ST hist

LSQ Allocation

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

BB1

Josipović, Brisk, and Ienne. An Out-of-Order Load-Store Queue for Spatial Computing. CASES 2017 Best Paper Award Nominee
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• An LSQ for dataflow circuits whose only difference is in the allocation policy:
– Static knowledge of memory access program order inside each basic block

– Dynamic knowledge of the sequence of basic blocks from the dataflow circuit

BB1 is starting
LSQ

Memory

BB1: LD, ST

LD hist

ST hist

LD hist

ST hist

LSQ Allocation

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x
LD weight

LD hist
ST hist

BB1

Josipović, Brisk, and Ienne. An Out-of-Order Load-Store Queue for Spatial Computing. CASES 2017 Best Paper Award Nominee
Josipović, Bhattacharrya, Guerrieri, and Ienne. Shrink It or Shed It! Minimize the Use of LSQs in Dataflow Designs. FPT 2019
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Dataflow Circuit with the LSQ

High-throughput pipeline with 
memory dependencies honored

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

1: x[0]=5 → ld hist[5]; st hist[5]; 
2: x[1]=4 → ld hist[4]; st hist[4]; 
3: x[2]=4 → ld hist[4]; st hist[4];

RAW dependency
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Reaping the benefits of 
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution
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float d=0.0; x=100.0; int i=0; 

do {
d = a[i] + b[i];
i++;

}
while (d<x);

<

Buff

Load a[i] Load b[i]

+

+

Fork

Start, i=0

End

d

3 stages

comb.

Merge

Branch comb.

1 i

x

Nonspeculative Dataflow Circuit
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<

Buff

Load a[i] Load b[i]

+

+

Fork

Start, i=0

End

d

3 stages

comb.

Merge

Branch comb.

1 i

x

float d=0.0; x=100.0; int i=0; 

do {
d = a[i] + b[i];
i++;

}
while (d<x);

Nonspeculative Dataflow Circuit
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61

Nonspeculative vs. Speculative System

Long control flow decision 
prevents pipelining
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62

Nonspeculative vs. Speculative System
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MergeMerge

Load

Exit

Store

Store

...

Branch

Speculator

++

Fork

+

...

• Contain speculation in a region of the circuit delimited by special components
– Issue speculative tokens (pieces of data which might or might not be correct)

– Squash and replay in case of misspeculation

Speculation in Dataflow Circuits

data + handshake
speculative tag

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019 
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MergeMerge

Load

Exit

Store

Store

...

Branch

Commit

Commit

Speculator

++

Fork

+

...

Commit

Speculation in Dataflow Circuits

• Contain speculation in a region of the circuit delimited by special components
– Issue speculative tokens (pieces of data which might or might not be correct)

– Squash and replay in case of misspeculation

data + handshake
speculative tag

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019 
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Save
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++
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+

Speculation in Dataflow Circuits

• Contain speculation in a region of the circuit delimited by special components
– Issue speculative tokens (pieces of data which might or might not be correct)

– Squash and replay in case of misspeculation

data + handshake
speculative tag

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019 
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Speculation in Dataflow Circuits

• Contain speculation in a region of the circuit delimited by special components
– Issue speculative tokens (pieces of data which might or might not be correct)

– Squash and replay in case of misspeculation

data + handshake
speculative tag

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019 
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MergeMerge

Load

Exit

Store

Store

...
Branch

Commit

Commit

Commit

Save

Save

Save

...

Speculator

++

Fork

+

Speculation in Dataflow Circuits

• Contain speculation in a region of the circuit delimited by special components
– Issue speculative tokens (pieces of data which might or might not be correct)

– Squash and replay in case of misspeculation

data + handshake
speculative tag

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019 
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Branch

Buff

Load a[i] Load b[i]

+

Fork

Start, i=0

End

d

Merge

<

+

1 i

x

Speculative Dataflow Circuit

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019 
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Speculator instead of 
regular branch

Buff

Load a[i] Load b[i]

+

Fork

Start, i=0

End

d

Spec.
Branch

Merge

<

+
Speculator instead of 

regular Branch

1 i

x

Speculative Dataflow Circuit

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019 
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Input boundary: save units

Buff

Load a[i] Load b[i]

+

Fork

Start, i=0

End

d

Spec.
Branch

Merge

Save

<

+
Input boundary: 

Save units

1 i

x

Speculative Dataflow Circuit

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019 
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Buff

Load a[i] Load b[i]

+

Start, i=0

End

d

Spec.
Branch

Commit

Output boundary: commit 
units

Merge

Save

<

+

Fork

Output boundary: 
Commit units

1 i

x

Speculative Dataflow Circuit

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019 
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i

Buff

Load a[i] Load b[i]

+

Fork

Start, i=0

End

d

Spec.
Branch

Save

Commit

Merge

<

+

1

x

BEFORE (without speculation)

Branch

Buff

Load a[i] Load b[i]

+

Fork

d

Merge

<

+

1 i

xWait for long-
latency condition

Continue computing 
before condition 

known

Speculative Dataflow Circuit
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Speculative Dataflow Circuit

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019 

High-throughput speculative pipeline
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HLS of Dynamically Scheduled Circuits

Static HLS vs. dynamic HLS?
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Dynamatic: An Open-Source HLS Compiler

• From C/C++ to synthesizable dataflow circuit description

Josipović, Guerrieri, and Ienne. Dynamatic: From C/C++ to Dynamically Scheduled Circuits. FPGA 2020



7

6

Experimental Results

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

Josipović, Guerrieri, and Ienne. Synthesizing General-Purpose Code into Dynamically Scheduled Circuits. CASM 2021
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Experimental Results

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

Josipović, Guerrieri, and Ienne. Synthesizing General-Purpose Code into Dynamically Scheduled Circuits. CASM 2021
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Experimental Results

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

Josipović, Guerrieri, and Ienne. Synthesizing General-Purpose Code into Dynamically Scheduled Circuits. CASM 2021
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Experimental Results

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

Reduced execution time in 
irregular benchmarks

(speedup of up to 14.9X)

Josipović, Guerrieri, and Ienne. Synthesizing General-Purpose Code into Dynamically Scheduled Circuits. CASM 2021
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Experimental Results

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

Josipović, Guerrieri, and Ienne. Synthesizing General-Purpose Code into Dynamically Scheduled Circuits. CASM 2021

Reduced execution time in 
irregular benchmarks

(speedup of up to 14.9X)
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Experimental Results

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

LSQ causes significant 
resource overheads

Josipović, Guerrieri, and Ienne. Synthesizing General-Purpose Code into Dynamically Scheduled Circuits. CASM 2021
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Experimental Results

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

1020 LSQ slices

220 295 kernel slices

1073

~ 5% of a Kintex-7 
FPGA

LSQ causes significant 
resource overheads

Josipović, Guerrieri, and Ienne. Synthesizing General-Purpose Code into Dynamically Scheduled Circuits. CASM 2021
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Experimental Results

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

Josipović, Guerrieri, and Ienne. Synthesizing General-Purpose Code into Dynamically Scheduled Circuits. CASM 2021

Static & dynamic HLS have the 
same pipelining capabilities

××
Mvt

Gaussian
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DSP-oriented applications

Static vs. Dynamic Scheduling

Computer
Architecture

High-Level
Synthesis

Statically Scheduled
→ “Compiler does the job”

Dynamically Scheduled
→ “Hardware does the job”

VLIW
Processors

Out-of-Order
Superscalar
Processors

Traditional HLS Dataflow circuits

General-purpose code

(new applications and users)
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Thanks! ☺

https://dynamo.ethz.ch/

Research group: 

https://dynamatic.epfl.ch/

Dynamatic HLS tool: 


