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Abstract—The muti-layer information bottleneck (IB) prob-
lem, where information is propagated (or successively refined)
from layer to layer, is considered. Based on information for-
warded by the preceding layer, each stage of the network is
required to preserve a certain level of relevance with regards
to a specific hidden variable, quantified by the mutual informa-
tion. The hidden variables and the source can be arbitrarily
correlated. The optimal trade-off between rates of relevance
and compression (or complexity) is obtained through a single-
letter characterization, referred to as the rate-relevance region.
Conditions of successive refinabilty are given. Binary source with
BSC hidden variables and binary source with BSC/BEC mixed
hidden variables are both proved to be successively refinable. We
further extend our result to Guassian models. A counterexample
of successive refinability is also provided.

I. INTRODUCTION

A fundamental problem in statistical learning is to extract
the relevant essence of data from high-dimensional, noisy,
salient sources. In supervised learning (e.g., speaker identifi-
cation in speech recognition), a set of properties or statistical
relationships is pre-specified as relevant information of interest
(e.g., name, age or gender of the speaker) targeted to be
learned from data; while in unsupervised learning, clusters
or low-dimensional representations play the same role. This
can be connected to the lossy source compression problem in
information theory, where an original source is compressed
subject to specifically defined distortion (or loss) with regards
to specified relevant information.

A remarkable step towards understanding the information
relevance problem using fundamental information theoretical
concepts was made by Tishby et al. [1] with the introduction
of the “information bottleneck ” (IB) method. The relevant
information in an observable variable X is defined as the
information X can provide about another hidden variable Y .
The IB framework characterizes the trade-off between the
information rates (or complexity) of the reproduction signal X̂ ,
and the amount of mutual information it provides about Y . The
IB method has been found useful in a wide variety of learning
applications, e.g., word clustering [2], image clustering [3],
etc. In particular, interesting connections have been recently
made between deep learning [4] and the successively refined
IB method [5].

Despite of the success of the IB method in the machine
learning domain, less efforts have been invested in studying
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it from an information theoretical view. Gilad-Bachrach et
al. [6] characterize the optimal trade-off between the rates of
information and relevance, and provide a single-letter region.
As a matter of fact, the conventional IB problem follows as a
special instance of the conventional noisy lossy source coding
problem [7]. Extension of this information-theoretic frame-
work address the collaborative IB problem by Vera et al. [8],
and the distributed biclustering problem by Pichler et al. [9].
Further connections to the problem of joint testing and lossy
reconstruction has been recently studied by Katz et al. [10].
Also in the information theoretic context, the IB problem is
closely related to the pattern classification problem studied in
[11]–[13]; which provides another operational meaning to IB.

In this work, we introduce and investigate the multi-layer
IB problem with non-identical hidden variables at each layer.
This scenario is highly motivated by deep neural networks
(DNN) and the recent work in [5]. Along the propagation
of a DNN, each layer compresses its input, which is the
output of the preceding layer, to a lower dimensional out-
put, which is forwarded to the next layer. Another scenario
may be the hierarchical, multi-layer network, in which in-
formation is propagated from higher layers to lower layers
sequentially. Users in different layers may be interested in
different properties of the original source. The main result
of this paper is the full characterization of the rate-relevance
region of the multi-layer IB problem. Conditions are provided
for successive refinability in the sense of the existence of
codes that asymptotically achieve the rate-relevance function,
simultaneously at all the layers. Binary source with BSC
hidden variables and binary source with mixed BSC\BEC
hidden variables1 are both proved to successively refinable.
The successive refinability is also shown for Guassian sources.
We further present a counterexample for which successive
refinability no longer holds. It is worth mentioning that the
successive refinability of the IB problem is also investigated
in [14], with identical hidden variables.

The rest of the paper is organized as follows. Section II
provides the definitions and presents the main result, the
achievability and converse proofs of which are provided in
the Appendices. The definition and conditions of successive
refinability are shown in Section III. Examples are presented
in Section IV. Finally, we conclude the paper in Section V.

1BSC hidden variables are obtained by passing the source through a binary
symmetric channel, whereas BEC hidden variables are obtained through a
binary erasure channel.
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Fig. 1. Illustration of the multi-layer IB problem.

II. PROBLEM FORMULATION

Let (Xn, Y n1 , . . . , Y
n
L ) be a sequence of n i.i.d. copies of

discrete random variables (X,Y1, . . . , YL) taking values in
finite alphabets X ,Y1, . . . ,YL, jointly distributed according
to p(x, y1, . . . , yL), where X is an observable variable, while
Y1, . . . , YL are hidden variables arbitrarily correlated with X .

An (n,R1, . . . , RL) code for the L-layer IB problem, as il-
lustrated in Fig. 1, consists of L encoding functions f1, . . . , fL,
defined as fl : Zl−1 → Zl, l = 1, . . . , L, where we set
Z0 , Xn, and Zl , [1 : 2nRl ], l = 1, . . . , L. That is, Rl
is the rate of the l-th layer encoding function fl, l = 1, . . . , L,
and we assume R1 ≥ R2 ≥ · · · ≥ RL.

Definition 1. (Achievability) For some R1 ≥ · · · ≥ RL and
non-negative µ1, . . . , µL values, (R1, . . . , RL, µ1, . . . , µL) is
said to be achievable if, for every ε > 0, there exists an
(n,R1, . . . , RL)-code s.t.

1

n
I(Y nl ;Zl) ≥ µl − ε, l = 1, . . . , L, (1)

for sufficiently large n, where Zl = fl(Zl−1), for l = 1, . . . , L,
and Z0 , Xn.

The value of µl imposes a lower bound on I(Y nl ;Zl), i.e.,
the relevance with respect to the hidden variable Yl after l-
layer encoding of the observable sequence Xn. Our goal is to
characterize the rate-relevance region, R, which is the set of
all achievable tuples (R1, . . . , RL, µ1, . . . , µL).

Theorem 1. The rate-relevance region, R, is characterized by
the closure of the set of all tuples (R1, . . . , RL, µ1, . . . , µL)
that satisfy

Rl ≥ I(X;Ul, . . . , UL), l = 1, . . . , L, (2)

for some probability p(x)p(u1, . . . , uL|x) s.t.

µl ≤ I(Yl;Ul, . . . , UL), l = 1, . . . , L. (3)

Proof. A proof is provided in the Appendices.

III. SUCCESSIVE REFINABILITY OF MULTI-LAYER IB
The rate-relevance function for a single-layer setting with

relevance constraint µ regarding the hidden variable Y is
denoted by RX→Y (µ), and characterized in [6] as:

RX→Y (µ) = min
p(U |X): U−
−X−
−Y,

I(Y ;U)≥µ

I(X;U). (4)

Definition 2. Source X is said to be successively refinable
for the L-layer IB problem with regards to correlated rele-
vant hidden variables Y1, . . . , YL with relevance constraints
µ1, . . . , µ2, respectively, if

(RX→Y1(µ1), . . . , RX→YL
(µL), µ1, . . . , µL) ∈ R. (5)

Theorem 2. Source X is successively refinable for the L-
layer IB problem with relevance constraints µ1, . . . , µL with
regards to hidden variables Y1, . . . , YL, iff there exist random
variables U1, . . . , UL, satisfying UL −
− · · · −
− U1 −
−
X −
− (Y1, . . . , YL), such that the following conditions hold
simultaneously for l = 1, . . . , L:

1) RX→Yl
(µl) = I(X;Ul),

2) µl ≤ I(Yl;Ul).

Proof. Theorem 2 follows directly from Definition 2 and
Theorem 1.

IV. EXAMPLES

A. Binary Source with Symmetric Hidden Variables

We consider X = Yl = {0, 1}, l = 1, ..., L. The observable
variable X has a Bernoulli distribution 1

2 (denoted as Bern
( 12 )), and the hidden variables are obtained by passing the
source through independent BSCs, i.e., Yl = X ⊕ Nl, where
Nl ∼ Bern(pl), 0 ≤ pl ≤ 1

2 , is independent of X , and ⊕
denotes modulo-2 addition.

We first derive the rate-relevance function RX→Yl
(µl).

Denote by Ul any random variable for which I(Yl;Ul) ≥ µl,
Ul −
−X −
− Yl. We have the following inequality:

µl ≤ H(Yl)−H(X ⊕Nl|Ul) (6a)

≤ 1−Hb(pl ∗H−1b (H(X|Ul))) (6b)

= 1−Hb(pl ∗H−1b (1− I(X;Ul))) (6c)

where operation ∗ is defined as a ∗ b = a(1 − b) + b(1 −
a), Hb(·) is the binary entropy function, defined as Hb(p) =
p log 1/p+ (1− p) log 1

1−p , and H−1b (·) is the inverse of the
binary entropy function Hb(p) with p ∈ [0, 0.5]. (6b) follows
from Mrs. Gerber’s Lemma and the fact that H(Yl) = 1. From
(6), we obtain I(X;Ul) ≥ 1−Hb

(
H−1

b (1−µl)−pl
1−2pl

)
. Thus, we

have RX→Yl
(µl) ≥ 1 − Hb

(
H−1

b (1−µl)−pl
1−2pl

)
. Note that by

letting U∗l = X ⊕Ml, where Ml is independent of X and
Ml ∼ Bern

(
H−1

b (1−µl)−pl
1−2pl

)
, we have I(Yl;U

∗
l ) = µl and

I(X;U∗l ) = 1 − Hb

(
H−1

b (1−µl)−pl
1−2pl

)
. We can conclude that

RX→Yl
(µl) = 1−Hb(

H−1
b (1−µl)−pl

1−2pl ) and U∗l given above is
a rate-relevance function achieving auxiliary random variable.

Lemma 1. Binary sources as described above are al-
ways successively refinable for the L-layer IB problem if
RX→Y1(µ1) ≥ · · · ≥ RX→YL

(µL) and µl ≤ 1 −
Hb(pl), for l = 1, ..., L.

Proof. Since RX→Y1
(µ1) ≥ · · · ≥ RX→YL

(µL), we can find
binary variables M1, ...,ML, independent of each other and X,
such that M1 ⊕ · · · ⊕Ml ∼ Bern(H−1b (1−RX→Yl

(µl))) for
l = 1, ..., L. By choosing auxiliary random variables: Ul =
X ⊕M1 ⊕ · · · ⊕Ml, we have I(X;Ul) = RX→Yl

(µl) and
I(Y ;Ul) = µl, for l = 1, ..., L, and UL−
− · · · −
−U1−
−X −

− (Y1, ..., YL). Together with Theorem 2, this conclude the
proof of Lemma 1.



Fig. 2. Binary source with mixed hidden variables.

B. Binary Source with Mixed Hidden Variables

Here we consider a two-layer IB problem, i.e., L = 2. The
joint distribution of (X,Y1, Y2) is illustrated in Fig. 2, where
X is a binary random variable of distribution Bernoulli 1

2
as in the previous example, but Y1 is the output of a BEC
with erasure probability ε (ε ∈ [0, 1/2]) when X is the input,
and Y2 is the output of a (BSC) with crossover probability p,
p ∈ [0, 1/2]. A similar example can be found in [15] where
the optimality of proposed coding scheme not always holds
for their setting. We first derive the rate-relevance function
RX→Y1(µ1). Denote by U1 any random variable such that
I(Y1;U1) ≥ µ1, U1 −
− X −
− Y1. We have the following
inequality:

H(Y1|U1)

= H(Y1|U1) +H(X|U1, Y1)−H(X|U1, Y1) (7a)
= H(Y1, X|U1)−H(X|U1, Y1) (7b)
= H(X|U1) +H(Y1|X,U1)−H(X|U1, Y1) (7c)
= 1− I(X;U1) +H(Y1|X)

−
(
p(Y1 6= e)H(X|U1, X)

+ p(Y1 = e)H(X|U1, Y1 = e)
)

(7d)

= 1− I(X;U1) +Hb(ε)− εH(X|U1) (7e)
= 1 + (ε− 1)I(X;U1)− ε+Hb(ε). (7f)

Since µ1 ≤ I(Y1, U1) = H(Y1)−H(Y1|U1), where H(Y1) =
He(ε), He(ε) is defined as He(ε) = ε log 1/ε + (1 −
ε) log 2

1−ε , it follows that RX→Y1
(µ1) ≥ µ1+Hb(ε)−Hb(ε)+1

1−ε ,
which can be achieved by setting U∗1 = X ⊕ M1, where
M1 ∼ Bern(RX→Y1(µ1)) is independent of X . We have
RX→Y2

(µ2) = 1 − Hb

(
H−1

b (1−µ2)−p
1−2p

)
from Section. IV-A,

which can be achieved by setting U∗2 = X ⊕ M2, where
M2 ∼ Bern(RX→Y2

(µ2)) is independent of X .

Lemma 2. Binary source X with mixed BEC/BSC hidden
variables as described above is always successively refin-
able for the L-layer IB problem if RX→Y1

(µ1) ≥ · · · ≥
RX→YL

(µL) and µl ≤ I(X;Yl).

Proof. The proof follows the same arguments as in the proof
of Lemma 1.

Note that successive refinability is still achievable in this
example despite the mixed hidden variables contrast to our
expectation, since an auxiliary U in the form X⊕M achieves
the rate-relevance function despite BEC hidden variable.

C. Jointly Gaussian Source and Hidden Variables

It is not difficult to verify that the above achievability
results are still valid for the Gaussian sources by employing
a quantization procedure over the sources and appropriate test
channels [16].

Let X and Yl, l = 1, ..., L, be jointly Gaussian zero-
mean random variables, such that Yl = X + Nl, where
X ∼ N (0, σ2

x) and Nl ∼ N (0, σ2
Nl
), Nl ⊥ X . As in the

previous examples, we first derive a lower bound on the rate-
relevance function RX→Yl

(µl). Denote by Ul any random
variable such that I(Yl;Ul) ≥ µl, Ul −
−X −
− Yl. We have
the following sequence of inequalities:

µl ≤ I(Yl;Ul) (8a)
= h(Yl)− h(X +Nl|Ul) (8b)

≤ 1

2
log
(
2πe(σ2

x + σ2
Nl
)
)

− 1

2
log
(
2πeσ2

Nl
+ exp (2h(X|Ul))

)
(8c)

=
1

2
log
(
2πe(σ2

x + σ2
Nl
)
)

− 1

2
log
(
2πeσ2

Nl
+ exp (2h(X)− 2I(X;Ul))

)
(8d)

=
1

2
log
(
2πe(σ2

x + σ2
Nl
)
)

− 1

2
log
(
2πeσ2

Nl
+ 2πeσ2

x exp (−2I(X;Ul)
)
, (8e)

where (8d) follows from the conditional Entropy Power In-
equality (EPI) (Section 2.2 in [16]). We can also obtain an
outer bound on RX→Yl

(µl):

RX→Yl
(µl) ≥

1

2
log

22µlσ2
x

σ2
x + σ2

Nl
− 22µlσ2

Nl

, (9)

by setting U∗l = X + Pl, Pl ∼ N (0, σ2
Pl
), l = 1, ..., L, where

σ2
Pl

is given by:

σ2
Pl

=
2πeσ2

x − 22RX→Yl
(µl)

2πe(22RX→Yl
(µl) − 1)

. (10)

Lemma 3. Gaussian sources as described above are al-
ways successively refinable for the L-layer IB problem
if RX→Y1

(µ1) ≥ · · · ≥ RX→YL
(µL) and µl ≤

1
2 log

2πe(σ2
x+σ

2
Nl

)

2πeσ2
Nl

+1
, for l = 1, ..., L.

D. Counterexample on successive refinability

In this section, we show that the multi-layer IB problem is
not always successively refinable. We consider a two-layer IB
problem, i.e., L = 2. Let X = (X1, X2), where X1 and X2

are two independent discrete random variables, and we have
Y1 = X1 and Y2 = X2. We first derive the rate-relevance



function RX→Y1
(µ1). Denote by U1 any random variable such

that I(Y1;U1) ≥ µ1, U1 −X − Y1. We have:

I(X;U1) = I(X1, X2;U1) (11a)
≥ I(X1;U1) (11b)
≥ µ1. (11c)

By setting U∗1 as

U∗1 =

{
X1, with probability µ1

H(X1)
,

0, with probability 1− µ1

H(X1)
,

(12)

we have I(Y1;U∗1 ) = I(X1;U
∗
1 ) = µ1, and I(X;U∗1 ) = µ1,

which achieves the lower bound shown in (11). We can con-
clude that RX→Y1

(µ1) = µ1, and any rate-relevance function
achieving random variable U∗1 should satisfy I(X2;U

∗
1 |X1) =

0, since I(X;U∗1 ) = I(X1;U
∗
1 ) + I(X2;U

∗
1 |X1) = µ1

and I(X1;U
∗
1 ) = µ1. Similarly, we can conclude that

RX→Y2
(µ2) = µ2, and any rate-relevance function achieving

random variable U∗2 should satisfy I(X1;U
∗
2 |X2) = 0.

Lemma 4. Source X with hidden variables Y1 and Y2 as
described above is not successively refinable for the two-layer
IB problem.

Proof. For any rate-relevance function achieving random vari-
ables U∗1 and U∗2 , we have

I(U∗2 ;X|U∗1 ) = I(U∗2 ;X1, X2|U∗1 ) (13a)
= I(U∗2 ;X2|U∗1 ) + I(U∗2 ;X1|U∗1 , X2) (13b)
≥ I(U∗2 ;X2|U∗1 ) (13c)
= I(U∗1 , U

∗
2 ;X2)− I(U∗1 ;X2) (13d)

= I(U∗2 ;X2) + I(U∗1 ;X2|U∗2 ) (13e)
≥ I(U∗2 ;X2) ≥ µ2, (13f)

where (13e) is due to I(U∗1 ;X2) = 0, which follows from

I(X1;X2|U∗1 )
= I(X1, U

∗
1 ;X2)− I(U∗1 ;X2) (14a)

= I(X2;X1) + I(X2;U
∗
1 |X1)− I(U∗1 ;X2) (14b)

= −I(U∗1 ;X2). (14c)

If µ2 > 0, I(U∗2 ;X|U∗1 ) > 0, which implies U∗2 , U
∗
1 and X

cannot form a Markov chain for any rate-relevance function
achieving random variables U∗1 and U∗2 . With Theorem 2, we
have proven Lemma 4.

V. CONCLUSION

The multi-layer IB problem with non-identical relevant
variables was investigated. A single-letter expression of the
rate-relevance region was given. The definition and conditions
of successive refinability were presented, which was further
investigated for the binary sources and Guassian sources. A
counterexample of successive refinability was also proposed.
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APPENDIX A
ACHIVABILITY OF THEOREM 1

Consider first the direct part, i.e., every tuple
(R1, . . . , RL, µ1, . . . , µL) ∈ R is achievable.

Code generation. Fix a conditional probability mass func-
tion (pmf) p(u1, . . . , uL|x) such that µl ≤ I(Yl;Ul, . . . , UL),
for l = 1, . . . , L. First randomly generate 2nRL sequences
unL(iL), iL = [1 : 2nRL ], independent and identically dis-
tributed (i.i.d.) according to p(uL); then for each unL(iL)
randomly generate 2(RL−1−RL) sequences unL−1(iL, iL−1),
iL−1 = [1 : 2n(RL−1−RL)], conditionally i.i.d. accord-
ing to p(uL−1|uL); and continue in the same manner, for
each unL−j+1(iL−j+1) randomly generate 2(RL−j−RL−j+1) se-
quences unL−j(iL, . . . , iL−j), iL−j = [1 : 2n(RL−j−RL−j+1)],
conditionally i.i.d. according to p(uL−j |uL−j+1, . . . , uL), for
j = [2 : L].

Encoding and Decoding After observing xn, the
first encoder finds an index tuple (i1, . . . , iL) such that
(xn, un1 (iL, . . . , i1), u

n
2 (iL, . . . , i2), . . . , u

n
L(iL)) is in the set

Tnε (X,U1, . . . , UL), which is the set of ε jointly typical n



vectors of random variables X,U1, . . . , UL. If more than one
such tuple exist, any one of them is selected. If no such tuple
exists, we call it an error, and set (i1, . . . , iL) = (1, . . . , 1).
Then the jth encoder outputs (ij , . . . , iL), for j = 1, . . . , L,
and sends to the j + 1 encoder, if j < L, the index tuple
(ij , . . . , iL) at a total rate of Rj . Given the index tuple
(ij , . . . , iL), the jth decoder declares un1 (iL, . . . , ij) as its
output, for j = 1, . . . , L.

Relevance. First, we note that if there is no error in
the encoding step, i.e., an index tuple (i1, . . . , iL) such
that (xn, un1 (iL, . . . , i1), u

n
2 (iL, . . . , i2), . . . , u

n
L(iL)) ∈

Tnε (X,U1, . . . , U2) is found, then the relevance condition
µl ≤ I(Y ;Ul, . . . , UL), ∀ l = 1, . . . , L, is satisfied by the
definition of Tnε (X,U1, . . . , UL) and the Markov lemma. Then
we focus on the analysis of the probability of error, i.e., the
probability that such an index tuple cannot be found in the
encoding step.

An error occurs if one of the following events happens:

E0 : xn /∈ Tnε (X); (15a)
E1 : xn ∈ Tnε (X), (xn, unL(iL)) /∈ Tnε (X,UL),

for all iL = 1, . . . , 2RL ; (15b)
El : (x

n, unL−l+2(iL−l+2), . . . , u
n
L(iL))

∈ Tnε (X,UL−l+2, . . . , UL),

(xn, unL−l+1(iL−l+1), . . . , u
n
L(iL))

/∈ Tnε (X,UL−l+1, . . . , UL),

for all iL−l+1 = 1, . . . , 2RL−l+1−RL−l+2 ; (15c)

for l = 2, . . . , L. It is clear that P(E0)→ 0 as n→∞. Based
on the properties of typical sequences:

P(E1)
n→∞→ 0, if RL ≥ I(X;UL); (16a)

P(El)
n→∞→ 0, if RL−l+1 −RL−l+2

≥ I(X;UL−l+1|UL−l+2, . . . , UL), (16b)

for l = [1 : L].

APPENDIX B
CONVERSE OF THEOREM 1

Next, we prove that every achievable tuple
(R1, . . . , RL, µ1, . . . , µL) must belong to R. The system
achieving (R1, . . . , RL, µ1, . . . , µL) is specified by the
encoding functions {f1, . . . , fL}, i.e.,

f1 : Xn → Z1; (17a)
fl : Zl−1 → Zl, l = 2, . . . , L, (17b)

such that

Rl ≥
1

n
log |Zl|; (18a)

µl ≤
1

n
I(Y nl ;Zl), for l = 1, . . . , L. (18b)

By setting ULi , (ZL, X
i−1), and Uli , Zl, for i = [1 : n]

and l = [1 : L− 1], where Xi−1 = (X1, . . . , Xi−1), we have

nRl ≥ I(Zl, . . . , ZL;Xn) (19a)

=

n∑
i=1

I(Uli, . . . , ULi;Xi) (19b)

= nI(Ul, . . . , UL;X), (19c)

where (19a) is due to the fact that Zl+1, . . . , ZL are all
deterministic function of Zl; (19b) follows from the defini-
tions of Uli, . . . , ULi; and (19c) follows by defining Ul =
(UlJ , J), . . . , UL = (ULJ , J), where J is a random variable
independent of all other random variables, and uniformly
distributed over the set {1, . . . , n}. We can also write

nµl ≤ I(Y nl ;Zl) (20a)

=

n∑
i=1

I(Yl,i;Zl, ..., ZL, Y
i−1
l ) (20b)

≤
n∑
i=1

I(Yl,i;Zl, ..., ZL, Y
i−1
l , Xi−1) (20c)

=

n∑
i=1

I(Yl,i;Zl, ..., ZL, X
i−1) (20d)

+ I(Yl,i;Y
i−1
l |Zl, ..., ZL, Xi−1) (20e)

=

n∑
i=1

I(Yl,i;Uli, ..., ULi) (20f)

= nI(Yl;Ul, ..., UL), (20g)

where (20c) is due to the non-negativity of mutual information;
and (20f) follows since Yl,i−
−Zl, ..., ZL, Xi−1−
−Y i−1l form
a Markov chain, which can be proven as follows:

I(Yl,i;Y
i−1
l |Zl, ..., ZL, Xi−1)

= I(Yl,i;Y
i−1
l |Zl, Xi−1) (21a)

= I(Yl,i, Zl;Y
i−1
l |Xi−1)− I(Zl;Y i−1l |Xi−1) (21b)

= I(Yl,i;Y
i−1
l |Xi−1) + I(Zl;Y

i−1
l |Xi−1, Yl,i) = 0, (21c)

where I(Zl;Y
i−1
l |Xi−1) ≤ I(Zl−1;Y

i−1
l |Xi−1) ≤ · · · ≤

I(Z1;Y
i−1
l |Xi−1) ≤ I(Xn;Y i−1l |Xi−1) = 0, and, similarly,

I(Zl;Y
i−1
l |Xi−1, Yl,i) = 0.


