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Abstract: Trade-offs between privacy and cost are studied for a smart grid consumer, whose electricity consumption is monitored
in almost real time by the utility provider (UP) through smart meter (SM) readings. It is assumed that an electrical battery is
available to the consumer, which can be utilized both to achieve privacy and to reduce the energy cost by demand shaping.
Privacy is measured via the mean squared distance between the SM readings and a target load profile, while time-of-use (ToU)
pricing is considered to compute the cost incurred. The consumer can also sell electricity back to the UP to further improve the
privacy-cost trade-off. Two privacy-preserving energy management policies (EMPs) are proposed, which differ in the way the target
load profile is characterized. A more practical EMP, which optimizes the energy management less frequently, is also considered.
Numerical results are presented to compare the privacy-cost trade-off of these EMPs, considering various privacy indicators.

1 Introduction

Smart meters (SMs) are pivotal components of the smart grid,
because they enable two-way communication between each house-
hold and the utility provider (UP), the entity that sells energy to
consumers. Benefits include having more accurate electricity bills,
detecting energy theft and outages faster, introducing time-of-use
(ToU) tariffs to match demand with available resources, integrating
microgeneration systems, e.g., photovoltaic panels and wind farms,
and residential energy storage solutions, and the possibility for the
consumers to sell energy to the grid. For these reasons, the SM roll-
out is proceeding rapidly and is attracting considerable investments.
However, an SM’s ability to monitor a user’s electricity consump-
tion in almost real-time entails serious implications about consumer
privacy. In fact, non-intrusive appliance load monitoring techniques
are able to distinguish the power signatures of specific appliances
from aggregated household SM measurements, revealing sensitive
information about a consumer’s life, such as her presence at home,
religious beliefs and disabilities [1, 2]. SM privacy is also critical for
businesses, e.g., factories and data centers, as power consumption
data may reveal information about the state of their businesses.

1.1 Privacy-Aware SM Techniques

Privacy-preserving methods for SMs can be classified into two fam-
ilies. Firstly, the smart meter data manipulation (SMDM) family
[3], encompasses methods that modify SM measurements before
reporting them to the UP, and includes data obfuscation [4], aggre-
gation [5], anonymization [6], down-sampling [7], and data-sharing
prevention [8] approaches. However, these techniques suffer from
several shortcomings [3]. First, obfuscation approaches add noise
to the SM readings, causing a mismatch between the reported val-
ues and the real energy consumption, which prevents distribution
systems operators (DSOs), i.e., the entities that operate and man-
age the grid, and UPs from accurately monitoring the grid state.
Second, anonymization and aggregation techniques that include the
presence of a trusted third party (TTP) only shift the problem of
trust from one entity (UP/DSO) to another (TTP). Third, DSOs, UPs,
or more generally any eavesdropper can embed additional sensors
right outside a household or a business to monitor the energy con-
sumption, without fully relying on SM readings. The second family
of privacy-preserving approaches, called the user demand shaping

(UDS) family [3], overcomes these issues by modifying the con-
sumer’s actual electricity consumption, called the user load, rather
than the data sent to the UP. This is achieved by exploiting physi-
cal resources, e.g., rechargeable batteries (RBs) or renewable energy
sources (RESs), making the user load as different as possible from
the SM measurements, called the grid load [9–11]. However, UDS
techniques may require an initial investment by the user as physical
resources need to be installed at the user’s premises. Using RBs for
privacy preservation may also lead to a quicker physical degradation
of RBs [12]. Moreover, cost of energy may increase when providing
privacy via some UDS approaches. Hence, it is important to con-
sider these aspects when considering UDS techniques for privacy
preservation.

In this paper, we adopt UDS techniques because they report
the energy taken from the grid accurately, and employ physical
resources, e.g., RBs and RESs, which are becoming increasingly
available to the consumers. Our aim is to jointly minimize the infor-
mation leaked about a user and the cost of electricity. While a widely
accepted definition of privacy is elusive, privacy is achieved when
it is not possible to distinguish a specific appliance load from the
aggregated household energy consumption [9]. Statistical techniques
measure privacy loss by the mutual information between the user and
the grid loads [10, 11, 13–17], or by computing approximations of it
[18]; however, this requires the knowledge of the underlying statis-
tics, and the results are typically valid under various simplifications,
e.g., assuming independent and identically distributed user load,
and over sufficiently long time horizons. An alternative approach
is based on the idea that a high degree of privacy can be achieved
by flattening the power consumption around a target load profile,
e.g., minimizing the distance from a completely private profile [10],
[19–21]. The target load profile can be set to be a constant value
over time, typically equal to the average consumption [10, 19, 20].
In this model, it is assumed that the energy management unit (EMU),
i.e., the system that implements the privacy-preserving energy man-
agement policy (EMP) at the user’s premises, knows, or, accurately
predicts, the load profile for the time period of interest, and obtains
the optimal EMP by solving an optimization problem. On the other
hand, a completely constant consumption may not be practically
viable or desirable, since the energy cost may vary greatly during
the system operation due to ToU tariffs. Hence, in [21] the EMU
is allowed to target a different fixed power value for each price
period. The flexibility of the latter approach leads to a better over-
all privacy-cost trade-off; however, such a piecewise constant target
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profile implies also an inherent information leakage compared to a
constant target profile. We follow up on [10] and [19–21], and mea-
sure the privacy leakage as the squared distance between the grid
and target load profiles; however, differently from those works, we
consider a more general target load profile, and assume that the con-
sumer has only a partial knowledge of her future energy consumption
and energy cost. We note that privacy leakage may be measured as
the distance between grid and user loads. However, if the aim is to
increase such distance, this might lead to a potentially determinis-
tic strategy for the EMU, e.g., produce a low grid load when the
user load is high and vice-versa. Since we also assume that the UP
knows the optimal strategy implemented by the EMU, such a strat-
egy would result in a better estimate of the user load by the UP. On
the contrary, trying to match the grid load to a specific target pro-
file would make it harder to estimate the user load, e.g., flattening
the grid load independent of the user load reveals only the average
energy consumption.

The main contributions of this paper are as follows:

1. While full information about the future electricity consumption is
assumed to be available at the EMU in [10] and [21], which we call
the long horizon model (LHM), here we consider a more realistic
scenario whereby the consumer’s future consumption profile is only
partially known to the EMU in a receding horizon manner, which
we call the short horizon model (SHM). The optimal solution at any
time is computed only based on the currently available information
within the prediction horizon by adopting a model predictive con-
troller, recently implemented in an SM setting in [14]. We present a
detailed comparison of the results for SHM and LHM.
2. We introduce a target load profile computed as a low-pass
filtered version of the user load, since higher-frequency compo-
nents of a user’s consumption profile leak more information about
her behaviour, compared to lower-frequency components. To the
authors’ knowledge, this is the first time that such a target profile
has been studied in the SM privacy-preservation literature.
3. We propose a more practical EMP that updates the optimal strat-
egy less frequently. The optimal solution is computed in batch,
reducing the computational load at the expense of the privacy-cost
trade-off. Finally, we compare the privacy-cost trade-offs for all the
schemes using real consumption and pricing data.

The remainder of this paper is organized as follows. In Section 2
we present the system model, while in Sections 3 and 4 we consider
the SHM for a constant and a filtered target load profile, respectively.
A more practical EMP with less regular policy updates is analyzed
in Section 5, while conclusions are drawn in Section 6.

1.2 Notation

For integers 0 < a < b,Uba denotes the sequence [Ua, Ua+1, . . . , Ub],
while Ub , Ub1 . The positive part [x]+ is equal to x if x > 0, and 0
otherwise. When solving optimization problems, we denote the opti-
mal value of a variable with a star, e.g.,G∗ denotes the optimal value
of the parameter G.

2 System Model

We consider the discrete time system depicted in Fig. 1, where t rep-
resents one time slot (TS) of duration D seconds, for 1 ≤ t ≤ N ,
where N is the time horizon of interest. For TS t, the user load, i.e.,
the total power requested by all the household appliances within TS
t, is denoted by Ut ∈ U , while the grid load is Gt ∈ G. We remark
that the TSs in our model correspond to time instants when the elec-
tricity is actually requested by the user and drawn from the grid,
rather than the typically longer sampling interval used for sending
SM measurements to the UP. We assume that the SM measures and
records the output power values at each TS because our aim is to pro-
tect consumers’ privacy not only from the UP, but also from the DSO
or any other attacker that may deploy a sensor on the consumer’s
power line recording the electricity consumption in almost real-time.

Fig. 1: The system model.Ut,Gt andUt −Gt are the user load, the
grid load, and the energy drawn from the RB at time t, respectively.
The dashed line represents the meter readings being accurately
reported to the UP.

An RB of capacity Bmax is installed at the user’s premises, which
is used to both filter the user load to provide privacy, and to shift
energy intake from the grid to minimize electricity costs. The EMU
computes the amount of energy to draw from the grid, Gt, and to
exchange with the RB, Ut −Gt. Let Bt ∈ [0, Bmax] denote the
amount of energy in the RB at the end of TS t, and we set B0 = 0.
The RB is charging if Gt − Ut ≥ 0, and discharging otherwise. The
user’s electricity consumption and the electricity price are assumed
to be known for HF TSs beyond the current TS, naming HF as
the prediction horizon. Additionally, we assume that the EMU keeps
memory about the past HP TSs, which we call the past horizon. At
each TS t, the EMU computes an EMP for the following HF TSs,
using its knowledge of Ut and the electricity cost within the predic-
tion horizon, and its knowledge of the user load, grid load, and the
RB level of energy within the past horizon.

Instead of the LHM scenario, where full information about a con-
sumer’s future energy consumption is assumed to be known over
the whole time period of interest, in this paper, we consider a more
realistic scenario and assume that only partial knowledge of the con-
sumer’s future energy consumption is available to the EMU. The
SHM assumption is motivated by the difficulty in obtaining reliable
longer term predictions of a consumer’s energy consumption.

2.1 System Constraints

Let t+HF , min{t+HF , N}. We do not allow wasting grid
energy; that is, there are no battery overflows, i.e., we impose
Bt−1 + (Gt − Ut)D ≤ Bmax, ∀t. This means that, at any time t
and considering a prediction horizon of HF TSs, the EMU has to
satisfy the following constraint:

Bt−1 +

τ∑
s=t

(Gs − Us)D ≤ Bmax, (1)

where t ≤ τ ≤ t+HF .
While additional energy can be stored in the RB for future use, we

do not allow demand rescheduling, so that user’s energy demands
are always satisfied at the time of request, i.e., we impose: GtD ≥
UtD −Bt−1, ∀t. This leads to the following constraint for the EMU
at time t:

τ∑
s=t

(Us −Gs)D ≤ Bt−1, (2)

where t ≤ τ ≤ t+HF . This constraint is also implicitly verified
by the equation expressing the evolution of the energy level in the
battery:

0 ≤ Bt+1 = Bt +Gt+1D − Ut+1D. (3)
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The power the RB can be charged or discharged at is constrained
by P̂c and P̂d, respectively. Thus, ∀t we have:

Gt − Ut ≤ P̂c, (4)

Ut −Gt ≤ P̂d. (5)

The model could be made more accurate by introducing further
constraints, e.g., battery charging and discharging efficiency param-
eters, which we leave for future research focusing on the practical
implications of the proposed UDS techniques.

We study and compare the two scenarios in which energy can or
cannot be sold to the UP. The price of energy sold to the grid is
set equal to the price of energy bought from it, i.e., we adopt the
net metering approach, in which the SM can measure bi-directional
energy flows [22]. If energy cannot be sold, then

Gt ≥ 0, ∀t, (6)

whereas, if energy can be sold, we have:

Gt :

{
≥ 0, if energy is purchased from the UP,
< 0, if energy is sold to the UP.

(7)

Given (Ut, Bt) = (ut, bt), Bmax and the constraints (4)-(6), the
set of feasible energy requests at time t is given by

Ḡt(ut, bt) ,
{
gt ∈ G :

[
ut −min

{ bt
D
, P̂d

}]+
≤ gt

≤ ut + min
{
P̂c,

Bmax − bt
D

}}
. (8)

If selling energy to the UP is allowed, then the feasible set is as in
Eq. (8), but without the [·]+ operator.

The EMP computes the grid load at each TS while satisfying the
above constraints. We consider a model predictive control approach,
whereby the user load and the cost of energy are known beforehand
within the prediction horizon [t+ 1, . . . , t+HF ], and the goal is to
jointly minimize the information leaked about a user’s energy con-
sumption as well as the cost the user incurs to purchase energy from
the UP. While non-causal knowledge of the electricity price for the
typical range of interest is a realistic assumption in today’s energy
networks, non-causal knowledge of power consumption is appropri-
ate for appliances whose activity can be accurately predicted, e.g.,
refrigerators, boilers, heaters and electric vehicles. We note that the
setting studied in [21], which assumes all future energy consumption
and cost information to be known beforehand, is a lower bound on
the setting studied in this paper, as more information leads to a better
privacy-cost trade-off.

Let the target load at time t be denoted by Wt. We measure the
privacy leakage as the average variance of the grid load GN from
the target load profile WN

P ,
1

N

N∑
t=1

(Gt −Wt)
2, (9)

according to which, perfect privacy is achieved when Gt = Wt,
∀t. We adopt squared distance in (9) not to discriminate between
negative and positive deviations of Gt from Wt. The average cost
incurred by the user is given by

C ,
1

N

N∑
t=1

GtCt, (10)

where Ct is the cost of energy at time t, which is determined by the
specific ToU tariff employed by the UP.

(a) SHM, no energy selling. (b) LHM, no energy selling.

(c) SHM, energy selling. (d) LHM, energy selling.

Fig. 2: Power profiles for α = 0.5 and HF = HP = 2h. In the fig-
ures, the arrows of green, orange and red colors denote time intervals
characterized by off-peak, medium and peak price for the electricity
cost, respectively.

2.2 Simulation Settings

We use real SM consumption traces from the UK Dale dataset [23].
We convert the original resolution of 6 to 10 minutes to reduce the
computational complexity. We consider a Tesla Powerwall 2 [24] as
RB, for which Bmax = 13.5kWh, and P̂c = P̂d = 5kW. We con-
sider a ToU tariff that was offered in the UK [25], in which the
off-peak price is 4.99p/kWh during 23:00 to 6:00, the medium price
is 11.99p/kWh during 6:00 to 16:00 and during 19:00 to 23:00, and
the peak price is 24.99p/kWh during 16:00 to 19:00. All the simula-
tion results are obtained for a time interval spanning 14 consecutive
days, to average over a considerably large amount of data. For sim-
plicity, we will mostly present numerical results when selling energy
to the grid is not allowed, unless energy selling leads to significantly
different results.

3 Target Load as a Constant Value

In this section, following up on [9, 20] and [10], we assume that the
goal of the EMU is to keep the grid load as constant as possible.
In [11] it is assumed that all the future user load and energy cost
values are known, and the EMU can fix a target value for the whole
duration, e.g., one whole day. In our model the information available
to the EMU on Ut and Ct is limited to the prediction horizon, and
changes over time; thus, the target load cannot be constant, and its
variability depends on the length of the past and prediction horizons.
In this section, given the knowledge of the cost of energy and the
user’s power consumption, the aim is to characterize both the optimal
target load W ∗ and the optimal grid load G∗ so as to optimize the
overall privacy-cost trade-off.

Given the nature of the objective functions and the constraints,
pairs of (P , C) form a convex region and the optimal points can
be characterized by the Pareto boundary of this region. Hence, the
objective can be cast as a weighted sum of privacy leakage (9) and
cost (10):

min
G
t+HF
t ,Wt

α

t+HF∑
τ=t−HP

(Gτ −Wt)
2 + (1− α)

t+HF∑
τ=t

GτCτ , (11)

where 0 ≤ α ≤ 1 is the weighting parameter, i.e., if α = 0 only cost
of energy is minimized, whereas if α = 1 only information leakage
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(a) α = 0. (b) α = 1.

Fig. 3: Optimal grid and target load profiles, for Bmax = 4, P̂c =
P̂d = 2, when energy selling is not allowed.

is minimized; and t−HP , max{t−HP , 0}. We remark that set-
ting the value ofα is up to the consumer, who is in charge of deciding
whether to focus more on protecting her privacy or on saving costs.
The result of the minimization in Eq. (11) is the grid load for the cur-
rent TS and the entire duration of the prediction horizonGt+HFt , and
the target load Wt. Eq. (11) characterizes the target load value Wt

for the finite prediction horizon, which leads to the optimal privacy-
cost trade-off over this horizon, based on the available information.
At TS t+ 1, the minimization (11) is carried out again based on the
additional information that becomes available, i.e., Gt+HF+1 and
Ct+HF+1, and Gt+1 and Wt+1 are determined. The past horizon∑t−1

τ=t−HP
(Gτ −Wt)

2 is considered when optimizing for the pri-
vacy objective, since it ensures smoother variations of the overall
target load profile. We note that, since privacy and cost in Eq. (11)
may have significantly different magnitudes, they need to be further
normalized to get the Pareto optimal solution consistent with α [26].

Remark 1. Differently from [21], here we do not impose the RB to
be emptied at the end of each time window [t−HP , t+HF ], since
here the end of the prediction horizon does not typically coincide
with the end of the time horizon of interest, and the energy remain-
ing in the RB can be utilized in the following TSs. Since the algorithm
jointly minimizes privacy leakage and cost, the RB is normally emp-
tied at the end of the time horizon of interest N , unless α is high. If
α→ 1 and the RB is large, a sustained demand of energy may take
place in short term, which is ultimately constrained by Bmax and
P̂c.

Fig. 2 shows the load profiles of SHM and LHM over one day.
As expected, the LHM provides better performance as the resultant
profile is much flatter and hides most of the consumption spikes,
which typically reveal more information about user’s behavior. How-
ever, also the SHM leads to a reasonable suppression of consumption
peaks, despite relying on much less data. Also, the SHM reveals
more information about the low-frequency variation of user’s energy
consumption, which, however, is common across households, and
thus provides only a limited amount of personal information. More-
over, Figs. 2a and 2c show that the peaks of the grid load generated
by SHM are not necessarily aligned with those of the user load.

(a) α = 0. (b) α = 1.

Fig. 4: Optimal grid and target load profiles, for Bmax = 20, P̂c =
P̂d = 10, when energy selling is allowed.

3.1 Solution to the Optimization Problem (11)

In the following we consider the optimization problem (11) for
α 6= {0, 1}. We analyze first the optimal solution when selling of
energy is allowed, i.e., (6) does not hold. Based on (11) and the
constraints (1)-(2) and (4)-(5), we define the Lagrangian function
in (12) at the bottom of this page, where λ(j)τ ≥ 0, for 1 ≤ j ≤ 4,
are the Lagrange multipliers, and t ≤ τ ≤ t+HF . Denoting the
vectors in bold, we have λ = [λ(1),λ(2),λ(3),,λ(4)]. The slack-
ness conditions are imposed on the inequality constraints, for τ =
t, t+ 1, . . . , t+HF :

λ
(1)
τ

[
D

τ∑
s=t

(Gs − us)−Bmax +Bt−1

]
= 0, (13)

λ
(2)
τ

[
D

τ∑
s=t

(Us −Gs)−Bt−1

]
= 0, (14)

λ
(3)
τ (Gτ − Uτ − P̂c) = 0, (15)

λ
(4)
τ (Uτ −Gτ − P̂d) = 0. (16)

Let aτ , D
∑t+HF
s=τ (λ

(2)
s − λ

(1)
s )− λ(3)τ + λ

(4)
τ , and C̃τ ,

(1−α)
2α Cτ . Applying the Karush-Kuhn-Tucker (KKT) conditions

and setting the gradient of the Lagrangian to zero, we obtain the
following expressions:

G∗
τ =

aτ
2α
− C̃τ +W ∗

t , for τ = t, . . . , t+HF , (17)

W ∗
t =

∑t+HF
τ=t−HP

G∗
τ

1 + min{HP , t}+ min{HF , N − t}
. (18)

The optimal solution for the grid load given in (17) resembles the
classical water-filling algorithm [27]. However, differently from the
classical water-filling formulation, here the water level, G∗

τ + C̃t =
aτ
2α +W ∗

t , is not constant, but varies over time due to the instanta-
neous power constraints. The optimal solutions given by Eqs. (17)
and (18) depend on the values of the Lagrangian multipliers and can
be determined numerically.

When α = 0, the only objective is to minimize the cost, and Eq.
(11) reduces to a linear program, which can be solved using standard

L(Gt+HFt ,Wt,λ) = α

t+HF∑
τ=t−HP

(Gτ −Wt)
2 + (1− α)

t+HF∑
τ=t

GτCτ +

t+HF∑
τ=t

λ
(1)
τ

[
D

τ∑
s=t

(Gs − Us)−Bmax +Bt−1

]

+

t+HF∑
τ=t

λ
(2)
τ

[
D

τ∑
s=t

(Us −Gs)−Bt−1

]
+

t+HF∑
τ=t

λ
(3)
τ (Gτ − Uτ − P̂c) +

t+HF∑
τ=t

λ
(4)
τ (Uτ −Gτ − P̂d). (12)
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(a) HP = HF = 1h. (b) HP = 12h, HF = 1h. (c) HP = 1h, HF = 12h.

Fig. 5: Comparison between various past and prediction horizons for α = 0.5, when energy selling is not allowed.

linear programming solvers. On the other hand, when the user is not
concerned about the cost, i.e., α = 1, Eq. (11) leads to a quadratic
program analogous to the general case.

When energy selling is not allowed, the constraint (6) holds,
and the Lagrangian in (12) is modified accordingly. The slack-
ness conditions are given in Eqs. (13)-(16), as well as, for
τ = t, . . . , t+HF : λ

(5)
τ Gτ = 0, and λ(6)Wt = 0. Let ãτ ,

D
∑t+HF
s=τ (λ

(2)
s − λ

(1)
s )− λ(3)τ + λ

(4)
τ + λ

(5)
τ . Then, we obtain

the following expressions, counterparts of (17) and (18):

G∗
τ =

[
ãτ
2α
− C̃τ +W ∗

t

]+
, for τ = t, . . . , t+HF , (19)

W ∗
t =

[ ∑t+HF
τ=t−HP

G∗
τ + λ(6)

1 + min{HP , t}+ min{HF , N − t}

]+
. (20)

3.2 Illustration of the Water-filling Solution

Here we present the solution for some simple scenarios to acquire
an intuition on the solution of the optimization problem (11),
and on its water-filling interpretation. Assume energy selling is
not allowed, N = 6, and D = 1, i.e., power and energy can
be used interchangeably. Consider u6 = [1, 2, 6, 5, 2, 4] and c6 =
[1, 2, 5, 3, 1, 3], HP = HF = 2 TSs, and an RB with Bmax = 4
and P̂c = P̂d = 2. Fig. 3a shows the optimal solution for α =
0, G∗,6 = [3, 4, 4, 3, 4, 2]. Since the electricity is cheaper for t =
{1, 2}, more energy is requested from the grid at these TSs and
stored in the RB to satisfy the demand at later TSs. However, such
energy is limited by Bmax and P̂c. At t = 1, P̂c limits the grid load,
since G∗

1 = u1 + P̂c = 3, and the level of energy in the RB at the
end of the first TS is B1 = P̂c = 2. At t = 2, the grid load is lim-
ited by P̂c and Bmax simultaneously, and G∗

2 = u2 + P̂c = 4, and
B2 = Bmax = 4. Note that, although the third TS is the most expen-
sive, G∗

3 = 4 because the RB cannot be discharged by more than 2
units of energy (P̂d = 2). For the same reason, G∗

4 = 3, while the
remaining energy was stored in the second TS. Similar considera-
tions hold for the last two TSs. Fig. 3b illustrates the optimal solution
for α = 1, G∗,6 = [3, 3.5, 4, 3.75, 3.88, 3.81]. In this scenario, the
EMP tries to match Gt to the target load Wt, even at the cost of
asking more energy than needed. The energy demand at t = 1 is the
same as the case α = 0, whereas at t = 2 less energy is stored in
the battery to be used at t = 4, so that the water level matches the
target load in this TS (at the expense of a higher cost at t = 4). It is
noteworthy that more energy than needed is requested at t = 4, and
used to satisfy the demand during at t = 5, which is cheaper. Finally,
more energy than needed is requested at t = {4, 5} (depicted in yel-
low), allowing the EMP to match the target and the grid load. Such
energy is stored in the RB for future use.

(a) Energy selling. (b) Energy selling. (c) No energy selling.

Fig. 6: Impact of the prediction horizon HF on leakage, cost and
target load variance (HP = 2h).

(a) Energy selling. (b) Energy selling. (c) No energy selling.

Fig. 7: Impact of the past horizon HP on leakage, cost and target
load variance (HF = 2h).

(a) HP = 2h. (b) HF = 2h.

Fig. 8: Number of features vs HF and HP , no energy selling.

Fig. 4 shows the same scenario withBmax = 20, P̂c = P̂d = 10,
and when energy can be sold. When α = 0, Fig. 4a shows that
energy is bought when it is cheaper and sold back to the grid when
it is more expensive, maximising user’s profit. C̃3 and C̃4 are plot-
ted as negative since energy is sold in these TSs. In fact, the RB is
emptied of the energy stored during the first two TSs at the end of
the fourth TS, and it is emptied again of the energy stored during
the fifth TS at the end of the sixth TS. When α = 1, Fig. 4b shows
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(a) α = 0, HP = 2h. (b) α = 1, HP = 2h. (c) α = 1, HF = 2h.

Fig. 9: Power spectra vs HF and HP , and no energy selling.

(a) SHM. (b) LHM.

Fig. 10: Filtered target load scenario with cut-off frequency of
0.1mHz, α = 1, and HF = HP = 2h.

that a larger RB permits greater flexibility but also boosts the amount
of energy requested. This is not necessarily a disadvantage, as such
energy can be used at a later TS.

3.3 Impact of the Duration of Prediction and Past Horizons

Fig. 5 shows the load profiles for various combinations of HF and
HP . As expected, a larger HF produces flatter target and grid loads
(see Fig. 5c), compared to a smaller HF (see Fig. 5a). However,
when HF is larger the resulting grid load is more distant from the
target load, thus resulting in a higher information leakage according
to our definition of privacy leakage in Eq. (9). In fact, when HF is
small, the grid load values that are compared to the target load are
few, and the EMP is able to determine a target load that is close to the
grid load within the analyzed time window. On the contrary, when
HF is large, the EMP needs to find a single target load that matches
a longer interval of grid load values; as a result, the target load may
be less representative for some periods. A largerHP leads to a flatter
target load (see Fig. 5b), however, the grid load is spikier compared
to considering a larger HF .

Fig. 6 shows the average information leakage P , average cost C,
and average target load variance with respect to HF . The average
target load variance, which can be considered as another privacy
indicator, is defined as

V ,
1

N

N∑
t=1

(Wt − µW )2, (21)

where µW is the mean of W over time. When α is small, i.e., the
main focus is to minimize the cost, a larger HF reduces the aver-
age cost up to a certain extent, beyond which it cannot be further
reduced (see Fig. 6b); whereas for α = 1 the cost does not change

(a) Constant target. (b) Filtered target.

Fig. 11: Practical EMP for α = 0.5, HF = HP = 2h, TS = 1h,
and cut-off frequency set to 0.1mHz.

considerably with HF . Opposite considerations hold for the infor-
mation leakage, which even slightly increases when α 6= 1 (see Fig.
6a). This is due to the fact that a longer prediction horizon generates
a grid load that is more distant from the target load, except forα = 1,
when the focus is on privacy only. Fig. 6c shows that increasing HF
induces a smaller variance on the target load.

Fig. 7, which shows P , C and V with respect to HP , exhibits
similar behaviors to those in Fig. 6, with some notable differences.
The y-axis ranges are more limited here, confirming that the knowl-
edge of past consumption is less critical for the EMP compared to
the knowledge of future consumption and costs. This explains the
far smaller reduction in cost in Fig. 7b, as compared to Fig. 6b, and
the increase in the information leakage when α = 1 in Fig. 7a. Fig.
7c shows that the target variance is higher and more variable when
α = 1; however, this corresponds to the case in which the grid load
is closer to the target load, i.e., the most private scenario according to
our original privacy measure. This contradiction of the two privacy
indicators shows that evaluating the variance of the target load does
not fully reflect the level of privacy achieved, as defined in Eq. (9).

3.4 Alternative Privacy Measures

As opposed to the LHM studied in [10], where Wt is fixed through-
out the operation time, here Wt is allowed to vary over time.
Therefore, the squared distance between Gt and Wt may not be suf-
ficient as a privacy measure on its own. Accordingly, we consider
alternative measures of privacy to see the impact of the proposed
model predictive control framework on those measures. One of the
objectives of privacy-preserving algorithms for SM data is to mask
the difference between successive power measurements, called fea-
tures, which non-intrusive appliance load monitoring algorithms
exploit to identify appliances’ switch-on/off events [28]. Thus, it is
possible to evaluate an EMP’s performance against such algorithms

IET Research Journals, pp. 1–8
6 c© The Institution of Engineering and Technology 2015



(a) LHM. (b) SHM. (c) Practical EMP.

Fig. 12: Filtered target load scenario with cut-off frequency of 0.1mHz, α = 1, and no energy selling. For the SHM and the practical EMP we
set HP = 2h and TS = 1h.

by computing the number of features present in the grid load [20].
We classify as features those differences that are larger or equal to
50 W, which represent a typical household electricity consumption
of lights. Fig. 8 shows the number of features with respect to HF
and HP . A larger HF leads to a reduction in the number of features
in the grid load (Fig. 8a); however, HP does not seem to have any
influence on this (Fig. 8b).

Another way of assessing the performance of privacy-preserving
algorithms is by analyzing the power spectrum of the resulting grid
load. In fact, the higher-frequency components of the grid load spec-
trum correspond typically to more sensitive information about a
user’s energy consumption [29]. Fig. 9 shows the grid load spec-
tra corresponding to using different values of HF and HP . Larger
values of HF lead to better suppression of higher-frequency com-
ponents when α = 1 (Fig. 9b), whereas for α = 0 even additional
high-frequency components are introduced (Fig. 9a). When α = 1,
increasing HP also attenuates the higher-frequency components
(Fig. 9c), but less markedly compared to increasingHF . As the spec-
tral analysis of the grid load better captures the information leaked,
in the following section we consider a privacy-preserving approach
whose aim is to filter out directly the higher-frequency components
of the user load.

4 Target Load as Filtered User Load

When the target load is set to a constant value, one can consider
this as the DC component of the Fourier transform of the user load
profile. If the grid load can be maintained at the average value of
the user load at all times, this is equivalent to filtering out all the
positive frequency components of the user load profile. However, as
shown in Section 3, this is not always possible due to the RB capacity
and power constraints, and the information leakage is measured as
average squared error distance from this constant DC component. In
this section, we consider a more general target load profile, obtained
by low-pass filtering the user load, which is equivalent to removing
only the high-frequency variations. The motivation for this is two-
fold: Firstly, the EMU is able to better approximate the target load
profile by keeping the low-frequency components; and secondly, the
high-frequency components are the ones that leak more information
about user behavior. Low-frequency devices are those that typically
have continuous periodic operation, e.g., the fridge, and are not par-
ticularly privacy sensitive. We would like to remark that, differently
from the previous section, here W is not an optimization variable
but it is determined based only on the user load. The optimization
problem is expressed as

min
G
t+HF
t

α

t+HF∑
τ=t

(Gτ −Wτ )2 + (1− α)

t+HF∑
τ=t

GτCτ , (22)

Fig. 13: The privacy-cost trade-off, for HP = HF = 2h, TS = 1h,
energy selling allowed, and constant target load for the SHM, LHM
and the practical EMP.

where Wt,Wt+1, . . . ,Wt+HF
are obtained as low-pass filtered

versions of the user load, subject to the same constraints of the con-
stant target scenario, i.e., (1)-(2) and (4)-(5). The target load at time
t, Wt, is computed as follows. The EMU selects the only available
user load, i.e., that one within [t−HP , t+HF ], and computes its
spectral representation by means of the discrete Fourier transform.
Then, a low-pass filter with a predefined cut-off frequency is applied.
Finally, the inverse transform provides the target load profileWt. We
note that, although HP does not appear explicitly in (22), the target
load computed at time t is determined by low-pass filtering the user
load within the time window [t−HP , t+HF ] to prevent the tar-
get load from varying dramatically over different TSs. When α = 0,
Eq. (22) reduces to the linear program of the previous section. The
optimal solutions to (22) can be characterized by following the same
steps of Section 3, apart from Wt, which here is not an optimization
variable. The optimal solutions are given in (17) and (19) for the
scenarios where selling energy is allowed and not allowed, respec-
tively. Fig. 10 compares the SHM and the LHM, showing that SHM
generates profiles that are smooth and similar to that of the LHM,
despite relying only the knowledge of 2 hours of future electricity
consumption.
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5 A More Practical EMP

In the previous sections it is assumed that the EMU solves the opti-
mization problem at each TS. However, in practice it may not be
feasible to obtain the future predictions at each TS, and may be
impractical to compute the target profile so often. Thus, in this
section we consider a more practical EMP where the optimization
problem is solved once every TS TSs. The optimization problems
at time t are still given by Eqs. (11) and (22) for the constant and
filtered target load scenarios, respectively, such that the sequences
Gt+TSt and W t+TS

t are obtained at time t on the basis of the
available information for TSs [t−HP , t+HF ], where HF ≥ TS .

Fig. 11 shows that the practical EMP for a constant and a fil-
tered target load creates piecewise target and grid loads, similar to
the piecewise target load profile approach [21]. Due to the disconti-
nuities introduced in the grid load profile, spikes at high frequencies
may appear in the spectrum of the grid load produced by this strat-
egy, leading to a higher privacy loss. When α = 1, Fig. 12 shows
that the practical EMP reaches virtually the same performance of
the SHM, despite computing the grid load six times less often than
the LHM.

Finally, in Fig. 13 we present the privacy-cost trade-offs for the
various scenarios we have discussed when energy selling is allowed.
This figure clearly highlights the increasing loss in performance due
to the decreasing amount of information available to the EMU when
moving from the LHM to the SHM and to the more practical EMP.

6 Conclusions

We have studied the joint optimization of privacy and cost for an
SM system equipped with an RB. Privacy is measured via the mean
squared-error between the SM measurements and a target load pro-
file, which is set to be either a constant function or a low-pass filtered
version of the user load. We assume that only partial information
about the user’s future electricity consumption and electricity cost
is known to the EMU, and we cast the joint privacy and cost opti-
mization as a model predictive control problem. The scenario in
which the user is allowed to sell excess energy to the UP is stud-
ied, which is shown to achieve a better privacy-cost trade-off. The
optimal solutions for the constant and filtered target load profiles
have been characterized, highlighting their water-filling interpre-
tation. The privacy-cost trade-off has been characterized for the
various scenarios, and detailed numerical simulations and alterna-
tive privacy measures have been presented. As a future extension of
this study, one can consider a generalization of the SHM and LHM
models by introducing errors in the predictions of the future energy
consumption profile at the EMU. It is reasonable to assume that the
prediction error will increase gradually for more distant time instants
in the future.
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