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Abstract—The problem of joint source-channel coding in
transmitting independent sources over interference channels
with correlated receiver side information is studied. Wheneach
receiver has side information correlated with its own desired
source, it is shown that source-channel code separation is optimal.
When each receiver has side information correlated with the
interfering source, sufficient conditions for reliable transmission
are provided based on a joint source-channel coding scheme
using the superposition encoding and partial decoding ideaof
Han and Kobayashi. When the receiver side information is a
deterministic function of the interfering source, source-channel
code separation is again shown to be optimal. As a special case,
for a class of Z-interference channels, when the side information
of the receiver facing interference is a deterministic function of
the interfering source, necessary and sufficient conditions for
reliable transmission are provided in the form of single letter
expressions. As a byproduct of these joint source-channel coding
results, the capacity region of a class of Z-channels with degraded
message sets is also provided.

I. I NTRODUCTION

The wireless medium is shared by multiple communication
systems operating simultaneously, which leads to interference
among users transmitting over the same frequency band.
In the simple scenario of two transmitter-receiver pairs, the
interference channel [1] models two simultaneous transmis-
sions interfering with each other. In the classical interference
channel model, the sources intended for each receiver are
independent of each other, and the receivers decode based only
on their own received signals. In another scenario particularly
relevant to sensor networks, receivers have access to theirown
correlated observations about the underlying source sequences
as well. In principle, these correlated observations at the
receivers can be exploited in the code design to improve the
system performance.

A finite letter expression for the capacity region of an
interference channel is unknown even when there is no side
information available at the receiver terminals. We know the
capacity region in the case of interference channels with sta-
tistically equivalent outputs [2]–[4], discrete additivedegraded
interference channels [5], a class of deterministic interference

This research was supported in part by the U.S. National Science Foun-
dation under Grants ANI-03-38807, CCF-07-28208, and CNS-06-25637, the
DARPA ITMANET program under Grant 1105741-1-TFIND, and theU.S.
Army Research Office under MURI award W911NF-05-1-0246.

channels [6], strong interference channels [7]–[11], a class of
degraded interference channels [12], and more recently fora
class of Z-interference channels [13]. For general interference
channels, the best known achievable rate region is the one
proposed by Han and Kobayashi [9], a simplification of which
is given in [14].

Shamai and Verdú consider the availability of correlated
side information at the receiver in a point-to-point scenario in
[15]. They show that the source-channel separation theorem
applies in this setting and, moreover, that Slepian-Wolf source
compression followed by optimal channel coding suffices to
achieve the optimal end-to-end performance. With the avail-
ability of side information at the receiver, we can transmit
the source reliably over a channel with smaller capacity than
the one required when there is no receiver side information.
However, it is known that the source-channel separation theo-
rem does not generalize to multi-user channels [1], [16], and
necessary and sufficient conditions for reliable transmission
in the case of correlated sources and correlated receiver side
information are not known in general. In [17], necessary and
sufficient conditions are characterized for broadcasting acom-
mon source to multiple receivers with different correlatedside
information. An alternative achievability scheme for the setup
of [17] is given in [18]. In [19], the results of [17] are extended
to broadcast channels with degraded message sets in which
the receivers have access to parts of the underlying messages.
Availability of messages or message parts at the receivers
of broadcast channels from the channel coding perspective
is studied also in [20]–[22]. In [23], broadcasting a pair of
correlated sources with correlated receiver side information is
studied.

The interference channel with correlated sources is consid-
ered in [24], and a sufficient condition for reliable transmission
is given. In [25], an interference channel with independent
sources, in which each receiver has access to side informa-
tion correlated with the interfering transmitter’s source, is
considered. Necessary and sufficient conditions for this setup
are characterized under the strong source-channel interference
conditions, which generalize the usual strong interference
conditions by considering correlated side information as well.
The result of [25] shows that interference cancellation is
optimal even when the underlying channel interference is not



strong, as long as the overall source-channel interferenceis.
In this paper, we extend the scenario studied in [25] to

more general interference channels. We first consider the
case in which each receiver has side information correlated
with the source sequence it wants to decode. We prove the
optimality of source-channel code separation in this situation;
that is, the optimal performance can be achieved by first
compressing each of the sources using Slepian-Wolf coding
with respect to the correlated receiver side information, and
then transmitting the compressed bits over the channel using
an optimal interference channel code.

Next, we consider the scenario in which each receiver has
side information correlated with the interfering transmitter’s
source. As an example of such a model and to illustrate
the benefits of side information about the interfering source,
consider the extreme case in which each receiver has access
to the message of the interfering transmitter. Note that this
setup is equivalent to the restricted two-way channel modelof
Shannon, whose capacity is characterized in [1]. In this case,
each receiver can excise the interference from the undesired
transmitter, since its message is exactly known at the receiver.
Here, we consider the more general case of arbitrary correla-
tion between the receiver side information and the interfering
source, and propose a joint source-channel coding scheme
similar to that of Han and Kobayashi [9] taking the side infor-
mation into account. Later, we consider the case in which the
side information is a deterministic function of the interfering
source, and show that source-channel code separation is again
optimal. Finally, we consider a special class of interference
channels called Z-interference channels, in which only one
receiver faces interference. Further focusing on a specialclass
of Z-interference channels satisfying certain conditions(which
will be stated later), and the case in which the side information
is a deterministic function of the interfering source, we are
able to characterize necessary and sufficient conditions for
reliable transmission in the form of single letter expressions.
This setting also constitutes an example for which the general
sufficiency conditions we provide are also necessary, proving
their tightness for certain special cases.

The rest of the paper is organized as follows. In Section
II we present the system model. In Section III we prove the
optimality of source-channel code separation when the side
information is correlated with the desired source. The casein
which the side information is correlated with the interfering
source is considered in Section IV. In Section IV-A, we
provide sufficient conditions for reliable transmission, while
in Section IV-B, we prove the optimality of source-channel
code separation when the side information is a deterministic
function of the interfering source. In Section IV-C we show
that, for a special source and channel model, the sufficient
conditions for reliable transmission proposed in Section IV-A
are also necessary, and hence we give a single letter characteri-
zation of the necessary and sufficient conditions for this model.
In Section V we characterize the capacity region of a class of
Z-channels with degraded message sets. This is followed by
conclusions in Section VI.

II. SYSTEM MODEL

An interference channel is composed of two transmitter-
receiver pairs. The underlying discrete memoryless channel
is characterized by the transition probabilityp(y1, y2|x1, x2)
from finite input alphabetX1 × X2 to finite output alphabet
Y1 × Y2. Transmitterk has access to the source sequence
{Uk,i}∞i=1, k = 1, 2. Consider side information sequences
{Vk,i}∞i=1, where the source and the side information se-
quences are independent and identically distributed (i.i.d.) and
are drawn according to joint distributionp(u1, v1)p(u2, v2)
over a finite alphabetU1 × V1 × U2 × V2; that is, the two
source-side information pairs are independent of each other.

For k = 1, 2, Transmitter k observesUn
k and wishes

to transmit it noiselessly to Receiverk over n uses of the
channel1. The encoding function at Transmitterk is

fn
k : Un

k → Xn
k .

We assume that the side informationV n
π(k) is available at

receiverk, whereπ(·) is a permutation of{1, 2}. Depending
on the scenario, we will specify whether the side information
is correlated with the desired source or with the interfering
source.

The decoding function at receiverk reconstructs its estimate
Ûk from its channel output and side information vector using
the decoding function

gn
k : Yn

k × Vn
π(k) → Un

k .

The probability of error for this system is defined as

Pn
e = Pr{(Un

1 , Un
2 ) 6= (Ûn

1 , Ûn
2 )},

Definition 1: We say that a source pair(U1, U2) can be
reliably transmitted over a given interference channel if there
exist a sequence of encoders and decoders(fn

1 , fn
2 , gn

1 , gn
2 )

such thatPn
e → 0 asn → ∞.

In the following sections, we consider two cases in par-
ticular. In the first case, each receiver has side information
correlated with its desired source, i.e.,π(k) = k, k = 1, 2. In
the second case, each receiver has side information correlated
with the interfering source, i.e.,π(1) = 2 and π(2) = 1. In
both cases, we want to exploit the availability of correlated side
information at the receivers. In the first case, each transmitter
needs to transmit less information to its intended receiverdue
to the availability of correlated side information. In the latter
case, the side information is used to mitigate the effects of
interference.

For notational convenience, we drop the subscripts on prob-
ability distributions unless the arguments of the distributions
are not lower case versions of the corresponding random
variables.

1Here we use the notationUn
k

= (Uk,1, . . . , Uk,n), and similar notation
for other length-n sequences.
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Fig. 1. Interference channel model in which the receivers have access to side information correlated with the source they want to receive.

III. S IDE INFORMATION CORRELATED WITH THE DESIRED

SOURCE

In this section, we consider an interference channel in
which each receiver has side information correlated with the
source it wants to decode, i.e., receiverk has access to side
information Vk (see Fig. 1). For this special case, we prove
that the source-channel separation theorem applies; that is,
it is optimal for the transmitters first to apply Slepian-Wolf
source coding to compress their sources conditioned on the
side information at the corresponding receiver, and then to
transmit the compressed bits over the channel using an optimal
interference channel code. Note that, in the general case, we
do not have a single-letter characterization of the capacity
region of the interference channel, yet we can still prove the
optimality of source-channel code separation. In the proof, we
use then-letter expression for the capacity region, which was
also used in [26] to prove the optimality of source-channel
code separation for a multiple access channel with receiver
side information and feedback. The main result of this section
is the following theorem.

Theorem 1:SourcesU1 andU2 can be transmitted reliably
to their respective receivers over the discrete memoryless
interference channelp(y1, y2|x1, x2) with side informationVk

at receiverk, k = 1, 2, if

(H(U1|V1), H(U2|V2)) ∈ int(C) (1)

whereint(·) denotes theinterior, andC denotes the capacity
region of the underlying interference channel.

Conversely, if(H(U1|V1), H(U2|V2)) /∈ C, then sourcesU1

andU2 cannot be transmitted reliably.
Proof: Due to space limitations, the proof is not included

here and can be found in [27].

IV. SIDE INFORMATION CORRELATED WITH THE

INTERFERING SOURCE

In this section we consider the case in which Receiver 1
has access toV2 while Receiver 2 has access toV1, i.e., each
receiver has side information about the interfering transmitter’s
source (see Fig. 2). We investigate how the side information
about the interference helps in decoding the desired informa-
tion.

A. Sufficient Conditions for Reliable Transmission

We first provide sufficient conditions for reliable trans-
mission of the sources. In the spirit of the Han-Kobayashi
scheme for the classical interference channel, we propose a
joint source-channel coding scheme that requires the receivers
to decode part of the interference with the help of their side
information. In the Han-Kobayashi scheme, each transmitter
splits its message into two pieces to allow the non-intended
receiver to decode part of the interference. In our scheme,
each transmitter enables a quantized version of its source to be
decoded by both receivers, where the unintended receiver uses
its correlated side information as well as the channel output to
decode the interference corresponding to this quantized part.
Sufficient conditions for reliable transmission in this setup are
given in the following theorem.

Theorem 2:SourcesU1 andU2 can be transmitted reliably
over the interference channelp(y1, y2|x1, x2) with side infor-
mation V1 at Receiver 2 andV2 at Receiver 1 if there exist
random variablesW1 andW2 such that

H(U1) <I(X1; V2, Y1|W2, Q),

H(U2) <I(X2; V1, Y2|W1, Q),

H(U1) <I(W2, X1; V2, Y1|Q) − I(U2; W2|Q),

H(U2) <I(W1, X2; V1, Y2|Q) − I(U1; W1|Q),

H(U1) + H(U2) <I(X1; V2, Y1|W1, W2, Q)

+ I(W1, X2; V1, Y2|Q),

H(U1) + H(U2) <I(X2; V1, Y2|W1, W2, Q)

+ I(W2, X1; V2, Y1|Q),

H(U1) + H(U2) <I(W1, X2; V1, Y2|W2, Q)

+ I(W2, X1; V2, Y1|W1, Q),

H(U1) + H(U2) <I(W2, X1; V2, Y1|Q)

+ I(W1, X2; V1, Y2|W2, Q) − I(U1; W1|Q),

H(U1) + H(U2) <I(W1, X2; V1, Y2|Q)

+ I(W2, X1; V2, Y1|W1, Q) − I(U2; W2|Q),

2H(U1) + H(U2) <I(W2, X1; V2, Y1|Q)

+ I(X1; V2, Y1|W1, W2, Q) + I(W1, X2; V1, Y2|W2, Q),

H(U1) + 2H(U2) <I(W1, X2; V1, Y2|Q)

+ I(X2; V1, Y2|W1, W2, Q) + I(W2, X1; V2, Y1|W1, Q),
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Û1Û2

V1 V2

Tx1 Tx2

Rx1Rx2

p(u1, v1) p(u2, v2)p(y1, y2|x1, x2)

Fig. 2. Interference channel model in which the receivers have access to side information correlated with the source of the interfering transmitter.

for somep(q), p(w1, x1|u1, q), andp(w2, x2|u2, q), where the
entropies and mutual information terms are evaluated using
the joint distribution

p(q,u1, v1, u2, v2, w1, w2, x1, x2, y1, y2) = p(q)p(u1, v1)

·p(u2, v2)p(w1, x1|u1, q)p(w2, x2|u2, q)p(y1, y2|x1, x2).
(2)

Proof: The encoding/decoding scheme is described in the
Appendix and the complete proof can be found in [27].

We remark here that the achievability scheme in the proof
of Theorem 2 uses joint source-channel coding and hence,
similarly to [16] and [28], the expressions involve joint distri-
bution of the source and channel variables, which potentially
increases the achievable rate region by enlarging the set of
possible joint distributions. Below in Corollary 1, we provide
a sufficient condition for reliable transmission based on sep-
arate source and channel codes in the spirit of “operational
separation” as in [17], [25], which can be obtained as a special
case of Theorem 2. Note that operational separation is different
from the classical (“informational”) separation, in whicheach
source is first assigned to an index and then these indices are
transmitted using an optimal channel code for the underlying
channel. Operational separation corresponds to separation of

the source and the channel variables as in Corollary 1 without
using the optimal source or the channel codes (see [25] for
further details and examples).

Corollary 1: SourcesU1 and U2 can be transmitted re-
liably over the interference channelp(y1, y2|x1, x2) with
side informationV1 at Receiver 2 andV2 at Receiver 1
if there exist random variablesW 1, W̃1 and W 2, W̃2 such
that inequalities at the bottom of the page are satisfied
for some p(q), p(W 1|u1, q), p(W 2|u2, q), p(W̃1, x1|q) and
p(W̃2, x2|q), where the entropies and mutual information
terms are evaluated using joint distribution

p(q,u1, v1, u2, v2, w1, w2, w̃1, w̃2, x1, x2, y1, y2) = p(q)

· p(u1, v1)p(w1|u1, q)p(u2, v2)p(w2|u2, q)p(w̃1, x1|q)

· p(w̃2, x2|q)p(y1, y2|x1, x2). (3)

Proof: Corollary 1 follows directly from Theorem 2
by letting Wk = (W k, W̃k) and fixing the distributions as
p(wk, xk|uk, q) = p(wk|uk, q)p(w̃k, xk|q), for k = 1, 2.
The sufficient conditions in Corollary 1 are looser than those
in Theorem 2. However, it is not clear whether they are strictly
looser.

Remark 1: In the special case of no receiver side informa-
tion, i.e.,V1 = V2 = ∅, by fixing W 1 = W 2 = ∅, and defining

H(U1) <I(X1; Y1|W̃2, Q),

H(U1) + I(W 2; U2|V2, Q) <I(X1, W̃2; Y1|Q),

H(U2) <I(X2; Y2|W̃1, Q),

H(U2) + I(W 1; U1|V1, Q) <I(X2, W̃1; Y2|Q),

H(U1) + H(U2) − I(W 1; V1|Q) <I(X1; Y1|W̃1, W̃2, Q) + I(W̃1, X2; Y2|Q),

H(U1) + H(U2) − I(W 2; V2|Q) <I(X2; Y2|W̃1, W̃2, Q) + I(W̃2, X1; Y1|Q),

H(U1) + H(U2) − I(W 1; V1|Q) − I(W 2; V2|Q) <I(W̃1, X2; Y2|W̃2, Q) + I(W̃2, X1; Y1|W̃1, Q),

H(U1) + H(U2) + I(W 1; U1|V1, Q) − I(W 2; V2|Q) <I(W̃2, X1; Y1|Q) + I(W̃1, X2; Y2|W̃2, Q),

H(U1) + H(U2) + I(W 2; U2|V2, Q) − I(W 1; V1|Q) <I(W̃1, X2; Y2|Q) + I(W̃2, X1; Y1|W̃1, Q),

2H(U1) + H(U2) − I(W 1; V1|Q) − I(W 2; V2|Q) <I(W̃2, X1; Y1|Q) + I(X1; Y1|W̃1, W̃2, Q) + I(W̃1, X2; Y2|W̃2, Q)

H(U1) + 2H(U2) − I(W 1; V1|Q) − I(W 2; V2|Q) <I(W̃1, X2; Y2|Q) + I(X2; Y2|W̃2, W̃1, Q) + I(W̃2, X1; Y1|W̃1, Q),
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R1 = H(U1) andR2 = H(U2), the sufficiency conditions in
Corollary 1 boils down to the Han-Kobayashi rate region in
the form expressed in [14, Theorem 2].

We do not know whether the sufficient conditions for
reliable transmission provided in Theorem 2 are too strong,
leading to pessimistic results in general. However, in Section
IV-C, we show that for some special cases, the sufficient con-
ditions obtained through separate source and channel coding
in Corollary 1 are also necessary, which shows that at least
for certain special cases, Theorem 2 is tight.

B. Deterministic Side Information

In this subsection, we focus on the special case in which
the side information sequencesV1 and V2 are deterministic
functions of the sourcesU1 andU2, respectively, i.e.,

Vk,i = hk(Uk,i), k = 1, 2, i = 1, 2, · · · (4)

for some deterministic functionsh1 and h2, or equivalently
we haveH(Vk|Uk) = 0 for k = 1, 2.

The main result of this subsection is that when the side in-
formation is a deterministic function of the interfering source,
the source-channel separation theorem applies; that is, itis
optimal to first perform source coding and encodeV n

k into
messageWks, and the remaining part ofUn

k , denoted by
Un

k |V
n
k , into messageWkp, k = 1, 2, and then to transmit these

messages optimally over the underlying interference channel
p(y1, y2|x1, x2) with side informationW1s at Receiver 2, and
side informationW2s at Receiver 1.

First, we define the capacity region of the interference
channel with message side information at the receivers (see
Fig. 3). In this communication scenario, Transmitterk has two
messagesWks and Wkp, of ratesRks and Rkp respectively,
to transmit with negligible probability of error to Receiver
k, k = 1, 2, while Receiver2 has access toW1s, and
Receiver 1 has access toW2s. All messages are independent.
A

(
2nR1s , 2nR1p , 2nR2s , 2nR2p , n

)
code for this channel con-

sists of two encoding functions,fn
1 : {1, 2, · · · , 2nR1s} ×

{1, 2, · · · , 2nR1p} → Xn
1 and fn

2 : {1, 2, · · · , 2nR2s} ×
{1, 2, · · · , 2nR2p} → Xn

2 , and two decoding functions
gn
1 : Yn

1 × {1, 2, · · · , 2nR2s} → {1, 2, · · · , 2nR1s} ×
{1, 2, · · · , 2nR1p} and gn

2 : Yn
2 × {1, 2, · · · , 2nR1s} →

{1, 2, · · · , 2nR2s} × {1, 2, · · · , 2nR2p}.
The average probability of error for the(

2nR1s , 2nR1p , 2nR2s , 2nR2p , n
)

code is defined as

Pn
e =

1

2n(R1s+R1p+R2s+R2p)

2nR1s∑

w1s=1

2nR1p∑

w1p=1

2nR2s∑

w2s=1

2nR2p∑

w2p=1

Pr{gn
1 (Y n

1 , w2s) 6= (w1s, w1p) or

gn
2 (Y n

2 , w1s) 6= (w2s, w2p)|(w1s, w1p, w2s, w2p) is sent}.

Definition 2: A rate quadruplet(R1s, R1p, R2s, R2p) is
said to be achievable if there exists a sequence of(
2nR1s , 2nR1p , 2nR2s , 2nR2p , n

)
codes for whichPn

e → 0 as
n → ∞. The capacity region is defined as the closure of the
set of achievable rate quadruplets(R1s, R1p, R2s, R2p), and is
denoted byCI .

In order to show the optimality of source-channel code
separation, similarly to Theorem 1, we will use then-letter
characterization ofCI provided in the next lemma. DefineGn

as

Gn =

{
(R1s, R1p, R2s, R2p) : R1p ≤

1

n
I(Xn

1 ; Y n
1 |Sn

1s, S
n
2s),

R1s + R1p ≤
1

n
I(Xn

1 ; Y n
1 |Sn

2s), R2p ≤
1

n
I(Xn

2 ; Y n
2 |Sn

1s, S
n
2s),

R2s + R2p ≤
1

n
I(Xn

2 ; Y n
2 |Sn

1s),

for any pn(sn
1s)p

n(sn
2s)p

n(xn
1 |s

n
1s)p

n(xn
2 |s

n
2s)

}

(5)

Lemma 1:The capacity region of the interference channel
with message side informationW1s at Receiver 2, and message
side informationW2s at Receiver 1 is

CI = lim
n→∞

Gn (6)

where the limit of the region is as defined in [1, Theorem 5].
Proof: A proof of Lemma 1 can be found in [27].

Now that we have then-letter characterization of the
capacity region of interference channels with message side
information at the receivers, we are ready to show that the
source-channel separation theorem holds when the receivers’
side information sequences are deterministic functions ofthe
interfering sources.

Theorem 3:SourcesU1 andU2 can be transmitted reliably
to their respective receivers over the discrete memoryless
interference channelp(y1, y2|x1, x2) with side information
V1 = h1(U1) at Receiver2, and side informationV2 = h2(U2)
at Receiver 1, if

(H(V1), H(U1|V1), H(V2), H(U2|V2)) ∈ int(CI), (7)

where CI denotes the capacity region of the interference
channel with message side information at receivers.

Conversely, if(H(V1), H(U1|V1), H(V2), H(U2|V2)) /∈ CI ,
then sourcesU1 andU2 cannot be transmitted reliably.

Proof: A proof of Theorem 3 can be found in [27].
The benefits of considering the side information samples as
deterministic functions of the source samples are two-fold.
Firstly, the transmitters also know the side information and
they can use this knowledge to minimize the amount of inter-
ference they cause. Due to this fact, we are able to achieve any
point in the capacity region of the interference channel with
message side information. Secondly, encoding the information
of Vk, k = 1, 2 into the codebook at Transmitterk not only
helps reduce the interference at the other receiver, but also
does not place any extra burden on Receiverk to decodeVk,
asVk is a deterministic function ofUk. This fact enables the
converse proof of the source-channel separation theorem.

C. Necessary and Sufficient Conditions for Reliable Transmis-
sion for a Special Case

In Section IV-B, we have shown that source-channel sepa-
ration is optimal when the side information is a deterministic
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Fig. 3. Interference channel with message side informationat the receivers.

function of the interfering source. Thus, for these cases, if
the single-letter characterization of the capacity regionof
the corresponding interference channel with message side
information, i.e.,CI , is known, we would have necessary and
sufficient conditions for reliable transmission in a single-letter
form. However, a single-letter characterization ofCI is not
known in general as it is a generalization of the capacity region
of the classical interference channel.

In this subsection, we consider the class of interference
channels studied in [13]. We show that the Han-Kobayashi
scheme is capacity-achieving for this class of interference
channels [13] when the receivers have message side infor-
mation, and we obtain a single-letter characterization of the
capacity region. Hence, we conclude that, for this class of
interference channels, when the side information is a de-
terministic function of the interfering source, the sufficient
conditions provided in Theorem 2 are also necessary, yielding
a single-letter characterization of the necessary and sufficient
conditions for reliable transmission. This means that the
achievability result presented in Theorem 2 is tight in some
special cases.

The special class of interference channels we focus on
in this subsection is a class of Z-interference channels. For
the Z-interference channels,p(y1, y2|x1, x2) can be written as
p(y2|x1, x2) · p(y1|x1), i.e., the channel betweenX1 and Y1

is a single user channel characterized byp(y1|x1). This cor-
responds to an interference channel in which only the second
transmitter-receiver pair faces interference. In particular, the
members of the class of Z-interference channels we consider
satisfy the following conditions:

1) For any positive integern, H(Y n
2 |Xn

2 = xn
2 ),

when evaluated with the distribution
∑

xn
1

p(xn
1 )

p(yn
2 |x

n
1 , xn

2 ), is independent ofxn
2 for any p(xn

1 ).
2) Defineτ as

τ = max
p(x1)p(x2)

H(Y2). (8)

Then there exists ap∗(x2) such that H(Y2),
when evaluated with the distribution

∑
x1,x2

p(x1)
p∗(x2)p(y2|x1, x2), is equal toτ for any p(x1).

Please refer to [13] for intuition behind these conditions and
examples of Z-interference channels that satisfy these two
conditions.

In the next lemma, we provide a single-letter character-
ization of CI , i.e., the capacity region of this class of Z-
interference channels with message side information. Since
Receiver 1 does not face interference, there is no benefit to
having access to the side informationW2s. Hence, without
loss of generality, we assumeR2s = 0.

Lemma 2:The capacity region of Z-interference channels
satisfying Conditions 1 and 2, with message side information
W1s at Receiver 2, is characterized by

R1p + R1s ≤ I(X1; Y1), (9)

R2p ≤ I(W, X2; Y2) and (10)

R1p + R2p ≤ I(X1; Y1|W ) + I(W, X2; Y2) (11)

for some p(w)p(x1|w), where the mutual informations
and entropies are evaluated with the joint distribution of
the form p(w, x1, x2, y1, y2) = p(w)p(x1|w)p∗(x2)p(y1|x1)
p(y2|x1, x2).

Proof: A proof of Lemma 2 can be found in [27].
The proof of Lemma 2 indicates that superposition encoding

and partial decoding is capacity-achieving. More specifically,
the codebook at Transmitter 1 is such that the inner codebook
carries the side information at Receiver 2, i.e.,W1s, and part
of W1p, and the outer codebook carries the remaining part of
W1p.

Comparing these results in the case of side information at
the receiver with the traditional Z-interference channel [13],
the rate ofW1p takes the place ofW1, which means that the
message that causes interference is reduced fromW1 to W1p.
Due to the fact thatW1s is available at Receiver 2,W1s does
not cause any interference and therefore its rate can be made
as large as possible within the constraint of the capacity ofthe
channelp(y1|x1) depicted by (9).

Having established the capacity region of this special class
of Z-interference channels with message side information at
the receiver, we next consider the joint source-channel coding
problem for this channel model with the assumption that each
side information sampleV1,i is a deterministic function of the
corresponding source sampleU1,i, i.e., V1,i = h1(U1,i), for
i = 1, 2, · · · for some deterministic functionh1. Since the
first transmitter-receiver pair is interference-free, without loss
of generality, we assumeV2 = ∅.
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Since source-channel separation is shown to be optimal
in Theorem 3 for the source and side information structure
under consideration, we are able to characterize necessary
and sufficient conditions for the reliable transmission of the
sources in the single-letter form using the capacity region
characterization given in Lemma 2.

Corollary 2: For Z-interference channels satisfying Condi-
tions 1 and 2, and side informationV1 = h1(U1) at Receiver
2, necessary and sufficient conditions for reliable transmission
are

H(U1) <I(X1; Y1) (12)

H(U2) <I(W, X2; Y2) and (13)

H(U1|V1) + H(U2) <I(W, X2; Y2) + I(X1; Y1|W ) (14)

for somep(w)p(x1|w), where the mutual informations and
entropies are evaluated withp(u1, v1, u2, w, x1, x2, y1, y2) =
p(u1, v1)p(u2)p(w)p(x1|w)p∗(x2)p(y1|x1)p(y2|x1, x2).

Proof: Corollary 2 follows directly from combining The-
orem 3 and Lemma 2.

In Corollary 1, specifyV2 = ∅, chooseW 2 = W̃2 = ∅,
W 1 = V1, Q = ∅ andp(x2) = p∗(x2). Renaming̃W1 asW1

and using Condition 2 and the fact thatH(U1) − H(V1) =
H(U1|V1), we obtain a sufficient condition which is the same
as the necessary and sufficient condition specified in Corollary
2. Hence, we conclude that in this special case, the sufficient
conditions described in Corollary 1 based on separate source
and channel coding are also necessary. This shows that the
conditions presented in Theorem 2 are also necessary at least
in certain scenarios.

Corollary 2 shows how the side informationV1 = h1(U1)
about the interferenceU1 helps in reliable transmission, and
determines the most efficient way of using this side infor-
mation: Transmitter 1 performs a separation-based encoding
scheme. It first splits its sourceUn

1 into V n
1 and a remaining

part using entropy-achieving data compression techniques, and
thus obtains two messagesWV n

1
andWUn

1
|V n

1
. Then, it further

splits messageWUn
1
|V n

1
into two partsWinner and Wouter, at

rates γ and H(U1|V1) − γ, respectively. Next, it performs
superposition encoding, transmittingWV n

1
andWinner through

the inner code at rateH(V1) + γ, and Wouter through the
outer code at rateH(U1|V1) − γ. Transmitter 2 performs
separation-based source-channel coding, first mappingUn

2 into
a messageW2 and then mappingW2 into a codeword of an
i.i.d. codebook generated with distributionp∗(x2). Receiver 1
decodes both the inner and the outer codes. Receiver 2 knows
the side informationV n

1 and hence sees an inner codebook at
an effective rate ofγ only. It decodes the inner codeword and
the codeword of Transmitter 2 jointly using the received signal
and the available side information about the interference.

The intuition obtained from the special case derived in this
subsection is that one should put as much information as
possible about the side information within the inner codebook,
in order to minimize the impact of interference when the side
information about the interference is available at the receiver.

V. Z-CHANNEL WITH DEGRADED MESSAGESETS

The result in (9)-(11) is directly related to the capacity
region of the Z-channel with degraded message sets, based
on the intuition gained from the proof of Theorem 3 in [19].
The intuition in [19] is that when the receiver has some side
information about the undesired message, we can set up a new
scenario in which the receiver does not have access to the
side information, and is required to decode it. Then, when we
remove the rate constraint associated with decoding of the side
information at the receiver in the capacity region of the new
scenario, we get the capacity results of the original scenario.
Therefore, the solution given in (9)-(11) resembles the solution
of the following problem.

The channel is described by two transition probabilities
p(y1|x1) andp(y2|x1, x2), and satisfies both Conditions 1 and
2. There are three independent messagesW1c, W1p andW2.
Transmitter 1 has messagesW1c and W1p and Transmitter 2
has messageW2. W1c needs to be decoded at both receivers,
while W1p andW2 need to be decoded only at Receiver 1 and
Receiver 2, respectively.

This channel model includes the Z-interference channel as
a special case, when the rate ofW1c is zero. Compared to the
definition of the Z-channel in [29],W1c is not only intended
for Receiver 2, but also for Receiver 1. Therefore, we call this
channel model as theZ-channel with degraded message sets.

Then the capacity region for the Z-channel satisfying Condi-
tions 1 and 2, with degraded message sets can be characterized
as follows:

R1p ≤ I(X1; Y1|W ) + γ, (15)

R1c + R1p ≤ I(X1; Y1), (16)

R1c ≤ I(W ; Y2|X2) − γ and (17)

R2 + R1c ≤ τ − H(Y2|W, X2) − γ, (18)

for somep(w)p(x1|w) andγ ≥ 0 where the mutual informa-
tions and entropies are evaluated usingp(w, x1, x2, y1, y2) =
p(w)p(x1|w)p∗(x2)p(y1|x1)p(y2|x1, x2). The proof of this
result follows from arguments very similar to those used in the
scenario of message side information at the receiver considered
in Lemma 2.

VI. CONCLUSIONS

We have studied the problem of joint source-channel coding
in interference channels with correlated receiver side infor-
mation. In the case when the receiver side information is
correlated with its desired source, we have shown that separate
design of source and channel codes is optimal. In order to
minimize the interference to the other transmitter-receiver pair,
the transmitters should transmit only the part of their sources
that is not already known by their corresponding receivers.

For the case in which the receiver side information is
correlated with the interfering source, we have provided suffi-
cient conditions for reliable transmission by proposing a joint
source-channel coding scheme based on the idea of superpo-
sition encoding and partial decoding of Han and Kobayashi.
As a special case, we have focused on the scenario in which
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the side information at the receiver is a deterministic function
of the interfering source, and we have shown that source-
channel separation is optimal for this situation as well. Inboth
cases for which the optimality of source-channel separation
is established, we have used then-letter expression for the
capacity region as a single-letter expression is not available in
general.

Finally, for a class of Z-interference channels for which
superposition encoding and partial decoding is optimal in
the absence of receiver side information, when the receiver
facing interference has access to a deterministic functionof the
interfering source, we have shown that the provided sufficient
conditions are also necessary. Hence, the sufficient conditions
are tight at least in some special cases.

APPENDIX A
ACHIEVABILITY SCHEME OFTHEOREM 2

Fix a joint distribution as in (2).
Codebook generation: First, generate one randomn-

sequenceqn in an i.i.d. fashion according top(q).
Next, for Transmitter 1, generate a codebook of sizeL1

with 1
n

log L1 > I(U1; W1|Q), in which the codewords are
generated i.i.d. with distributionp(w1|q). This codebook is
denoted byC1

w.
For each possible source outputun

1 , choose one among all
sequences inC1

w jointly typical with un
1 , uniformly at random,

and call it wn
1 (un

1 ). If there are no codewords ofC1
w jointly

typical with un
1 , randomly choose one codeword fromC1

w to
be wn

1 (un
1 ). In a similar fashion, we generateC2

w.
Codebook generation: For each possibleun

1 sequence, gen-
erate onexn

1 sequence in an i.i.d. fashion, conditioned on
wn

1 (un
1 ), un

1 and qn, according top(x1|u1, w1, q). This xn
1

sequence is denoted byxn
1 (un

1 , wn
1 (un

1 )). The collection of all
xn

1 sequences will be denoted as the codebookC1
x. Similarly,

we generate the codebookC2
x.

Encoding: When Transmitter 1 observes the sequenceun
1 ,

it transmitsxn
1 (un

1 , wn
1 (un

1 )). Similarly for Transmitter 2.
Decoding: Receiver 1 finds the unique pair(un

1 , wn
2 ), un

1 ∈
Un

1 , wn
2 ∈ C2

w, such that(un
1 , wn

1 (un
1 ), xn

1 (un
1 , wn

1 (un
1 )), wn

2 ,
yn
1 , vn

2 ) are jointly typical and declares the first component
of the pair as the transmitted source. If there are more than
one pair, and the first component of the pairs are the same,
then the decoder declares the transmitted source to be the
first component. If there are more than one pair, and the first
component of the pairs are not the same, an error is declared.
Also, if no such pair exists, an error is declared. Similarlyfor
Receiver 2.
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