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Abstract

From being a scientific curiosity only a few years ago, energy harvesting (EH) is well on its way

to becoming a game-changing technology in the field of autonomous wireless networked systems. The

promise of long-term, uninterrupted and self-sustainable operation in a diverse array of applications has

captured the interest of academia and industry alike. Yet the road to the ultimate network of perpetual

communicating devices is plagued with potholes: ambient energy is intermittent and scarce, energy storage

capacity is limited, and devices are constrained in size and complexity. In dealing with these challenges,

this article will cover recent developments in the design of intelligent energy management policies for

EH wireless devices and discuss pressing research questions in this rapidly growing field.

INTRODUCTION

EH wireless Devices (EHDs) are increasingly being deployed in practice, replacing their traditional,

battery-operated counterparts, when inaccessibility or the sheer number of nodes often render battery

replacement difficult and cost-prohibitive. Potential applications span the whole gamut of autonomous

networked systems: from machine-to-machine and sensor networks, to building automation and monitor-

ing in smart grids. It is no surprise that the global EH market is expanding at an unprecedented rate: it is

expected to reach 1894.87 million dollars by 2017 at an estimated annual growth rate of approximately

24%1. A major factor that has contributed to this growth is the evolution of ultra-low power electronics,

1Source: marketsandmarkets.com, Global Forecast and Analysis of EH Market (2012-2017), August 2012.
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which can run on the minuscule amounts of energy supplied by typical solar, vibration or thermal energy

harvesters, and a number of companies are already offering system solutions consisting exclusively of

EHDs2.

The ultimate promise of EH is a self-sustainable, maintenance-free network of perpetually communi-

cating devices. With this promise comes a fundamental shift in design principles compared to traditional

systems with battery operated nodes: whereas minimizing energy consumption is crucial to prolong

network lifetime in the latter, in networks of EHDs the objective is the intelligent management of the

harvested energy to ensure long-term, uninterrupted operation. The goal of this article is to provide an

overview of recent developments in the design of energy management policies for EHDs. We focus on

analytical models that capture the fundamental challenges related to the design of any EH system: the

intermittent nature of harvested energy, the limited capacity and leakage of energy storage devices, and

the constraints on device complexity. The article is concluded with a discussion on what the authors

believe are the most important research challenges that lie ahead.

A MATHEMATICAL MODEL FOR EHDS

The block diagram of a typical EHD is shown in Fig. 1. The device consists of an EH module that

converts ambient energy to electrical energy, which is stored in a storage element (SE), typically a

rechargeable battery or a (super) capacitor. The SE powers the micro-processor (µP) and the sensing and

radio apparatus. The sensor block performs the sensing functionality, i.e., collection and digitization of

temperature, pressure, or motion data, depending on the application. The radio block is the portal of the

device to the world, transmitting or receiving measurement and control data.

The µP makes decisions about switching on/off the sensing, transmitting or receiving circuits, and

stores sensed or received data in the data buffer. Since sensing, transmission and reception consume

energy, the heart of an intelligent energy management system lies at the µP. For the purposes of analysis

and design, it is useful to think of the EHD as consisting of an energy and a data buffer; as illustrated in

Fig. 1, the µP controls the energy supply from the SE to the sensing apparatus and to the RF transceiver,

thus, in turn, controlling the data input to (via sensing and reception) and from (via transmission) the

data buffer. In performing these tasks, the µP also consumes energy. The energy and data arrival rates

to the corresponding buffers are modeled by the processes H(t) and I(t), and the states of the energy

and data buffers at time t are denoted by S(t) and D(t), respectively. Both buffers are of finite capacity;

2EnOcean Technology, White Paper on Energy Harvesting Wireless, July 2011.
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Figure 1. Block diagram of a typical EHD and its mathematical model. Solid and dash-dot lines indicate energy and data

transfer, respectively. Energy is harvested at rate H(t) and stored in the buffer of capacity emax(t); input data (sensed or

received) is generated at rate I(t) and stored in the buffer of capacity dmax. When sensing, transmitting or receiving, the EHD

consumes energy; this is modeled by a set of switches, controlled by the µP, which, in the process, also consumes energy.

dmax denotes the constant data buffer capacity, while emax(t) denotes the SE capacity, which is generally

time-varying, e.g., as in the case of electrochemical batteries, where the capacity is a decreasing function

of the number of charge-discharge cycles.

This mathematical model is a powerful abstraction, which captures the fundamental characteristics of

an EHD. An energy management policy for an EHD consists of the set of rules that govern the decisions

of the µP to activate the switches of Fig. 1 at any given time t, with the goal of optimizing a utility

function. The solution to this problem depends heavily on the characteristics of H(t) and I(t), the degree

of knowledge of the µP about these processes, as well as the physical constraints. Accordingly, in the

following sections, we present two fundamental approaches: in the offline optimization framework, it is

assumed that the exact values of H(t) and I(t) are known in advance at the µP for the whole duration
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of operation. In contrast, in the online optimization framework, it is assumed that the µP knows the past

realizations of H(t) and I(t), but has only statistical knowledge of their future evolution.

OPERATION IN PREDICTABLE ENVIRONMENTS: OFFLINE OPTIMIZATION

The offline optimization framework is well suited to applications in which H(t) and I(t) are known

in advance or can be accurately predicted. For example, if the EH module is a solar panel, depending

on the location, season, time of the day and device characteristics, H(t) can be accurately modeled, as

shown, e.g., by the measurement campaigns in [1]. A sensor periodically taking measurements of fixed

resolution is an example where I(t) is known in advance.

We consider an EHD which transmits data to a receiver, and focus only on the energy consumed for

data transmission. Let the rate-power function, r(P ), denote the information rate (in bits/s/Hz) achievable

at a transmission power P by the particular transmission scheme used. We assume that r(P ) is a non-

negative, monotonically increasing and strictly concave function. Most practical coding schemes, as well

as Shannon’s capacity function

r(P ) =
1

2
log(1 + P ) (1)

satisfy these properties.

In the case of a battery-operated device, there is an initial amount of energy H in the SE, and no

energy is harvested. Given a deadline T , it can be proven using Jensen’s inequality that transmitting at

a constant power maximizes the total transmitted data by the deadline. In contrast, for an EHD, the EH

profile typically varies over time; hence, a scheme that transmits at a constant power and consumes all the

arriving energy by the deadline may not be feasible. This calls for the optimization of the transmission

power based on the particular EH profile.

Heavy data traffic scenario

Let us first consider the case where the data buffer is backlogged, i.e., there is always data available

for transmission, and focus only on the effect of EH profile on the optimal transmission power. A useful

visualization tool is to consider the cumulative harvested energy curve, denoted by H̄(t), which is the

total amount of harvested energy until time t, i.e., the integral of H(t) over time. The goal is to design

a transmission policy P (t), which specifies the transmission power over the interval [0, T ], such that the

total amount of transmitted data by the deadline is maximized.
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Figure 2. The cumulative harvested energy curve, H̄(t), a feasible transmitted energy curve, E(t), and the optimal transmitted

energy curve, Eopt(t), for an EHD with decreasing energy storage capacity.

Similarly, we can also define a cumulative transmitted energy curve, E(t), as the integral of P (t)

over time. Note that specifying a transmission policy is equivalent to specifying E(t), which is a non-

decreasing, continuous function. A natural constraint follows from energy causality, which dictates that

energy cannot be used before it is harvested. This is equivalent to having transmitted energy curve lie

under the harvested energy curve at all times. Moreover, the optimal transmission policy should not waste

any energy; hence, there should be no SE overflows [2], that is, the difference between the harvested

energy curve and the transmitted energy curve should never be larger than the SE capacity. Finally, all

the harvested energy should be used by the deadline, that is, the transmitted energy curve should meet

the harvested energy curve at time T .

In Fig. 2, H̄(t) and H̄(t)−emax(t) are plotted as two dotted curves. Schematically, the aforementioned

constraints imply that the optimal E(t) should start from the origin, lie between the two dotted curves, and

terminate at point (T, H̄(T )). The black curve illustrates one such feasible curve. However, as shown

in [3], due to the concavity of r(P ), the optimal transmission policy should follow the shortest path

between the start and end points. The optimal transmitted energy curve, Eopt(t), is shown in Fig. 2. In

the case of discrete (packetized) energy arrivals, the optimal transmitted energy curve can be obtained
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through a simple recursive algorithm [4].

General data traffic scenario

We now consider the more general scenario in which data, as well as energy, arrive at the corresponding

buffers over time. The goal may be to minimize the transmission time [4], or to maximize the energy

remaining in the SE [5], while transmitting all the arriving data. Let Ī(t) and Ō(t) denote the total number

of bits that have arrived and that have been transmitted by time t, respectively. By data causality, Ō(t)

should lie under Ī(t) at all times. Accordingly, the optimal transmission policy derived for a backlogged

system may not be feasible if there is not enough data in the data buffer. Additionally, if no data can

be dropped, Ō(t) must always lie above Ī(t) − dmax. A transmission strategy has both a transmitted

energy curve and a corresponding transmitted data curve. The optimal transmission strategy must jointly

account for the constraints in both the data and energy domains. For discrete energy and data arrivals,

i.e., H̄(t) and Ī(t) are increasing step functions, the optimal transmission policy can be obtained through

a recursive algorithm that checks the conditions on transmitted data and energy curves jointly [4].

Data transmission over time-varying channels: Directional waterfilling

So far in our treatment, we have considered a constant EHD-receiver channel. We now turn our attention

to a time-varying channel with a backlogged transmitter, for which the rate-power function varies over

time according to (1), with P replaced by φ(t)P (t), where φ(t) denotes the squared magnitude of the

channel gain. Moreover, we assume that the changes in φ(t) and H̄(t) occur only at certain time instants

0 = t0 < t1 < t2 < · · · < tN = T . We denote the channel state in epoch [ti−1, ti), i = 1, . . . , N , as

φi. Assuming that, in addition to harvested energy amounts, channel states are also known in advance,

the problem is that of determining P (t) such that the total amount of transmitted data by time T is

maximized.

We first consider a battery-operated device with total energy 2H . The problem reduces to the well

studied problem of power allocation over parallel Gaussian channels. Let us consider a simple scenario

consisting of only two epochs of equal length, with φ1 > φ2. The optimal power allocation is given

by the celebrated waterfilling algorithm, and is illustrated in Fig. 3(a), where the shaded areas represent

the energy allocated to each epoch, and the height of the shaded region, Pi, is the constant transmission

power for that epoch. We can see that more power is allocated to the better channel state.

For a general EH profile, direct application of the waterfilling algorithm may not be feasible. For

example, assume that H units of energy are harvested at times 0 and T/2, respectively. The waterfilling
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Figure 3. Power allocation over time-varying channel with φ1 > φ2. (a) 2H units harvested at time 0, (b) H units harvested

at times 0 and T/2.

algorithm allocates more than half of the total energy to the first epoch. However, due to the energy

causality constraint, we can allocate at most H units of energy to the first epoch, and hence, the waterfilling

solution in Fig. 3(a) is no longer feasible. The optimal allocation under energy causality, illustrated in

Fig. 3(b), is called directional waterfilling [6]. The algorithm owes its name to the fact that harvested

energy can only be allocated to the epochs following its arrival.

The finite SE capacity should also be taken into account when applying the directional waterfilling

algorithm. This can be seen by swapping the channel states of the two epochs, i.e., φ2 > φ1. As shown in

Fig. 4(a), the directional and classical waterfilling algorithms achieve the same solution since the energy

harvested at time t = 0 can be allocated to the second epoch. However, the energy carried to the second

epoch from the first epoch together with the harvested energy at time t = T should be stored in the SE.

We can allocate at most emax energy units to the second epoch. For example, if emax = H , no additional

power can be allocated to the second epoch, and the optimal solution allocates H energy units to each

epoch, as shown in Fig. 4(b).

The optimal directional waterfilling algorithm needs to satisfy both the energy causality and the SE

capacity constraints, and it can be obtained through a recursive algorithm which starts from the last

energy packet and goes backwards [5].
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Figure 4. Power allocation over time-varying channel with φ1 < φ2 and H units harvested at time 0 and T . (a) No SE capacity

constraint, (b) SE capacity emax = H .

Processing energy cost: Directional glue-pouring

In a long-distance communication link radio transmission dominates the energy consumption at the

EHD; hence, the framework presented so far results in optimal energy management policies. However,

in short-range communications, other sources of energy consumption, such as converters, mixers, filters,

become more significant and need to be included in the analysis. When the processing energy cost

is negligible, the transmitter remains active until the deadline, since low power transmission is more

efficient in terms of bits per unit energy. However, when the processing energy cost is comparable to the

transmission energy, increasing the transmission duration results in a tradeoff between the total amount

of transmitted data and the energy spent by the processing circuitry. The optimal transmission scheme

is bursty, separated by “sleep” periods, during which the transmitter remains silent. The optimal power

allocation can be found as the solution of a convex optimization problem, and interpreted as a backward

directional glue-pouring algorithm [5], in which a minimum power level is set for each epoch depending

on the channel state and the processing cost, and energy is “poured” into an epoch at this power level

with increasing duration. The power allocated to an epoch increases beyond this level only after the

whole epoch is covered.

OPERATION IN UNPREDICTABLE ENVIRONMENTS: ONLINE OPTIMIZATION

In the previous section, non-causal knowledge of the energy and data arrival processes allowed solving

for the optimal policy through a one-shot optimization problem. However, in many practical scenarios,
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these processes are not known in advance. In this case, the µP must make intelligent decisions in an online

fashion based on possibly available statistical information on H(t) and I(t), and (possibly incomplete)

knowledge of the system state, which includes current values of S(t) and D(t) and past values of H(t)

and I(t). An approach that has been adopted is to come up with heuristic online algorithms and compare

their performance with the offline benchmark [5], [6]. Alternatively, determining the optimal policy can

be formally stated as a stochastic control problem, with the objective to determine the optimal decision

rules such that the expected outcome of the decisions is maximized.

A framework for solving online problems: Markov decision processes

If H(t) and I(t) are modeled as Markov processes, the online problem can be cast under the powerful

framework of Markov decision processes (MDPs). At each time, the µP decides on an action given the

system state; the action yields a reward and the system moves to a new state with a given probability,

which depends on the current state and action. The optimal policy is a set of decision rules that maximizes

the expected reward over a time-horizon. In the context of EHDs, the reward function may be the priority

[7], importance [8] or amount [6], [9] of transmitted data, or the detection of an interesting event [10].

The fundamental tradeoff pertinent to EHDs is related to the energy cost of transmission or sensing. On

the one hand, if a policy is too “generous”, i.e., it activates the radio or sensor too often, it risks emptying

the SE, thus rendering the EHD potentially unable to transmit important data or detect an interesting

event. On the other hand, if it is too frugal, i.e., it rarely transmits or senses, it “accrues” little reward;

moreover, the SE may overflow, and newly harvested energy is wasted.

The policy that strikes the best tradeoff can be found numerically with standard dynamic programming

tools such as the policy iteration algorithm (PIA), as, e.g., in [6], [7], and can then be programmed

into the µP. The problems with this approach are the implementation complexity, which grows with the

size of the state space, as well as the lack of analytical insight. This motivates the search for simpler

policies which seek to balance energy consumption and harvesting, with limited state information at their

disposal, and whose performance can be evaluated and optimized analytically. The advantages of this

approach are illustrated in the following representative scenario.

Low-complexity transmission policies for time-correlated EH

Consider a time-slotted system, such that, every time unit (slot), a new data packet of a given importance

enters the data buffer of Fig. 1, and must either be immediately transmitted at a cost of one energy unit

or dropped. The importance of the data packet at time i, i ∈ Z, is denoted by V (i), and we assume that
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{V (i)} are independent and identically distributed according to a given distribution function which is

known at the µP. In addition, in each slot, some amount of energy is harvested and stored in the SE of

capacity emax, according to a two-state Markov chain: in the GOOD state, one energy unit is harvested,

whereas, in the BAD state, no energy is harvested. The transitions from GOOD to BAD, and vice versa,

occur with given probabilities, such that the average durations of the GOOD and BAD periods are TG

and TB , respectively, and the probability of harvesting an energy unit in a slot is β = TG/(TG + TB).

The model is simple, yet it allows us to introduce time correlation in the energy source, the degree of

which depends on the values of TG and TB .3

At each time i, the µP must decide whether to transmit the current packet to the receiver or to drop it,

with the objective to maximize the average importance of transmitted data in the long-term. The decision

depends on the system state, i.e., the importance of the arriving packet, V (i), the energy available in

the SE, S(i), and the amount of energy harvested in time slot [i− 1, i), H(i) ∈ {0, 1}. It can be shown

that the optimal policy has a threshold structure, i.e., the packet is transmitted if V (i) is greater than a

given value vth, which depends on both S(i) and H(i) [7], [8], and the optimal thresholds can be found

numerically with the PIA. However, a simpler policy is the non-adaptive balanced policy (NABP) that

employs only one threshold vth such that the probability of transmission is always equal to the probability

that an energy unit is harvested in a slot, β. Denote by g(β) the average importance of data with value

greater than vth. It can be shown that, for large values of emax and TB , the average long-term importance

per time unit is

G = g(β)

(

β + (1− β)
ρ

ρ+ β

)

, (2)

where ρ = emax/TB is the power-to-depletion, i.e., the maximum power that, on average, can be

continuously supplied by a fully charged SE over a BAD period (in which no harvesting occurs).

Essentially, ρ reflects the ability of the SE to absorb the fluctuations in the ambient energy supply.

If ρ is much greater than β, the SE can (with high probability) support a constant energy consumption

rate β, without emptying in the BAD periods or overflowing in the GOOD periods, and, from (2),

G ≈ g(β), which is the best achievable reward by any policy [8]. In contrast, if ρ is much smaller than

β, adaptation to H(t) is critical to achieve good performance. Intuitively, a “smarter” balanced policy

should be generous in the GOOD state by transmitting with a high probability ηG, and conservative in

the BAD state by transmitting with a lower probability ηB < ηG. The optimal probabilities ηG and ηB

can be analytically derived to determine the optimal balanced policy (OBP) [8].

3A more general approach can be found in [8].
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Figure 5. Average transmitted data importance G vs. power-to-depletion ρ (β = 0.5, FV (v) = 1− e−v).

In Fig. 5, G is plotted vs. ρ for exponentially distributed importance values, under the following

transmission policies: the optimal policy (OP), computed numerically with the PIA, the OBP, the NABP,

and the greedy policy (GP), which always transmits when there is energy in the buffer. Fig 5 reveals

that the performance loss of OBP with respect to OP is less than 5% for the selected parameters. NABP

performs poorly for small ρ, but approaches the optimal performance for growing ρ, since adaptation

becomes less crucial. Finally, the penalty paid by using GP increases with ρ, which illustrates the

importance of maintaining a steady energy consumption rate, instead of constantly emptying the buffer

by indiscriminate data transmission.

Transmission policies for bursty data

The previous scenario assumed the arrival of a new data packet in each slot and a strict delay constraint

for its delivery (transmit or drop). However, in a number of applications, data may arrive randomly in

bursts, and may be buffered in the data buffer before being transmitted. Minimizing the mean delay of

the buffered data, or, equivalently, E[D(t)], is generally a complicated problem, owing to the combined

randomness in I(t) and H(t). In [9], various heuristic delay-minimizing policies are proposed for both

constant and time-varying channels. The main idea behind these policies is to adjust the transmission
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power based on the amount of data D(t) in the buffer at any given time t, in order to avoid wasting

harvested energy when there is not enough data in the buffer. Similar concepts are also explored in [11],

where a certain drift-based policy is shown to be asymptotically throughput-optimal as emax and dmax

become very large.

Sensing policies for time-correlated events

The previous two scenarios dealt with the energy management problem if data transmission is the only

cause of energy expenditure. Instead, in [10] the MDP framework is employed to address the problem of

optimal sensing. In particular, under a given energy cost of activating the sensor and taking a measurement,

the objective is to find a policy that maximizes the long-term probability of detecting an event whose

occurence (0 or 1) follows a two-state Markov chain. Here, the tradeoff that arises is that the µP may

save energy by switching off the sensing circuitry if it anticipates that the event will not occur, at the risk

of not reporting it in case it does. It is shown that, under an infinite emax and perfect knowledge about

the event occurence in slot [i− 1, i), the optimal action at time i is to always sense if the event occurred

in [i − 1, i) and there is adequate energy in the SE, and to sense with a certain probability which is a

function of the statistics of H(i) and V (i), if the event did not occur. In the case where the µP does not

have knowledge of the event occurence when the sensor is switched off, [10] also derives properties of

the optimal policy using the framework of partially-observable MDPs.

THE WAY FORWARD: RESEARCH CHALLENGES

Under the prism of the approaches presented so far, we now discuss what we believe are the main

challenges that lie ahead for the design of autonomous and reliable EH communication systems.

Learning-theoretic algorithms for EH systems

The assumption of non-causal information about the EH and data arrival profiles in the offline optimiza-

tion framework is too optimistic in practice, unless the underlying processes are deterministic or highly

predictable. This assumption is relaxed in the online optimization framework, in which the µP possesses

only statistical information about the future evolution of these processes. Nonetheless, in many practical

scenarios, statistical characteristics may change over time, or such information may not be available before

deployment. In this case, neither the online nor the offline optimization framework will be applicable. An

alternative solution is to employ learning theoretic algorithms to learn the characteristics of the EH and

data arrival processes in real time, and to adapt the transmission policy accordingly. In [12], Q-learning,
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a reinforcement learning technique, is considered for learning the optimal transmission strategy when

the EH, data arrival and channel states are modeled as Markov processes with unknown state transition

probabilities. It is shown that the online optimization performance can be achieved after a reasonable

learning period. The exploration of other learning algorithms as well as of reduced complexity suboptimal

techniques constitutes an interesting research direction.

Networks of EHDs and energy cooperation

As in conventional battery-operated systems, a network of EHDs is much harder to study than a single

link. Some basic multi-user scenarios (such as broadcast [3], relay [13], multiple access and interference

[14] channels) have been studied in the literature. In general, the complexity in characterizing the optimal

policies increases significantly with the number of nodes in the network. Even in a simple two-hop

scenario, the transmission schedule of the source node affects the data arrivals at the relay node, coupling

the optimal transmission schemes across the network [13]. Moreover, optimal policies depend heavily

on the available knowledge of the EH profiles across different devices. This information may be hard

to obtain or even unattainable in practical systems, therefore solutions based only on local information

should be sought, such as in [15], [16]. In [15], a routing algorithm is proposed which is shown to

achieve an asymptotically optimal competitive ratio with respect to any offline scheme, as the number

of nodes in the network grows large, while [16] derives an optimal random access policy based on a

game-theoretic formulation of the multiple access problem.

A fascinating aspect of networks of EHDs arises when the devices can share/transfer energy, e.g.,

electromagnetic energy, among each other, as proposed in [17]. In particular, if the receiver can harvest

electromagnetic energy, it is possible to wirelessly transmit data and energy simultaneously over the same

carrier signal, which leads to many open research problems regarding resource allocation and interference

management.

Accurate modeling of EH processes and SE imperfections

The proposed mathematical models render the performance analysis of EHDs tractable; however,

they may not always be accurate in practice. It is thus desirable to enhance them based on real-world

data, while, at the same time, maintaining their simplicity and analytical tractability. Towards this goal,

measurement campaigns, such as the one in [1], are required, so that statistical models for the harvested

energy are identified based on the application. Moreover, realistic storage and power consumption models,

based as much as possible on actual EH modules, SEs and µP circuits, should be developed, and employed
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in the design of energy management algorithms. As a first step in this direction, in [18], a statistical

framework is developed, which models the state of health of the SE and captures the impact of the SE

degradation on the optimal energy management policy. It is shown that a “degradation aware” energy

management policy significantly improves the SE lifetime, while guaranteeing a minimum required quality

of service. A similar observation is made in [3] for the offline optimization problem considering energy

leakage as well as degrading SE capacity.

CONCLUDING REMARKS

This article has provided an overview of the main mathematical tools and approaches in the design of

EH communication systems. We have placed special emphasis on analytical models, whose study sheds

light on the fundamental tradeoffs involved in the design of energy management policies for EHDs. At

the moment, there appears to be a divide between communications and electronics engineers involved in

EH research; the authors believe that many exciting research opportunities exist at the intersection of the

two fields. We expect that the increasing deployment of EHDs in practice will bring about more cross-

disciplinary research, and thus the development of smarter and more reliable EH wireless communication

systems.
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[13] D. Gündüz and B. Devillers, “Two-hop communication with energy harvesting,” in In Proc. of IEEE Workshop on

Computational Advances in Multi-Channel Sensor Array Processing (CAMSAP), San Juan, PR, Dec. 2011, pp. 201–204.

[14] K. Tutuncuoglu and A. Yener, “Sum-rate optimal power policies for energy harvesting transmitters in an interference

channel,” Journal of Communications and Networks, Special Issue on Energy Harvesting in Wireless Networks, vol. 14,

no. 2, Apr. 2012.

[15] L. Lin, N. B. Shroff, and R. Srikant, “Asymptotically optimal energy-aware routing for multihop wireless networks with

renewable energy sources,” IEEE/ACM Transactions on Networking, vol. 15, pp. 1021–1034, Oct. 2007.

[16] N. Michelusi and M. Zorzi, “Optimal random multiaccess in energy harvesting wireless sensor networks,” in IEEE Int’l

Conf. on Communications (ICC), Budapest, Hungary, Jun. 2013.

[17] B. Gurakan, O. Ozel, J. Yang, and S. Ulukus, “Energy cooperation in energy harvesting wireless communications,” in In

Proc. of IEEE International Symposium on Information Theory, Cambridge, MA, Jul. 2012, pp. 965– 969.

[18] N. Michelusi, L. Badia, R. Carli, L. Corradini, and M. Zorzi, “Impact of battery degradation on optimal management

policies of harvesting-based wireless sensor devices,” in Proc. IEEE INFOCOM Mini Conference, Turin, Italy, Apr. 2013,

pp. 590–594.
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