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Abstract—An achievable scheme for zero-delay transmis-
sion of an i.i.d. Gaussian source over an additive white
Gaussian channel with no bandwidth limitation is introduced,
and its energy-distortion performance is analyzed. By the
nature of the problem, one must transmit each source sample
separately but can use the channel infinitely many times.
We introduce an outage concept, and analyze the expected
distortion conditioned on no outage. We show that the
proposed scheme can approach to the asymptotical decay
for large enough energy for arbitrary outage probability.
The proposed scheme builds on separation of source and
channel coding, whereby the source is quantized with a high-
resolution optimal quantizer. In the high energy-to-noise ratio
(ENR) regime, the minimum energy required to obtain a
given distortion level in the proposed scheme can approach
arbitrarily close the Shannon bound, which can only be
achieved using infinite delay.

Index Terms—Energy-distortion exponents, Energy-
distortion tradeoff, high-resolution quantization, zero-delay.

I. INTRODUCTION

We consider the zero-delay lossy transmission of a
Gaussian random variable X ∼ N (0, 1) over an energy-
limited additive white Gaussian noise (AWGN) channel
with N channel uses where N can be arbitrarily large.
This setting is motivated by the communication scenarios
where the source sampling rate is really low, e.g., the
source might consist of sensor measurements taken every
hour, or even every minute1. In those cases, even if the
channel bandwidth is actually narrow, a large bandwidth
expansion factor becomes feasible. We study the idealized
(and mathematically tractable) case where the bandwidth
is infinite.

The encoder
φN : R→ RN

This work was supported in part by the National Science Foundation
Grant CCF-1423570.

1To clarify, in our terminology zero-delay refers to transmission being
complete before the next source sample is generated.
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Figure 1. The system model.

maps the source X into the channel input UN = φ (X)
where UN is energy-limited as

N∑
t=1

E{U2
t } ≤ E. (1)

At the receiver, the function

ψN : RN → R

maps the observation V N = UN +WN into the estimation
X̂ = ψN

(
V N
)
, where WN ∼ N

(
0, σ2

W IN
)

is the
additive channel noise. Without loss of generality, we take
σ2
W = 1 so that E is also the energy-to-noise ratio (ENR),

which is an important parameter in the sequel. The scenario
is illustrated in Fig. 1.

Definition 1: A triplet (E,D, ε) of energy, distortion,
and outage probability is achievable if for some N , there
exist an outage region O ⊂ R×RN in the source-channel
space such that

Pr[(X,WN ) ∈ O] ≤ ε (2)

and an encoder-decoder pair (φN , ψN ) satisfying (1) and

E[(X − X̂)2|Oc] ≤ D . (3)

Remark 1: It should be clear that when the probability
density functions (pdf) satisfy fX(x) > 0 and fW (w) > 0
for all x and w, as is the case for Gaussian sources and
channels, then (E,D, 0) is achievable if and only if O = ∅,
thereby reducing (3) to

E[(X − X̂)2] ≤ D . (4)



Therefore, our achievability definition is more general than
the classical energy-distortion tradeoff requiring (1) and (4).

The motivation behind considering distortion outages
is that any coding scheme that transmits some digital
information is prone to error in decoding that information.
Regardless of how small the probability of incorrect decod-
ing is, the overall expected distortion might still be very
adversely affected. We essentially allow for catastrophic
reconstruction provided that it occurs with a small enough
probability.

One simple coding strategy is linear (a.k.a. uncoded)
transmission: Ignoring all the available bandwidth, simply
set N = 1 and use the encoder-decoder pair

φ1(x) =
√
Ex ψ1(v) =

√
E

1 + E
v ,

together with the outage region O = ∅ to achieve the triplet
(E,D, 0) with

D =
1

1 + E
. (5)

It might initially be thought that this is a very poor
utilization of the available bandwidth, and therefore the per-
formance can be improved. However, it is well-established
(see, for example, [4]) that even if the total energy E
was spread across channel uses, i.e., if Ut = αtX for
t = 1, . . . , N with

N∑
t=1

α2
t = E ,

the resultant minimum expected distortion would still be
given as in (5). Therefore, for large ENR, the distortion
decays as 1

ENR when linear transmission is used.
If we allowed for infinite delay, then (E,D, 0) would be

achievable if2

D ≥ lim
N→∞

(
1 +

E

N

)−N
= exp (−E) (6)

as was discussed in [2]. Motivated by this exponential
decay, we define the energy-distortion exponent.

Definition 2: An energy-distortion exponent β > 0 is
achievable if for any ε > 0, there exist an achievable triplet
(E,D, ε) with large enough E, satisfying

− 1

E
logD > β − ε .

The authors of this work recently addressed the same
problem in [3], where they proposed a scheme based on
quantization of the source random variable into equiproba-
ble cells and transmission of the quantization index through

2Throughout, log and exp refer to natural logarithm and its inverse.

the channel using capacity-achieving codes. It was shown
in [3] that for any ε > 0, it is possible to achieve

D =
13

6E
exp

(
−E

2

)
(7)

for large enough ENR E. Therefore, implicit in that result
was that, according to the above definition of energy-
distortion exponents, the same approach achieves β = 0.5.

In what follows, we propose another separable coding
scheme, and subsequently show that it achieves β = 1. We
need to emphasize that ENR is assumed to be large to allow
for high-resolution quantizers.

II. THE CODING SCHEME

The single random variable X is first quantized with a
high-resolution optimal quantizer with N levels. It is well-
known [1] that the optimal quantizer has a point density
function λ(x) given by

λ(x) =
fX(x)

1
3∫∞

−∞ fX(x′)
1
3 dx′

which is a Gaussian with variance 3. The resultant distor-
tion can be approximated as

D ≈ 1

12N2

∫ ∞
−∞

fX(x)

λ(x)2
dx

=
1

12N2

(∫ ∞
−∞

fX(x)
1
3 dx

)3

=

√
3π

2N2
. (8)

The quantized indices k(X) are mapped into orthogonal
channel input vectors UN such that

Ut =

{ √
E t = k(X)

0 t 6= k(X)

and therefore ||UN ||2 = E. Note that we use the channel
only N times (instead of infinitely many) but we will
eventually let N grow without bound. At the receiver end,
upon receiving V N = UN + WN , the decoder simply
selects

K̂ = arg max
1≤i≤N

Vi

and then outputs
X̂ = rK̂

where rk is the kth reconstruction level.
Remark 2: Although simplex encoding can improve

over orthogonal signaling, the ENR gain is N
N−1 which

approaches 1 as the number of codewords N goes to
infinity.



III. PERFORMANCE ANALYSIS

We regard the codeword decoding error as the outage
event. We use the probability of error analysis in [5, Section
6.6], which we adapt to our notation and include below for
convenience3. Using the bounds therein, we can solve for
the maximum allowed number of codewords N for a given
energy and maximum allowable probability of error pair
(E, ε), and translate that N to expected distortion D.

A. Bounds on the Probability of Error

Without loss of generality, we assume that the first
codeword is sent. The probability of erroneous decoding
for fixed N and E is then

Pe = 1−
∫ ∞
−∞

fW (w1) Pr

[
max

2≤i≤N
{Wi} <

√
E + w1

]
dw1

= 1−
∫ ∞
−∞

fW (w1)

N∏
i=2

Pr
[
Wi <

√
E + w1

]
dw1

=

∫ ∞
−∞

fW (w1)

{
1−

(
1−Q

(√
E + w1

))N−1}
dw1

= Pe,1 + Pe,2

where the integral is divided into two as

Pe,1 =

∫ α

−∞
fW (w1)

{
1−

(
1−Q

(√
E + w1

))N−1}
dw1

Pe,2 =

∫ ∞
α

fW (w1)

{
1−

(
1−Q

(√
E + w1

))N−1}
dw1

with

α =
√
2 logN −

√
E .

Here, we use the standard definition of the Q-function as

Q(x) =
1√
2π

∫ ∞
x

exp

(
−x

2

2

)
dx .

It is well-known that the Chernoff bound on the Q-function
is given by

Q(x) ≤ exp

(
−x

2

2

)
(9)

for all x ≥ 0. Although there are other established bounds
that are tighter than (9), the Chernoff bound will suffice for
our analysis.

Now, it follows from

1−
(
1−Q

(√
E + w1

))N−1
≤ 1

3We also refer the reader to [6] for a similar analysis.

that

Pe,1 ≤
∫ α

−∞
fW (w1) dw1

=
1√
2π

∫ α

−∞
exp

(
−w

2
1

2

)
dw1

= 1−Q(α)
(a)
= Q(−α)

≤ exp

(
−α

2

2

)
(10)

where (a) follows from (9) and holds if α ≤ 0, or
equivalently, E ≥ 2 logN .

Also, since α > −
√
E, we have for all w1 ≥ α that

1−
(
1−Q

(√
E + w1

))N−1
≤ (N − 1)Q

(√
E + w1

)
≤ N exp

−
(√

E + w1

)2
2


again using (9). Therefore,

Pe,2 ≤ N

∫ ∞
α

fW (w1) exp

−
(√

E + w1

)2
2

 dw1

=
N√
2π

exp

(
−E

4

)∫ ∞
α+
√

E
4

exp
(
−u2

)
du

=
N√
2
exp

(
−E

4

)
Q

(
√
2

(
α+

√
E

4

))

=


N√
2
exp

(
−E4 −

(
α+

√
E
4

)2)
α ≥ −

√
E
4

N√
2
exp

(
−E4

)
α < −

√
E
4

(11)

After some algebraic manipulation, it can be shown that

N exp

−E
4
−

(
α+

√
E

4

)2
 = exp

(
−α

2

2

)

Since α ≥ −
√

E
4 is the same as E ≤ 8 logN , (11)

simplifies to

Pe,2 ≤

 1√
2
exp

(
− [
√
E−
√
2 logN]

2

2

)
E ≤ 8 logN

N√
2
exp

(
−E4

)
E > 8 logN

(12)
Bringing (10) and (12) together, we observe that if

2 logN ≤ E ≤ 8 logN , (13)



then the error probability can be upper bounded as

Pe ≤ 2 exp

(
−1

2

[√
E −

√
2 logN

]2)
. (14)

On the other hand, if

E > 8 logN , (15)

then we have

Pe

≤ N exp

(
−E

4

)1 + exp

−(√2 logN −
√
E

4

)2


≤ 2N exp

(
−E

4

)
(16)

B. An Achievable Region

Since the distortion decreases with increasing N , we
need to choose for fixed (E, ε) the maximum possible N .
Once the maximum allowed codeword number N for any
given (E, ε) is found, we can calculate D according to (8).

Theorem 1: Let η(E, ε) and Nmax(E, ε) be defined as

η(E, ε) =

{ E
2 − 2 log 2

ε 4 log 2
ε < E < 8 log 2

ε(√
E −

√
2 log 2

ε

)2
E ≥ 8 log 2

ε

and

Nmax(E, ε) =

{
ε
2 exp

(
E
4

)
4 log 2

ε < E < 8 log 2
ε

exp
(
η(E,ε)

2

)
E ≥ 8 log 2

ε

.

Then all triplets (E,D, ε) such that

D ≈
√
3π

2
exp (−η(E, ε)) (17)

are achievable provided the high-resolution approximation
(8) is accurate for N = Nmax(E, ε).

Remark 3: When E is larger than (or at least close to)
8 log 2

ε , Nmax(E, ε) is larger than (or, respectively, close
to) 2

ε . Therefore, in the intended (i.e., low outage) regime
ε→ 0, Nmax is indeed very large, thereby making the high
resolution distortion approximation accurate. On the other
hand, if E is close to 4 log 2

ε , Nmax becomes very small,
and the theorem would not be applicable. Fortunately, we
will utilize this theorem mainly in the high energy regime
E ≥ 8 log 2

ε .
Proof: Manipulating (14), we observe that for Pe ≤ ε

we need

N ≤ exp

(
η(E, ε)

2

)
.

With the choice N = exp
(
η(E,ε)

2

)
, the high-resolution

distortion (8) translates to (17). On the other hand, for this
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Figure 2. The blue curves represent the achievable energy-distortion
tradeoffs for the given different ε values. The red curve represents the
asymptotical distortion expression (6).

choice to be valid, we need from (13) that

E

8
≤

(√
E

2
−
√
log

2

ε

)2

≤ E

2

which yields

E ≥ 8 log
2

ε
. (18)

Similarly manipulating (15) and (16), we find that for
Pe ≤ ε, we need

N ≤ ε

2
exp

(
E

4

)
for fixed (E, ε) satisfying

4 log

(
2

ε

)
< E < 8 log

(
2

ε

)
. (19)

Note that the left inequality in (19) stems from the fact
that we need, at a minimum, N > 1. With the choice
N = ε

2 exp
(
E
4

)
, once again (8) reduces to (17).

In Fig. 2, we exhibit the behavior of the (E,D, ε) achiev-
ability region for fixed and small values of ε. As expected,
with decreasing ε, the minimum energy E needed to obtain
a certain D increases. Another observation is that the large
energy behavior seems to suggest that the asymptotic (i.e.,
infinite-delay) performance might be eventually attained,
were we not limited by our computational tools. Our main
theorem in the next subsection states exactly that.

C. Optimal Zero-Delay Distortion-Energy Exponent

Theorem 2: The proposed scheme achieves an energy-
distortion exponent of β = 1.



Proof: For arbitrarily small ε > 0, we operate in the
high ENR regime E ≥ 8 log 2

ε . Therefore, it follows from
Theorem 1 that

D =

√
3π

2
exp

−(√E −√2 log
2

ε

)2


can be achieved by the proposed scheme. Hence,

− 1

E
logD =

(√
E −

√
2 log 2

ε

)2
+ log

(
2√
3π

)
E

≥ 1− ε

for large enough E.

IV. CONCLUSION

We considered a scenario where a Gaussian random
variable is transmitted over a bandwidth-unlimited but
energy-limited AWGN channel in a zero-delay fashion. We
showed in this paper that the same exponential decay that
can be achieved with an infinite-delay-infinite-bandwidth
coding scheme can also be achieved with a separable zero-
delay coding scheme with infinite-bandwidth if we allow
for arbitrarily small outage probability.
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