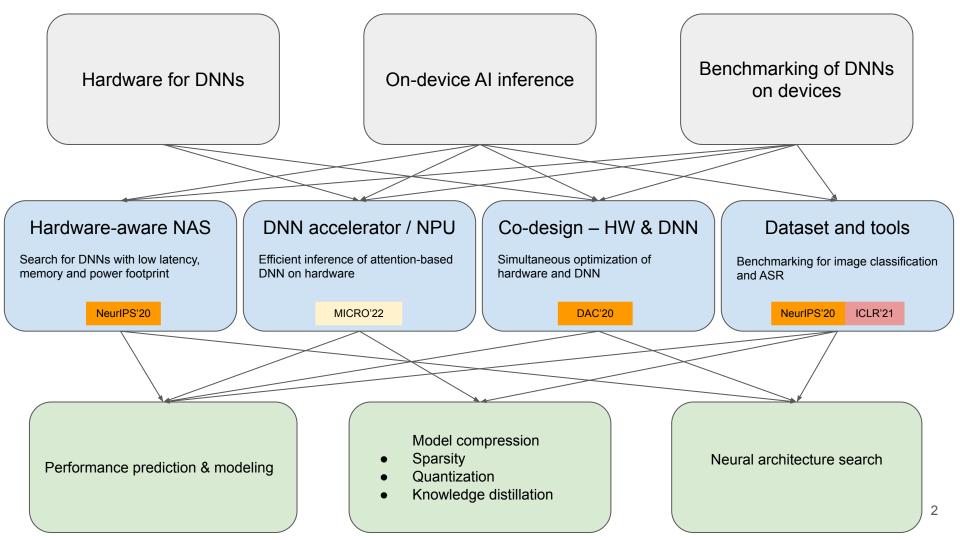
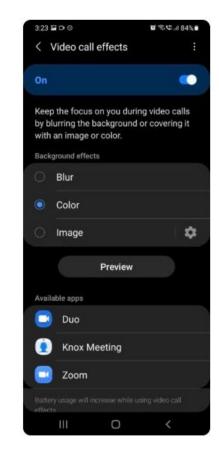
Co-design of Hardware and Neural Network

Thomas Chau



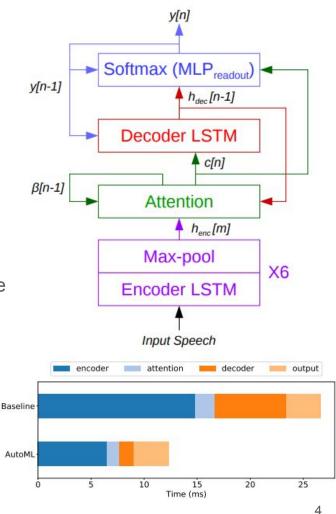
Example application - video segmentation

- Human Semantic Segmentation model used in Google Duo, MS teams, Zoom meeting etc
- Finding light-weight model that meet real-time requirement, without accuracy loss



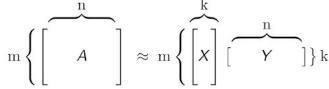
Example application - ASR

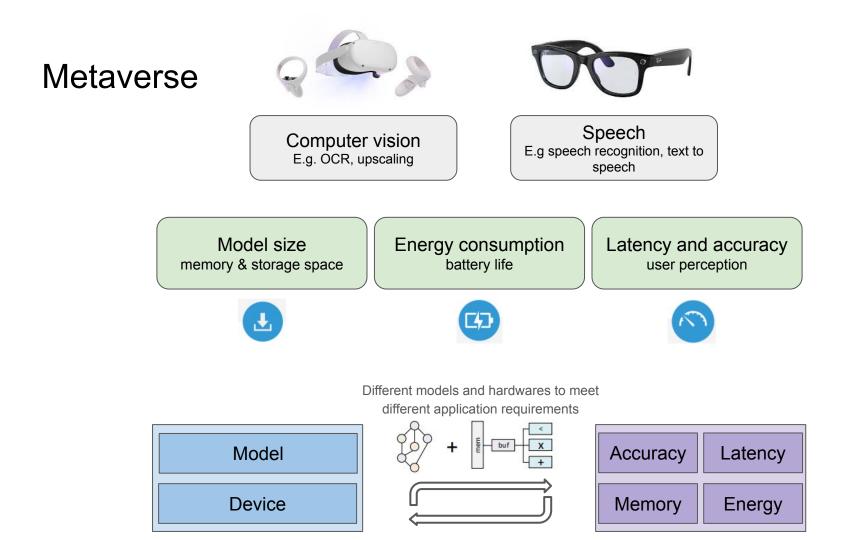
- Audio interface of phone, TV, AC, microwaves, ...
- Finding highly-compressed ASR models
 - Optimise the per-layer compression ratios
 - Use singular value decomposition (SVD) low-rank matrix factorization as the compression method
 - Search for ranks that have minimal impact on performance



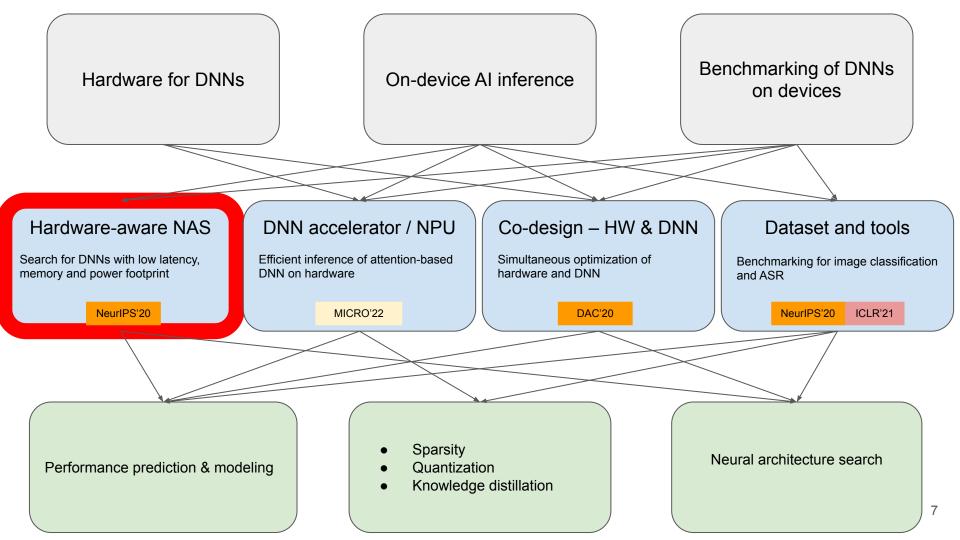
Runtime on Qualcomm Snapdragon 845 chipset.

Baseline



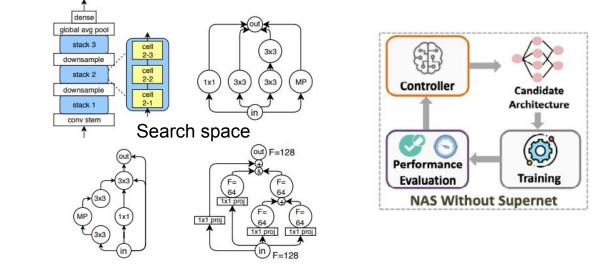


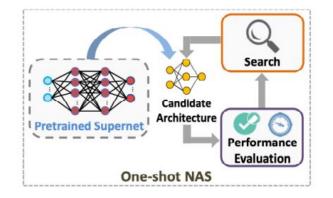
Hardware-aware Neural Architecture Search



Neural architecture search (NAS)

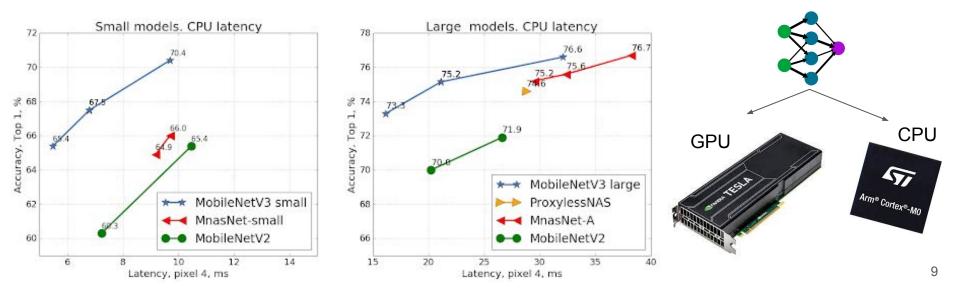
- Automating the design of DNNs
- Search space, search strategy, performance evaluation
- Traditional NAS focus on improving accuracy of DNNs



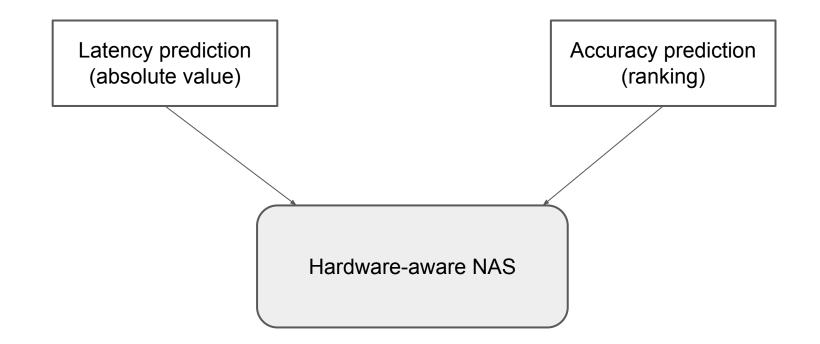


"Hardware-aware" NAS

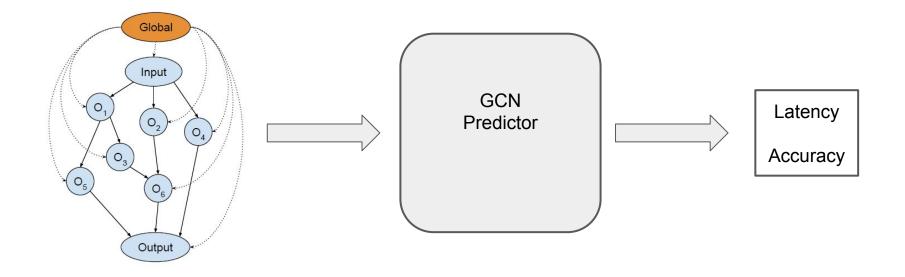
On-device inference		
Performance metrics	Accuracy + Latency, energy, memory	
Search space	DNN (+ Hardware)	



Efficient hardware-aware NAS

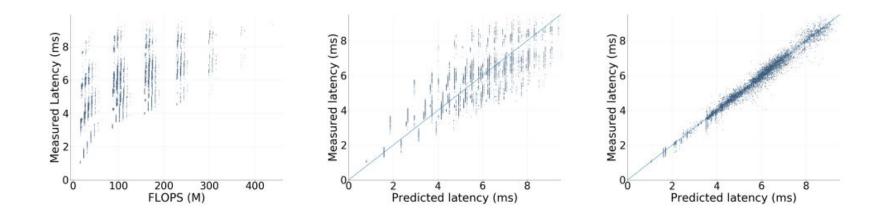


Graph Convolutional Networks (GCN) predictor



Latency prediction with GCN

• Significantly outperforms conventional approaches



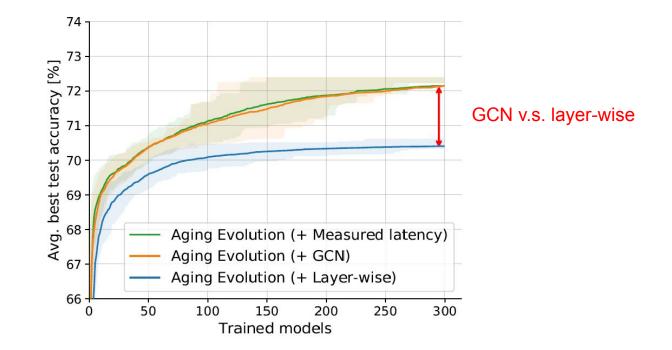
FLOPs

Layer-wise

GCN

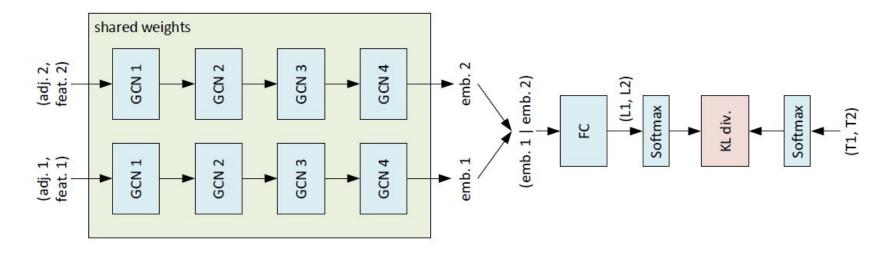
Latency prediction with GCN in NAS

• More accurate models found given latency constraint

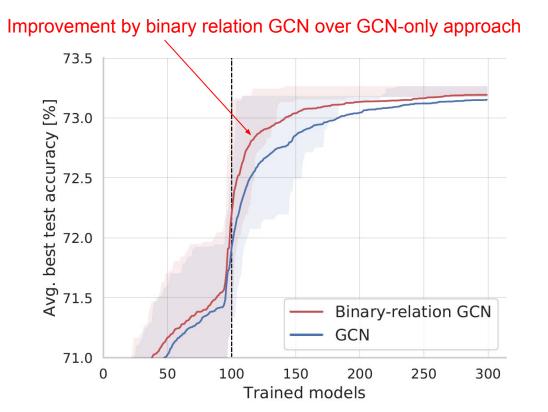


Accuracy prediction with GCN

- Binary relation improves the accuracy ranking of neural models.
- *Ranking* is more important than the absolute values.

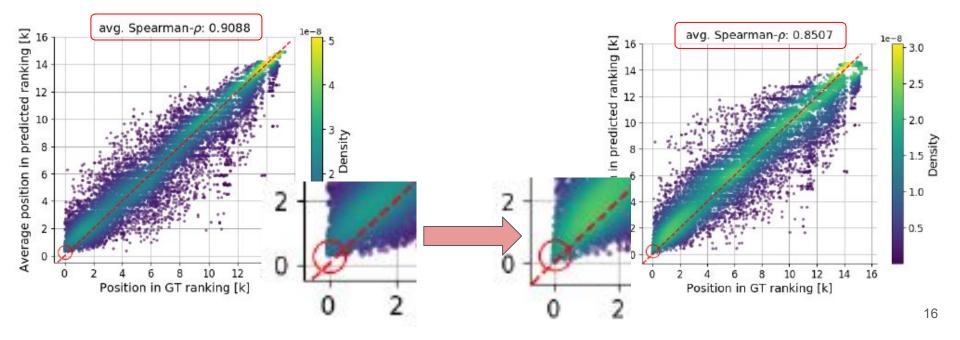


Binary relation GCN vs vanilla GCN



Iterative data selection

- Train the binary relation predictor iteratively
- Gradually focus on *higher ranking models* rather than the global landscape

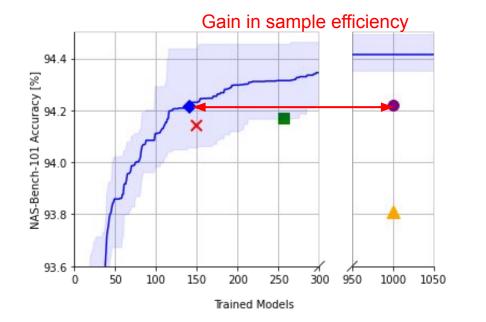


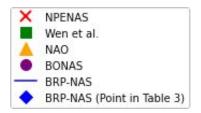
Iterative data selection + binary relation prediction

73.5 Avg. best test accuracy [%] 25.2 27.2 21.5 21.5 **BRP-NAS Binary-relation GCN** GCN 71.0 50 100 150 200 250 300 0 Trained models

Improvement by binary relation + iterative data selection

Improved sample efficiency





It's open source!

https://github.com/SamsungLabs/eagle

eagle Public

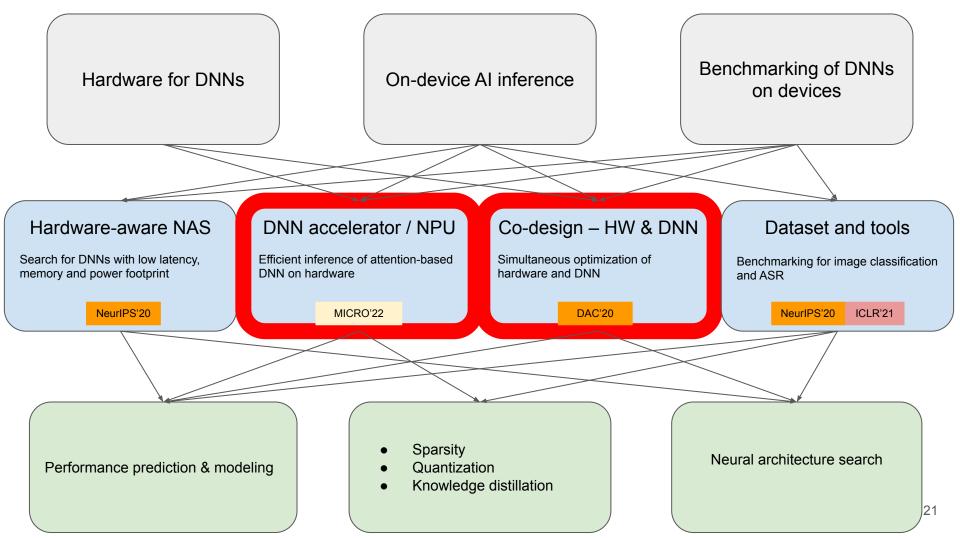
Measuring and predicting on-device metrics (latency, power, etc.) of machine learning models

● Python 🏚 Apache-2.0 😵 8 🏠 39 💿 0 🎲 0 Updated on Feb 2

• Dataset

- Latency of NAS-Bench-201 CNN models
- Devices: Intel Core i7-7820X, NVIDIA GTX 1080 Ti, NVIDIA Jetson Nano, Google EdgeTPU, Qualcomm Adreno 612 GPU, Qualcomm Hexagon 690 DSP.
- Benchmarking tool
 - Modularised to allow extension to different models and devices

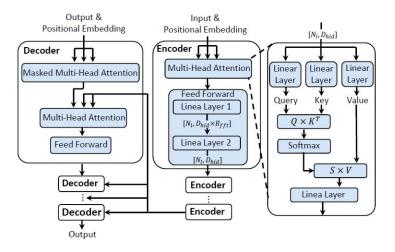
ML accelerator / NPU for Attention-based NNs



Transformers — opportunities and challenges

Opportunities

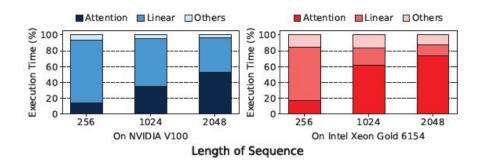
- Persuasive in many AI tasks
- Excellent algorithmic performance



Attention and feed forward layers demands excessive computation and memory resources that compromises hardware performance.

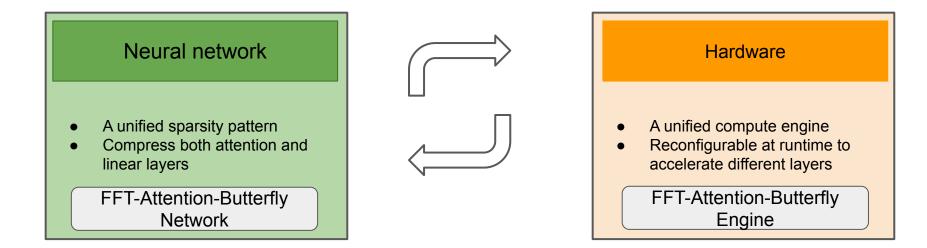
Challenges

- Heavy computation and memory resource
- Lacking hardware efficient implementation



Latency is dominated by different components depending on the length of input sequences. 22

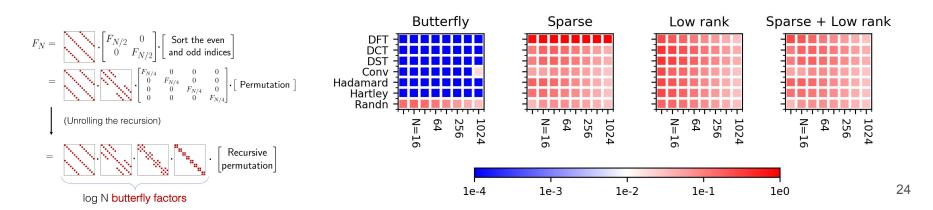
Hardware efficient attention-based NNs



Compression — Sparsity patterns

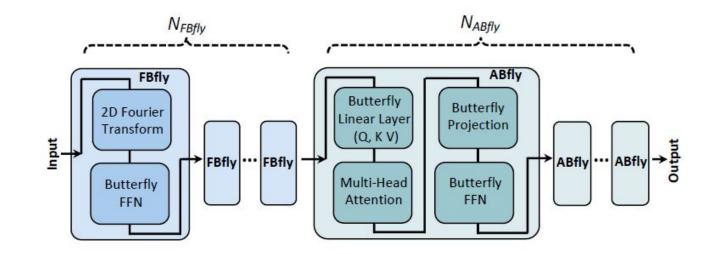
- A universal building block that captures general structured matrices
 - Approximate linear transformations
 - Factor matrices into products of log(N) matrices with a small total number of nonzeros.

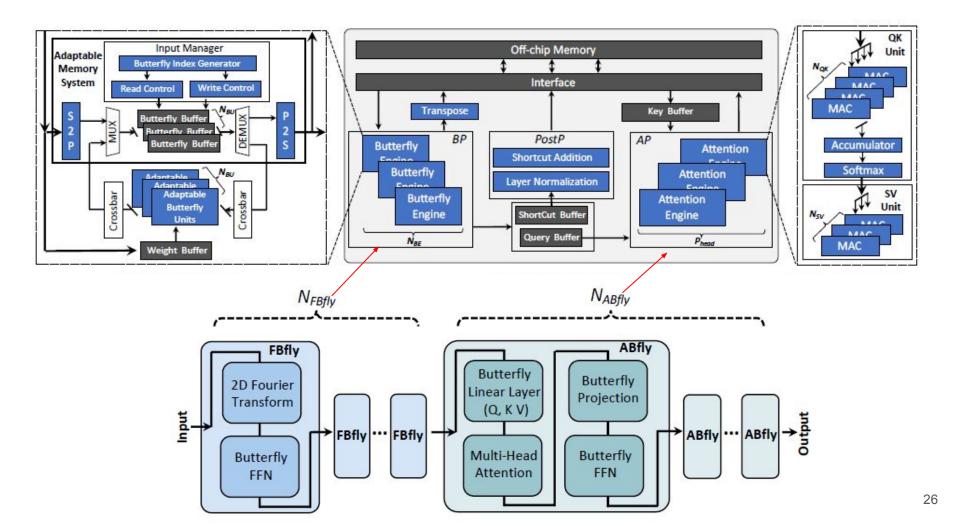
Sparsity	Low Rank	Sliding Window	Butterfly	Random	Block-wise
Patten					
Data Access	Sequential row & column read	Regular stride read	Regular stride read	Random read	Regular stride read
HW Eff.	No Yes		Yes	No	Yes
Info.	Global	Local	Global & Local	Global&Local	Local



FABNet: FFT-Attention-Butterfly

- Adopts butterfly sparsity pattern to approximate both the attention mechanism and the FFNs
- Replace self-attention modules by 2D Discrete Fourier Transform (DFT) operations





Accuracy

Accuracy of different models on LRA.

0.783

0.779

0.800

Retrieval Image Pathfinder Avg.

0.709

0.66

0.674

0.576

0.544

0.576

0.379

0.288

0.399

Text

0.637

0.630

0.630

ListOps

0.373

0.365

0.378

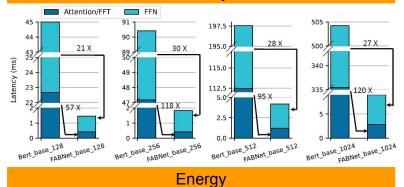
Vanilla

Transformer

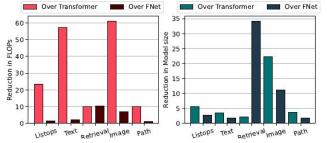
Vanilla FNet

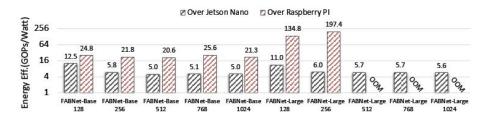
FABNet

Latency



Model size / FLOPs

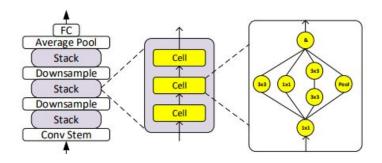


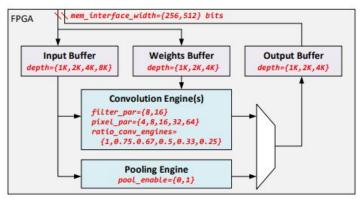


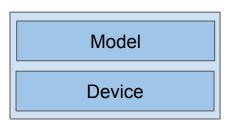
Accelerators	A ³ [17] (HPCA'20)	SpAtten [39] (HPCA'21)	Sanger [25] (MICRO'21)	Energon [44] (TCAD'21)	ELSA [18] (ISCA'21)	DOTA [29] (ASPLOS'22)	FTRANS [24] (ISLPED'20)	Our work
Technology	ASIC (40nm)	ASIC (40nm)	ASIC (55nm)	ASIC (45nm)	ASIC (40nm)	ASIC (22nm)	FPGA (16nm)	FPGA (16nm)
Frequency	1 GHz				170 MHz	200 MHz		
# of Multipliers	128 6531			640				
Latency (ms)	56.0	48.8	45.2	44.2	34.7	34.1	61.6	2.4
Power (W)	1.217	1.060	0.801	2.633	0.976	0.858	25.130	10.727
Energy Eff. (Pred./J)	14.67	19.33	27.62	8.59	29.52	34.18	0.65	40.48

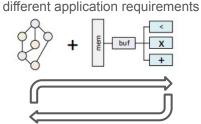
Co-design of DNN and hardware

- Automate HW-NN co-design using NAS
 - Include both the DNN and HW parameters
 - Multi-objective optimization: search for best model-HW pair that boosts accuracy and efficiency.









Different model and hardware to meet

Accuracy	Latency
Memory	Energy

Effectiveness of Co-design automation

 For image classification, we enumerate close to 4 billion (423k x 8.6k) model-accelerator pairs

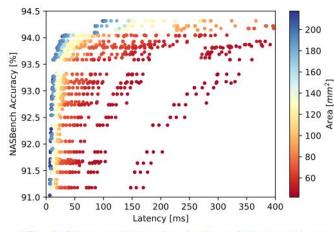
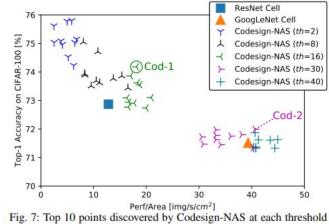


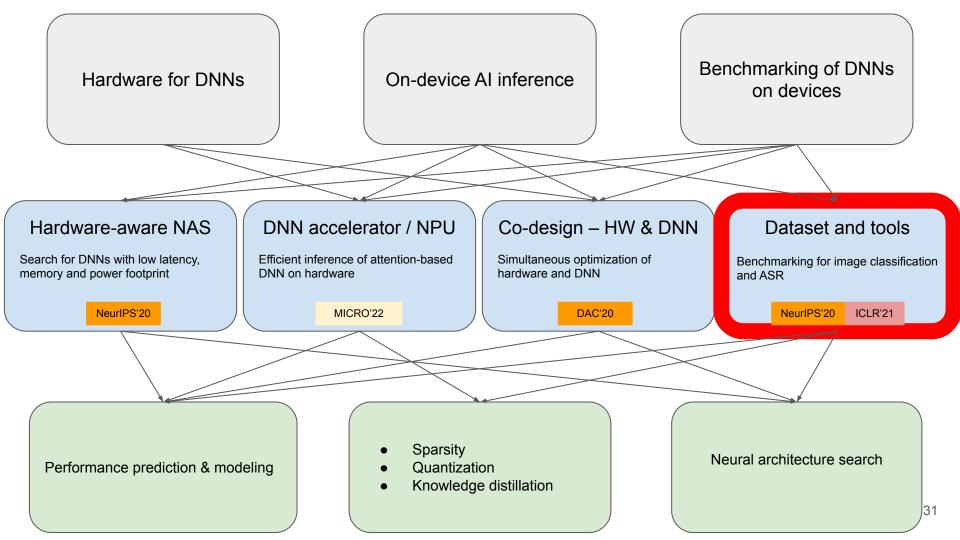
Fig. 4: Pareto-optimal points in the codesign search space.



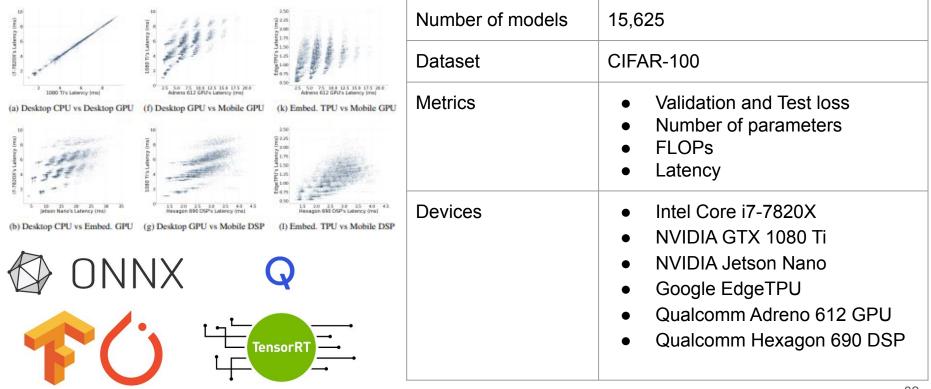
value, compared to ResNet and GoogLeNet cells.

CNN	Accuracy [%]	Perf/Area [<i>img/s/cm</i> ²]	Latency [ms]	Area [mm ²]
ResNet Cell	72.9	12.8	42.0	186
Cod-1	74.2 (+1.3%)	18.1 (+41%)	41.8 (-0.5%)	132 (-29%)
GoogLeNet Cell	71.5	39.3	19.3	132 (-0.8%)
Cod-2	72.0 (+0.5%)	40.6 (+3.3%)	18.5 (-4.2%)	133

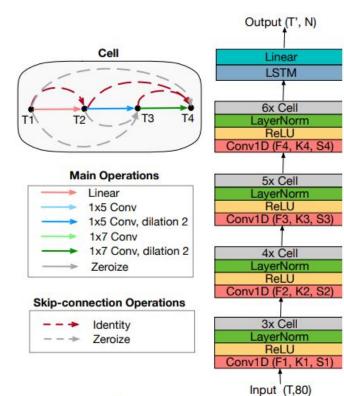
Dataset and Tools



LatBench - Latency dataset of CNN models

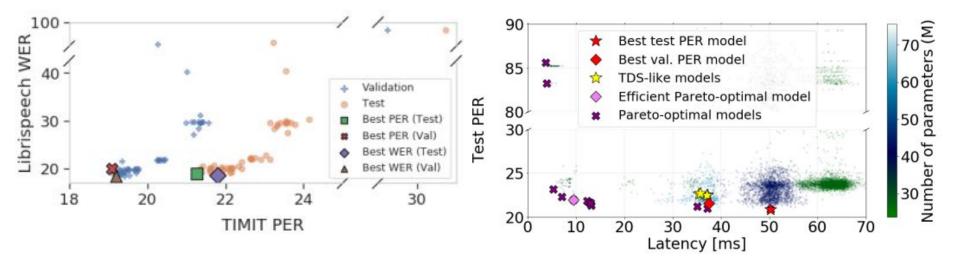


NAS benchmark for ASR models



Number of models	8,242	
Target epochs	5, 10 and 40	
Dataset	ТІМІТ	
Metrics	 Validation and Test PERs CTC loss Number of parameters FLOPs Latency (Tesla 1080Ti, Jetson Nano) 	

NAS benchmark for ASR models



https://github.com/SamsungLabs/nb-asr

170

 nb-asr
 Public

 ● Python
 ▲ Apache-2.0
 ♀ 3
 ☆ 21
 ⊙ 0

Thank you!

- BRP-NAS: Prediction-based NAS using GCNs
 - <u>https://arxiv.org/pdf/2007.08668.pdf</u>
- Best of Both Worlds: AutoML Codesign of a CNN and its Hardware Accelerator
 - <u>https://arxiv.org/pdf/2002.05022.pdf</u>
- NAS-Bench-ASR: Reproducible Neural Architecture Search for Speech Recognition
 - <u>https://openreview.net/pdf?id=CU0APx9LMaL</u>
- Adaptable Butterfly Accelerator for Attention-based NNs via Hardware and Algorithm Co-design