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Abstract—We study linear encoding for a pair of correlated
Gaussian sources transmitted over a two-user Gaussian broadcast
channel in the presence of unit-delay noiseless feedback, abbre-
viated as the GBCF. Each pair of source samples is transmitted
using a linear transmission scheme in a finite number of channel
uses. We investigate three linear transmission schemes: A scheme
based on the Ozarow-Leung (OL) code, a scheme based on
the linear quadratic Gaussian (LQG) code of Ardestanizadeh
et al., and a novel scheme derived in this work using a dynamic
programming (DP) approach. For the OL and LQG schemes
we present lower and upper bounds on the minimal number of
channel uses needed to achieve a target mean-square error (MSE)
pair. For the LQG scheme in the symmetric setting, we identify
the optimal scaling of the sources, which results in a significant
improvement of its finite horizon performance, and, in addition,
characterize the (exact) minimal number of channel uses required
to achieve a target MSE. Finally, for the symmetric setting, we
show that for any fixed and finite number of channel uses, the
DP scheme achieves an MSE lower than the MSE achieved by
either the LQG or the OL schemes.

I. INTRODUCTION

We study the transmission of a pair of correlated Gaussian
sources over a two-user memoryless Gaussian broadcast chan-
nel (GBC) with correlated noise components at the receivers,
in which the transmitter has access to noiseless causal feed-
back (FB) from both receivers. We abbreviate this channel
as the GBCF. Motivated by practical broadcast scenarios with
strict power, delay and complexity constraints, e.g., live multi-
media broadcast [3], transmission of critical system parameters
in a smart grid [4], or body-area sensor networks [5], we focus
on uncoded linear transmission schemes, namely, schemes that
do not encode over blocks of source symbol pairs.1
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1This is motivated by the work [6] which showed that for a zero-delay
source coding problem with memoryless sources, joint encoding of all the
source symbols does not provide any gain.

Previous studies on GBCFs focused on the channel coding
problem which assumes independent and uniformly distributed
messages and characterized performance for the infinite hori-
zon regime, i.e., the number of channel uses is unbounded. In
the present work we study lossy joint source-channel coding
(JSCC) for GBCFs focusing on the finite horizon regime: The
sources are assumed to be correlated, and each source is to
be reconstructed at its corresponding receiver within a target
non-zero mean-square error (MSE) distortion. Our objective is
to characterize the minimal number of channel uses required
to achieve a target MSE pair.

We focus on linear and memoryless transmission schemes
[7, Sec. III], i.e., the transmitted signal at any time index
is restricted to be a linear combination of the encoder state
at the same time index, while the encoder state is a linear
combination of the state at the previous time index and the
channel outputs from the previous transmission. In particular,
we consider the following three transmission schemes: 1)
A JSCC scheme based on the Ozarow-Leung (OL) channel
coding scheme developed in [8], to which we refer as the
JSCC-OL scheme; 2) A JSCC scheme based on the linear
quadratic Gaussian (LQG) channel code derived in [9], to
which we refer as the JSCC-LQG scheme; and 3) A novel
JSCC transmission scheme, which is derived in this work,
whose parameters are obtained using dynamic programming
(DP) [10], to which we refer as the JSCC-DP scheme. While
the JSCC-OL and the JSCC-DP schemes are time-varying
and are designed based on signal processing arguments, the
JSCC-LQG scheme is time-invariant and is based on a control
theoretic approach. As we show in the sequel, these differences
lead to different performances in the finite horizon regime.

A. Prior Work

While FB does not increase the capacity of memoryless
point-to-point (PtP) channels [11], it was shown in [12] that
for Gaussian PtP channels FB can reduce the complexity
and delay required for achieving a target error probability. In
fact, the scheme presented in [12] (referred herein as the SK
scheme) achieves a doubly exponential decay in the probability
of error with the number of transmitted symbols, whereas
only a single exponential decay can be achieved without feed-
back. In the SK scheme, the receiver applies minimum MSE
(MMSE) estimation to iteratively estimate the transmitted
source (or message). Using the FB, the transmitter can track
the estimation error at the receiver, and transmit it at the next
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channel symbol. Thus, at each channel use, only the “missing
information” is transmitted. The work [13] generalized this
idea and presented the posterior matching principle for optimal
transmission over memoryless PtP channels with FB: At each
channel symbol the transmitter should send only information
that is independent of the past transmitted symbols, and is
relevant for the reconstruction of the transmitted message.

Differently from the situation for PtP channels, in multiuser
channels FB may enlarge the capacity region. This was first
demonstrated in [14] which showed that FB enlarges the
capacity region of the memoryless multiple-access channel
(MAC). Motivated by the optimality of the SK scheme for
PtP Gaussian channels, the works [15] and [8] extended it
to the two-user Gaussian MAC with FB (GMACF) and to
the two-user GBCF, respectively. While for the GMACF this
approach achieves the capacity region, for the GBCF this
extension is generally suboptimal even though it achieves
reliable communications at rate pairs which are outside the
capacity region of the non-degraded GBC.2 The OL scheme
of [8] and the scheme of [15] were later extended to GBCFs
and GMACFs with more than two users as well as to Gaussian
interference channels with FB (GICFs) in [7]. Recently, in
[17], we extended the OL scheme by using estimators with
memory at the receivers instead of the memoryless estimators
used in the original OL scheme of [8]. We note that the ex-
tended decoder does not always improve upon the memoryless
decoder of [8], in fact, in some situations it may perform worse
than the memoryless decoder of [8]. Finally, the work [18]
used the scheme of [15] and the OL scheme of [8] to stabilize
(in the mean square sense) two linear, discrete-time, scalar
and time-invariant systems in closed-loop, via control over
GMACFs and GBCFs, respectively. This approach was also
used for stabilization over interference channels in [19].

An alternative approach to SK-type schemes is based on
control theory. For Gaussian PtP channels [20] showed that
solving an optimal LQG control problem leads to a capacity
achieving FB transmission scheme, and presented control-
oriented FB transmission schemes also for GBCFs, GMACFs
and GICFs. In particular, for the two-user GBCF with inde-
pendent noise components at the receivers, [20] presented a
class of coding schemes which achieve rate pairs outside the
achievable rate region of the OL scheme. Later, [9] used the
LQG control framework to develop a FB coding scheme for
the GBCF, referred herein as the LQG scheme, which does not
require the noise components to be independent. It was also
shown in [9] that when the noise components are independent
and have the same variance, then the LQG scheme achieves
rates higher than those achieved by the OL scheme and the
scheme of [7] (for the case of more than two users). In fact,
recently, [21] showed that for this scenario the LQG scheme
achieves the maximal sum-rate among all possible linear-
feedback schemes. GBCFs and GICFs were also studied in
[22] which presented a (non-linear with memory) transmis-
sion scheme whose sum-rate approaches the corresponding

2We note that feedback does not enlarge the capacity region of degraded
GBCFs [16].

full-cooperation bound,3 as the signal-to-noise ratio (SNR)
increases to infinity. Lastly, the recent work [23] showed that
the capacity region of the GBCF with independent noises and
only a common message cannot be achieved by linear feedback
schemes such as the OL or LQG schemes.

While all the works on GBCFs reviewed above focus on
the achievable rates, namely, bits per channel use that can
be transmitted reliably as the number of channel uses goes to
infinity, in the present work we study a JSCC problem. JSCC
in multiuser networks with FB has been considered in several
previous works. The work [24] presented sufficient conditions
for lossy transmission of discrete memoryless (DM) correlated
sources over a DM-MAC with FB which builds upon the
hybrid coding scheme of [25]. Lossy transmission of correlated
Gaussian sources over a two-user GMACF was studied in [26],
in which sufficient conditions and necessary conditions for
the achievability of an MSE pair were derived. In [26] it was
also shown that for the symmetric setting, if the channel SNR
is below a certain threshold, then an uncoded transmission
scheme is optimal. While the works [24]–[26] focused on
the scenario in which the source and channel bandwidths are
matched, the work [27] considered scenarios in which these
bandwidths are mismatched, and studied the transmission of
correlated Gaussian sources over a two-user GMACF. For the
symmetric setting, [27] presented upper and lower bounds on
the energy-distortion tradeoff, i.e., the minimum transmission
energy required to communicate a pair of sources over a noisy
channel, such that the sources can be reconstructed within
a specified target distortion. In [28] we study the energy-
distortion tradeoff for the symmetric two-user GBCF. Here we
remark that all the aforementioned works consider the infinite
horizon regime.

Finally, we note that several works considered the GBC
with noisy causal FB, see [29]–[32] and references therein.
Particularly relevant to the context of the current work are
the works [31] and [32] which studied channel coding for PtP
Gaussian channels with noisy FB and for GBCs with noisy FB
links, respectively. The transmission schemes studied in these
works are based on the SK and OL schemes, respectively,
while the noise in the feedback links was handled using a
modulo-lattice precoding in both the direct and feedback links.
Furthermore, [31] and [32] show that while adding noise to
the feedback links results in performance degradation [31,
Sec. V.D], many of the benefits of noiseless feedback can be
carried over to the more practical setup of noisy feedback.
This strengthens the motivation for the study presented in the
following sections.

B. Main Contributions

In this work we study the transmission of a pair of correlated
Gaussian sources over the two-user GBCF in the finite horizon
regime, where each source is to be reconstructed at its corre-
sponding receiver within a target MSE distortion. Our aim is
to characterize the minimal number of channel uses required

3In the full-cooperation bound each receiver knows the other receiver’s
channel output, see [22, Eqn. (1)].
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to achieve the target MSE distortion pair. In the following we
highlight our main contributions:

1) We adapt the OL scheme of [8] to the transmission
of correlated Gaussian sources over GBCFs. This new
JSCC scheme is referred to in the following as JSCC-OL.
We first demonstrate that the initialization, which takes
advantage of the correlation between the sources, is su-
perior to the initialization suggested in [8]. Then, for the
proposed JSCC-OL scheme we derive upper and lower
bounds on the minimal number of channel uses needed to
achieve a target pair of MSEs. We show that, in contrast
to the infinite horizon regime, in the finite horizon regime
there are many cases in which JSCC-OL outperforms
JSCC-LQG. Lastly, we consider the symmetric setting,
in which the sources have equal variances, the noise
variances at the receivers are equal, and the target MSEs
are equal. We show that for this setting in the low SNR
regime, when the sources are independent, and the noises
are independent, then JSCC-OL achieves approximately
the same source-channel bandwidth ratio as the best
known separation-based scheme which applies source and
channel coding with asymptotically large blocklengths.4

Since JSCC-OL applies linear encoding and decoding,
this demonstrates the efficiency and attractiveness of the
JSCC-OL scheme, even in the infinite horizon regime.

2) We adapt the LQG scheme of [9] to the transmission
of correlated Gaussian sources over GBCFs in the finite
horizon regime. This new JSCC scheme is referred to
in the following as JSCC-LQG. As the original LQG
scheme is optimized for the infinite horizon regime, it
sometimes performs poorly when the horizon is finite.
For this reason, our first contribution in the context of
JSCC-LQG is the derivation of a new decoder based
on the MMSE criterion, which outperforms the LQG
decoder presented in [9] in the finite horizon regime,
while achieving the same performance in the infinite
horizon regime. For the general setting we derive lower
and upper bounds on the minimal number of channel uses
needed to achieve a target pair of MSEs with the JSCC-
LQG scheme. For the symmetric setting, we show that,
by properly scaling the transmitted sources, it is possible
to achieve a the target MSE pair with significantly fewer
channel transmissions than with the original initialization
of [9]. We show that the proposed scaling technique5:
1) Optimally exploits the available transmission power,
subject to a per-symbol average power constraint, 2) Min-
imizes the distance between the covariance matrices of
the JSCC-LQG initial state and the covariance matrix of
its steady-state (subject to the per-symbol average power
constraint), and 3) Achieves the same MSE exponents6 as
in [9]. Thus, our proposed JSCC-LQG scheme is a linear

4Note that for the considered setting, when the sources are independent,
then separate source-channel coding is optimal.

5Note that finding this scaling factor requires a substantial technical effort
as we must characterize the exact instantaneous transmission power of the
LQG scheme. This is explained in detail in Subsection IV-E1.

6MSE exponents corresponds to the slope of decay of the logarithm of the
MSE for sufficiently large number of channel uses.

time-invariant transmission scheme with very good finite
horizon performance and with the best known infinite
horizon performance. Finally, for the symmetric setting,
we explicitly characterize the minimal number of channel
uses required to achieve a target MSE pair via the roots
of a second order polynomial, thus, providing a complete
performance characterization of the JSCC-LQG in the
finite horizon regime for the symmetric setting.

3) We present a new linear and memoryless transmission
scheme based on DP, called JSCC-DP. For a finite number
of channel uses, we show that the JSCC-DP scheme
achieves lower MSE values than those achieved by the
JSCC-LQG and the JSCC-OL schemes. Since finding
the coefficients of this scheme becomes computationally
infeasible as the number of channel uses becomes large,
we also propose an approximate low-complexity version
of the JSCC-DP scheme. Simulation results indicate that
for moderate to high SNRs this approximate version has
a negligible or no performance loss compared to the exact
JSCC-DP scheme.

The rest of this paper is organized as follows: The problem
formulation is introduced in Section II. We introduce the
JSCC-OL and JSCC-LQG schemes in Sections III and IV,
respectively. The JSCC-DP scheme is introduced in Section V,
and a comparison of the three schemes along with numerical
examples are presented in Section VI. Finally, concluding
remarks are presented in Section VII.

II. PROBLEM DEFINITION

A. Notation

We use capital letters to denote random variables (RVs),
e.g., X , and boldface letters to denote random column vectors,
e.g., X; the k’th element of a vector X is denoted by Xk, and
we use Xj

k where k < j, to denote (Xk, Xk+1, ..., Xj−1, Xj).
We use sans-serif font to denote deterministic vectors and
matrices: boldface letters denote vectors, e.g., B, while regular
letters denote matrices, e.g., M. [M]m,n denotes the entry at
the m’th row and n’th column of a matrix M, and det(M)
denotes the determinant of a square matrix M. I denotes the
identity matrix. We use E {·}, (·)T , log(·) and R to denote
expectation, transpose, natural basis logarithm, and the set
of real numbers, respectively. We use N (µ,Q) to denote the
multivariate normal distribution with mean µ and covariance
matrix Q. Finally, we define [x]+ , max{x, 0}, sgn(x) as the
sign of x, where sgn(0) , 1, and denote the ceiling function
of x by dxe.

B. System Model

The two-user GBCF is depicted in Fig. 1. All the signals are
real. The encoder observes a realization of a pair of correlated
and jointly Gaussian sources, denoted by S = [S1, S2]T , and
is required to send the source Si, i = 1, 2, to the i’th receiver,
denoted by Rxi. Let S ∼ N (0,Qs), where the covariance
matrix, Qs, is given by:

Qs=

[
σ2

1 ρsσ1σ2

ρsσ1σ2 σ2
2

]
,
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Fig. 1: Gaussian broadcast channel with correlated sources and feedback links.
Ŝ1,k and Ŝ2,k are the reconstructions of S1 and S2, respectively, after the
k’th channel use.

where

σ2
i = E

{
S2
i

}
, ρs =

E {S1S2}
σ1σ2

, |ρs| < 1.

Each pair of source symbols is transmitted using K channel
uses, indexed by k = 1, 2, . . . ,K. The channel outputs at the
decoders are given by:

Yi,k = Xk + Zi,k, i = 1, 2, (1)

where Xk denotes the channel input at time k, the noise
components [Z1,k, Z2,k]T ∼ N (0,Qz), are independent and
identically distributed (i.i.d.) over k = 1, 2, . . . ,K, with
covariance matrix Qz given by:

Qz=

[
σ2
z,1 ρzσz,1σz,2

ρzσz,1σz,2 σ2
z,2

]
,

where
ρz =

E {Z1Z2}
σz,1σz,2

, |ρz| < 1.

Let B , [1, 1]T ,Yk , [Y1,k, Y2,k]T and Zk , [Z1,k, Z2,k]T .
The signal model (1) can now be written in the following
vector form:

Yk = BXk + Zk. (2)

At time k = 1, 2, . . . ,K, Rxi, i = 1, 2, uses its received
channel outputs, Yi,1, Yi,2, . . . , Yi,k, to estimate Si:

Ŝi,k = gi,k(Yi,1, Yi,2, . . . , Yi,k), gi,k : Rk → R, (3)

and the encoder maps the observed pair of sources and the
received FB into a channel input via:

Xk = fk(S1, S2,Y1,Y2, . . . ,Yk−1), fk : R2k → R, (4)

subject to a per-symbol average power constraint defined as:

E
{
X2
k

}
≤ P, ∀k = 1, 2, . . . ,K. (5)

For a specific set of parameters (σ2
z,1, σ

2
z,2, ρz, σ

2
1 , σ

2
2 , ρs), we

define a (D1, D2,K) code to be a collection of K encoding
functions each satisfying (5), and two decoding functions such
that:

E{(Si − Ŝi,K)2} ≤ Di, 0 < Di ≤ σ2
i , i = 1, 2. (6)

For a given target MSE pair (D1, D2), our objective is to
characterize the minimal number of channel uses K such that

a (D1, D2,K) code exists. In the sequel, we let KSCHEME
denote the minimal number of channel uses required to achieve
a pair of MSE distortion values, (D1, D2), by the scheme
“SCHEME”∈ {OL,LQG,DP}.
Remark 1. Note that in (5) we use a per-symbol average
power constraint, similarly to [33, Eq. (22)] and [34, Sec.
VII]. The per-symbol average power constraint is motivated
by practical system implementation: Due to the finite dynamic
range of power amplifiers [35, Ch. 9], the transmitter is not
able to allocate power arbitrarily across time slots. This is
particularly relevant for simple energy-limited sensor nodes
which may benefit the most from the low-complexity linear
encoding schemes proposed in this paper.

C. Linear and Memoryless JSCC for GBCFs

In this work we focus on the class of linear and memoryless
transmission schemes, see, e.g., [7, Sec. III]: In this class
of schemes, the transmitted signal at any time index, k, is
restricted to be a linear function of the encoder state at time k,
which, in turn, evolves as a linear combination of the encoder
state at time k − 1 and the channel outputs at time k − 1.
Letting Uk = [U1,k, U2,k]T denote the encoder state vector
at time k (each state is associated with one Tx-Rx link), the
transmitted signal at time k, Xk, see (4), is generated as a
linear (possibly time-varying) combination of the elements
of Uk: Xk = TTkUk, where Tk = [t1,k, t2,k]T are the
combination weights. Furthermore, the encoder state vector
is recursively obtained by:

Ui,k =ϕi,k(Ui,k−1, Yi,k−1), i= 1, 2, k= 1, 2, . . . ,K, (7)

where ϕi,k(·) is a linear mapping. In the following sections
we state the three studied schemes, JSCC-OL, JSCC-LQG, and
JSCC-DP, as instances of this class of transmission schemes.
Using this general definition, we can highlight the fundamental
differences between the schemes: In the JSCC-LQG scheme
Tk and ϕi,k do not depend on k and consequently the
JSCC-LQG scheme is time-invariant. On the other hand, in
the JSCC-OL and JSCC-DP schemes Tk and ϕi,k are time-
varying. In the JSCC-OL scheme ϕi,k are based on linear and
memoryless MMSE estimators of Ui,k from Yi,k−1, while in
the JSCC-DP scheme ϕi,k are computed recursively via DP.
Clearly, while structure makes implementation and analysis
easier, it may result in an inferior performance. Indeed, we
show in Subsection VI-B that, even though the JSCC-LQG
scheme achieves the best known MSE exponent, the JSCC-
OL scheme can outperform the JSCC-LQG scheme in the
finite horizon regime. This is because the time-varying nature
of JSCC-OL allows for better exploiting the available power
and the correlation between the sources. As the JSCC-DP
scheme computes Tk and ϕi,k recursively using the statistics
of the signals, it can also adaptively change the transmission
coefficients similarly to the JSCC-OL scheme. However, as
these weights are obtained recursively, JSCC-DP achieves the
smallest MSE at any a-priori specified number of channel uses.

Next, we recall some results and definitions from [8], and
provide a finite horizon analysis of the JSCC-OL scheme.
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ρk =
(ρzσz,1σz,2Ξ + ξ2

1ξ
2
2)ρk−1 −Ψ2

k−1Ξ · g(1− ρ2
k−1)sgn(ρk−1)

√
π1π2

√
σ2
z,1 + Ψ2

k−1g
2(1− ρ2

k−1)
√
σ2
z,2 + Ψ2

k−1(1− ρ2
k−1)

. (12)

III. JSCC VIA THE OL SCHEME

A. The OL Scheme for JSCC

In the JSCC-OL scheme, the transmitter generates the
channel symbol to be transmitted at time k based on the
previous channel outputs, available through the FB links.
The transmitter first calculates the source estimates at the
receivers, and obtains the estimation errors at each receiver.
The transmitter then sends a linear combination of these
estimation errors. Thus, at each time k, each receiver obtains
its estimation error corrupted by a correlated noise term,
consisting of the other receiver’s estimation error and the
additive channel noise. Each receiver then updates its estimate
accordingly, thereby, decreasing the variance of its estimation
error. The scheme is terminated after KOL channel uses, where
KOL is chosen such that the target MSE for each source is
achieved at the corresponding receiver.

Setup: Let Ŝi,k be the estimate of Si at Rxi after the recep-
tion of the k’th channel output, Yi,k. Letting εi,k , Ŝi,k−Si
be the estimation error after k transmissions, and defining
ε̂i,k−1, Ŝi,k−1−Ŝi,k, we can write εi,k=εi,k−1−ε̂i,k−1. Lastly,
define αi,k,E{ε2i,k} as the MSE at Rxi after k transmissions,
and ρk,

E{ε1,kε2,k}√
α1,kα2,k

as the correlation coefficient between the
estimation errors.

Encoding: Set Ŝi,0 = 0, which yields εi,0 = −Si, αi,0 =
E
{
ε2i,0
}

= σ2
i , and ρ0 = ρs. Next, for a given P , let g > 0 be

a constant which controls the tradeoff between the information
rate to Rx1 and Rx2, and define Ψk ,

√
P

1+g2+2g|ρk| . At the
k’th iteration, 1 ≤ k ≤ K, the transmitter sends

Xk = Ψk−1 ·
(

ε1,k−1√
α1,k−1

+
ε2,k−1√
α2,k−1

· g · sgn(ρk−1)

)
, (8)

and the corresponding channel outputs are given in (1).

Remark 2. It follows from (8) that the average per-symbol
transmission power of the JSCC-OL scheme is constant.
Therefore, JSCC-OL inherently satisfies the average per-
symbol power constraint in (5).

Decoding: After the k’th channel use, the estimator that
minimizes the instantaneous MSE, E{(Si − Ŝi,k)2}, is the
conditional expectation [36, Eqn. (11.10)], i.e.,

Ŝi,k = E
{
Si|[Yi,1, Yi,2, . . . , Yi,k]T

}
.

However, as successive channel outputs are not independent,
the performance analysis of this estimator is highly compli-
cated. For this reason, a simpler and suboptimal approach is
considered in [8], in which Rxi estimates εi,k−1 based only
on Yi,k:

ε̂i,k−1 =
E {εi,k−1Yi,k}

E
{
Y 2
i,k

} Yi,k. (9)

Then, similarly to [37, Eq. (7)], the estimate of Si is given
by:

Ŝi,k = −
k∑

m=1

ε̂i,m−1. (10)

Remark 3. In [15] it is shown that for the 2-user GMACF
this approach is optimal in the MMSE sense. This follows as
in the MAC setup both sources are estimated from the same
channel output, thus, the estimation errors are orthogonal to
the previous channel output. On the other hand, in the GBCF
this approach is sub-optimal since [Y1,1, Y1,2, . . . , Y1,k−1]T is
not necessarily orthogonal to ε2,k−1. In [17] we extended the
estimator (9) to use [Yi,k, Yi,k−1]T instead of using only Yi,k.
This resulted in a transmission scheme which is linear but not
memoryless.

Define πi , P+σ2
z,i,Ξ , P+σ2

z,1 +σ2
z,2−ρzσz,1σz,2, and

ξ2
i , σ2

z,i − ρzσz,1σz,2. In [8] the MSEs of the (memoryless)
estimators in (9) are stated via the recursive expressions [8,
Eqs. (5)–(6)]:

α1,k = α1,k−1

σ2
z,1 + Ψ2

k−1g
2(1− ρ2

k−1)

π1
, (11a)

α2,k = α2,k−1

σ2
z,2 + Ψ2

k−1(1− ρ2
k−1)

π2
, (11b)

and ρk is given by [8, Eqn. (7)] at the top of the page. The
JSCC-OL scheme described above can be readily stated within
the class of linear and memoryless schemes defined in Subsec-
tion II-C: The encoder state update for the JSCC-OL scheme
can be expressed via (7) by setting Uk = [ε1,k−1, ε2,k−1]T ,
the transmitted signal Xk is obtained from the encoder states
Uk via (8), and Ui,k+1 ≡ εi,k = εi,k−1 − ε̂i,k−1, ε̂i,k−1 =
E{εi,k−1Yi,k}
E{Y 2

i,k}
Yi,k. Observe that the linear estimation and trans-

mission coefficients are time-varying.

B. Initialization of the JSCC-OL Scheme

In the above description of the JSCC-OL scheme the
initialization is different than the original initialization in [8].
In this subsection we begin by motivating the initialization
in Subsection III-A, i.e., εi,0 = −Si and ρ0 = ρs, and then
discuss alternative initialization approaches.

First, note that the instantaneous MSEs in (11) are mono-
tonically decreasing functions of |ρk|. Thus, at least in the first
transmission, there is a strong motivation to generate ε1,0 and
ε2,0 as correlated as possible. Numerical simulations indicate
that the benefits of highly correlated ε1,0 and ε2,0 carry beyond
the first transmission. In particular, in [28, Appendix C] we
analytically show that in the low SNR regime, |ρk| slowly
decreases towards zero, from its initial value, until it reaches
a very small steady state value. Consequently, in the low
SNR regime, initializing the scheme with correlated estimates
yields substantial benefits over initializing with the steady-state
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correlation. We conclude that, when the sources are correlated,
initialization with εi,0 = −Si and ρ0 = ρs, takes advantage
of the correlation between the sources to rapidly decrease the
MSE.

Next, we address the relevance of the initialization proposed
in [8] to the problem studied in the current work. First,
note that the approach of [8] maximizes the achievable MSE
exponents, and not the finite horizon performance. In [8] it
was shown that there exists a ρ ∈ [0, 1] such that a steady
state is achieved in the sense that when |ρk−1| = ρ, then
ρk = −ρk−1. This ρ∗ can be obtained by setting ρk = ρ
and ρk−1 = −ρ in (12), finding the roots of the resulting
sixth-order polynomial, and taking ρ∗ as the largest root of
this polynomial in [0, 1]. In [8, pg. 669] it was also shown
how to initialize the transmission to achieve a steady-state
in (12), with ρk = ρ∗, k ≥ 2. When an average per-symbol
power constraint is applied, then the initialization suggested
in [8] is suitable only if the steady state correlation coefficient

satisfies |ρ∗| ∈
[
0, P√

(P+σ2
z,1)(P+σ2

z,2)

)
. In the low SNR

regime, P√
(P+σ2

z,1)(P+σ2
z,2)

is very small, and this initialization

may result in a very slow decrease in the MSEs.
We now consider a general linear initialization which can

achieve any initial correlation value ρ0, such that |ρ0| ∈ [0, 1).
Let F be a deterministic matrix, W ∼ N (0,Qw) independent
of S, ε0 = [ε1,0, ε2,0]T , and consider the following initializa-
tion:

ε0 = FS + W. (13)

Setting εi,0 = −Si is a special case of this general linear
framework obtained with W = 0 and F = −I. Since
minimizing KOL over all matrices F and over all covariance
matrices Qw is rather involved, in the following we aim at
setting ρε0 =

E{ε1,0ε2,0}
E{ε21,0}E{ε22,0}

to be as large as possible. We
next discuss two special instances of (13). To simplify the
analytic treatment, we focus on the symmetric setting in which
σ2

1 = σ2
2 , σ2

s , σ
2
z,1 = σ2

z,2 , σ2
z , D1 = D2 , D, and

we set g = 1 as no preference should be given to either of
the sources. We begin by considering initialization using only
noise addition, i.e., F = I.

Initialization via noise addition: Let Qw = σ2
w

[
1 ρw
ρw 1

]
,

and let ρ0 be the desired correlation coefficient. We are inter-
ested in finding Qw such that ρε0 = ρ0. Since the transmitted
signal in (8) is always scaled to satisfy the per-symbol average
power constraint P , there are many pairs (ρw, σ

2
w) which result

in ρε0 = ρ0. To maximize the component of S in ε0, we select
the (ρw, σ

2
w) pair with the minimal σ2

w. This pair is given by:

σ2
w =

σ2
s(ρs − ρ0)

ρ0 + sgn(ρs − ρ0)
, ρw = sgn(ρ0 − ρs).

By letting the JSCC-OL scheme transmit ε0, the higher
correlation coefficient facilitates a rapid decrease in the MSE
at the receivers, at the cost of using some of the available
power to transmit the noise vector W. Thus, we have two
contradicting effects: The increased ρ0 decreases the MSE in
estimating ε0, but adding the noise W ε0 increases the MSE in
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Fig. 2: MSE vs. number of channel uses for different values of ρ0. ρs =
0.4, σ2

s = 1, ρz = 0.3, σ2
z = 1, and P = 0.1.

estimating S. In Appendix A-A we derive a two-step MMSE
estimator which first applies the OL scheme with εi,0, and
then applies MMSE estimation of Si from the estimated εi,0.
The MSE of this estimator is lower bounded by the MSE
of estimating Si from εi,0. Extensive numerical simulations
indicate that the MSE achieved by this approach is higher
than the MSE achieved by the initialization εi,0 = −Si. We
illustrate this point in the following example.

Example 1. Let ρs = 0.4, σ2
s = 1, ρz = 0.3, σ2

z = 1, and
P = 0.1. Fig. 2 depicts the MSEs vs. K for this scenario. Note
that ρ0 = 0.4 corresponds to the initialization εi,0 = −Si as no
noise need to be added. It can be observed that any value of ρ0

other than ρs = 0.4 degrades the performance compared to the
initialization εi,0 = −Si. Furthermore, it can be observed that
the MSE floor increases with ρ0, as expected. This implies that
for the two-step estimator, increasing |ρ0| increases the MSE
due to the addition of the noise, rendering this initialization
useless.

Remark 4. When the encoder and the decoders share a
common source of randomness [38], then at least part of the
added noise W can be eliminated at the receivers. In such a
case, the above two-step estimator can achieve lower MSE
than the MSE achieved with εi,0 = −Si. Furthermore, in
scenarios in which the noise W can be completely eliminated,
the two-step estimator can achieve the MSE given in (11),
where |ρ0| can be initialized to any value in the range [0, 1).

Remark 5. Note that if in the first step of the JSCC-OL
scheme the receivers estimate Si instead of εi,0, then αi,1
and ρ1 are no longer given by (11) and (12), respectively.
On the other hand, as S is estimated directly from the channel
outputs, the estimate does not suffer from an MSE floor. This
observation motivates choosing (ρw, σ

2
w) to simultaneously

minimize the MSE in estimating S after the first channel
use, and maximize |ρ1|, the correlation coefficient between
the two estimation errors after the first channel use. Since
this is a non-linear optimization problem which is difficult to
solve analytically, we derived explicit expressions for the new
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αi,1 and ρ1, then we used a numerical search to find the ρ0

which maximizes ρ1, and chose the pair (ρw, σ
2
w) to minimize

the new αi,1 while achieving the above maximizing ρ0. An
extensive numerical study indicates that for most combinations
of scenario parameters, the maximal achievable |ρ1| is very
close to |ρs|, thus, the gain from increasing the correlation
ρ0 beyond |ρs| is minor. A non-negligible increase in ρ1 is
observed when |ρs| is small and P � σ2

z . Yet, even in these
cases, the MSE obtained with this modified initialization was
higher than the MSE achieved by initializing εi,0 = −Si.

Next, we briefly discuss initialization via multiplication by
F while W = 0.

Initialization via (13) with W = 0: Let Qε0 =

σ2
ε0

[
1 ρ0

ρ0 1

]
, |ρ0| < 1, denote the covariance matrix of

ε0. The desired initialization is applied only through the
product ε0 = FS. Since |ρs| < 1 and |ρ0| < 1, the
matrix F is unique and can be obtained by applying the
Cholesky decomposition [39, Subsection 19.2.1.2] to both Qs
and Qε0 . Let the Cholesky decompositions of Qs and Qε0
be Qs = LsL

T
s , and Qε0 = Lε0L

T
ε0 , respectively. Using these

decompositions we have F = Lε0L
−1
s . Note that from the

definition of the Cholesky decomposition, the matrix Lε0L
−1
s

is lower triangular. Therefore, ε1,0 is a scaled version of S1,
while ε2,0 is a linear combination of both S1 and S2. Similarly
to the discussion for initialization via noise addition, one can
either estimate S in two steps, first estimating ε0 and then
estimating S from ε0, or estimate S directly from the channel
outputs after the first step. The first approach, of the two steps
estimator, results in an MSE floor at Rx2 (if Rx2 has access
to S1, then this MSE floor can be eliminated). The second
approach, of direct estimation, typically achieves only a small
increase in the correlation coefficient compared to ε0 = −S,
and no gains in the MSE for estimating S were observed.

In the next subsection we study the JSCC-OL scheme in
the finite horizon regime with the initialization εi,0 = −Si.

C. Finite Horizon Analysis of JSCC-OL

From (11) it follows that the MSEs at time instance k
depend on ρk−1. However, as ρk is defined via the non-linear
recursion (12), it follows that an explicit characterization of
KOL is highly complex. Thus, in the following theorem we
present upper and lower bounds on KOL.

Theorem 1. The JSCC-OL scheme with the decoder defined
in (9) terminates within K lb

OL ≤ KOL ≤ Kub
OL channel uses,

where:

Kub
OL=

⌈
(1 + g2)

P
max

{
π1 log

(
σ2

1

D1

)
,
π2

g2
log

(
σ2

2

D2

)}⌉
, (14a)

K lb
OL=

⌈
max

{
σ2
z,1

P
log

(
σ2

1

D1

)
,
σ2
z,2

P
log

(
σ2

2

D2

)}⌉
. (14b)

Proof. The upper and lower bounds in (14a) and (14b),
respectively, are obtained via lower and upper bounding ρk
in (11). A detailed proof is provided in Appendix A-B.

D. JSCC-OL vs. Separate Source-Channel Coding

Next, we focus on the symmetric setting in which σ2
1 =

σ2
2 = σ2

s , σ
2
z,1 = σ2

z,2 = σ2
z and D1 = D2 = D. As symmetry

implies the same rate should be allocated for sending both
sources, we set g = 1. In the following, we compare the
source-channel bandwidth of the JSCC-OL scheme with that
of separate source-channel coding (SSCC) for the GBCF when
the sources and the noises are independent, i.e., ρs = 0 and
ρz = 0. While the JSCC-OL scheme operates in the finite
horizon regime, the SSCC scheme applies coding over blocks
of source-pair samples, and uses asymptotically long channel
codes. Clearly, by coding over multiple samples of source pairs
one can obtain MSEs which are at least as low as the MSEs
achieved by linear transmission schemes.

Consider a coding scheme which requires (on average) K
channel uses to send m samples of source pairs in order
to achieve a target MSE D. We define the source-channel
bandwidth ratio of this scheme as κ , K/m.

As the JSCC-OL scheme applies uncoded transmission, then
m = 1, and its source-channel bandwidth ratio is given by
κOL = KOL. It was shown in [40, Thm. 2] that for the symmet-
ric setting with ρs = 0, SSCC is optimal. Let κsep denote the
source-channel bandwidth ratio of the optimal SSCC, which
applies the optimal source compression followed by a capacity
achieving channel code. Since ρs = 0, the optimal source
code compresses each of the Gaussian sources separately via
an optimal rate-distortion code [41, Thm. 13.3.2], resulting in
two independent messages. As the optimal channel code for
the GBCF is not known, in the following we consider upper
and lower bounds on κsep.

A lower bound on κsep is obtained by using the upper bound
on the symmetric achievable rate for the GBCF, stated in [8,
pg. 671], i.e., by letting one of the receivers have access to
both channel outputs. Applying a simple manipulation to the
results in [8, pg. 671] we obtain that if R is a symmetric
achievable rate for the GBCF, and ρz = 0, then:

R <
1

2
log

(√
9

4
+

2P

σ2
z

− 1

2

)
(a)
=

1

2
log

(√
9

4
+ 2SNR− 1

2

)
, (15)

where in (a) we set SNR , P
σ2
z

. For completeness, this analysis
is provided in Appendix A-C. The lower bound on κsep is thus
given by:

κsep ≥
log
(
σ2
s

D

)
log
(√

9
4 + 2SNR− 1

2

) , κlb
sep.

An upper bound on κsep is obtained by using the LQG channel
code of [9], which is the best known channel code for the
GBCF:

κsep ≤
log
(
σ2
s

D

)
2 log |a1|

, κub
sep,

where a1 is defined in [9, Eq. (14)]. A detailed description of
the LQG scheme is provided in the following Section IV-A.
Recall that for ρz = 0 the LQG code of [9] is the optimal
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linear channel coding scheme in the sense of maximal sum-
rate [21], which motivates focusing on ρz = 0. In the following
proposition we upper bound the terms KOL−κub

sep and KOL−
κlb

sep:

Proposition 1. In the symmetric setting with ρs = ρz = 0,
KOL − κub

sep and KOL − κlb
sep are upper bounded by:

KOL−κub
sep ≤

⌈
2 log

(
σ2
s

D

)⌉
, (16a)

KOL−κlb
sep ≤

⌈(
2+

2

SNR
− 1√

2SNR

)
log

(
σ2
s

D

)⌉
. (16b)

Proof. The proof of (16a) is detailed in Appendix A-D. The
proof of (16b) is detailed in Appendix A-E.

We note that the right-hand side (RHS) of (16a) is in-
dependent of the SNR, while both KOL and κub

sep increase
when SNR decreases. Therefore, (16a) implies that for low
enough SNR, KOL − κub

sep � KOL, which implies that the gap
becomes negligible compared to KOL and κub

sep for sufficiently
low SNR. For instance, letting σ2

s = 1 and D = 10−2,
we obtain

⌈
2 log

σ2
s

D

⌉
= 10. For P = 0.001 and σ2

z = 1,
we have κub

sep = 9213 and therefore KOL ≤ 9223; thus,
(KOL − κub

sep)/KOL ≈ 10−3. An explicit calculation of KOL
via (11)–(12) results in KOL = 9213, thus, for this setting
KOL = κub

sep, indeed demonstrating that the gap in (16a) is
negligible compared to KOL and κub

sep. It should be noted
that κub

sep is achieved by applying source and channel coding
with an asymptotically large blocklength. In particular, in
contrast to the JSCC-OL scheme, coding takes place over
multiple samples of source pairs, and for κub

sep to be approached
infinitely many channel uses are required, which results in a
large delay and a high complexity. On the other hand, the
JSCC-OL scheme uses a finite number of channel symbols
for the transmission of a single source pair. In spite of
this fundamental difference, Prop. 1 shows that in the low
SNR regime the performance loss of the JSCC-OL scheme
compared to the SSCC scheme is negligible.

We also note that in the low SNR regime the RHS of (16b)
is approximately given by

⌈
log
(
σ2
s

D

)
2

SNR

⌉
. While the RHS

of (16b) only constitutes an upper bound, simulation results
indicate that indeed, in the low SNR regime, KOL − κlb

sep
increases proportionally to 1

SNR . Based on the simulation
results, we conjecture that this negative result is due to the
fact that the upper bound in (15) based on [8, pg. 671] is not
tight.

Next, we discuss a control theoretic approach for the
problem of transmitting correlated Gaussian sources over the
GBCF.

IV. JSCC BASED ON THE LQG SCHEME

It was observed in [20] and [42] that there is a natural
duality between the problem of FB stabilization and com-
munications over PtP Gaussian channels with FB. Based on
this duality, results and tools from control theory were used
to design channel codes for PtP Gaussian channels with FB.
This duality was also exploited to construct channel codes

for multiuser Gaussian channels with FB: In [20] a duality
between communications over the GBCF with unit-variance
independent noise components, and a FB stabilization problem
was established; yet, [20] did not present an explicit FB
communications scheme. In [9], a scheme which belongs to
the class of schemes analyzed in [20] was presented. This
scheme, referred to as the LQG scheme, also supports the
communications for GBCFs with correlated noise components.

The LQG scheme achieves the best known information
rates over the GBCF. Furthermore, [9, Lemma 1] characterizes
a linear relationship between the achievable rates and the
achievable MSE exponents, which correspond to the slope
of decay of the logarithm of the MSE for sufficiently large
number of channel uses. Therefore, for sufficiently large
number of channel uses, higher achievable rates correspond to
higher rate of decay of the MSE. This implies that for large
enough number of channel uses (or low enough MSEs), the
LQG scheme is preferable compared to schemes which achieve
lower rates. This, together with the time-invariant property of
the LQG scheme, motivates studying the JSCC-LQG scheme
in the finite horizon regime.

We emphasize that the original LQG scheme in [9] is
designed to optimize the infinite horizon channel coding rate,
while in this work we focus on JSCC in the finite horizon
regime. These two differences give rise to two challenging
research problems: The first problem is the characterization of
the minimal number of transmissions required by the JSCC-
LQG scheme to achieve a target MSE pair given a specific
initialization, and the second is the optimization of the initial
transmission of the JSCC-LQG scheme. In this section we
address these two research problems. The main difficulty in
designing a time-varying finite horizon JSCC-LQG scheme
for GBCFs, follows since constraining the controller as in (5)
results in minimization problems which do not have explicit
solutions. Furthermore, typically, an LQG scheme is designed
for a specified LTI system [10, Ch. 4.1], and it is not clear
how to specify an LTI system to achieve a target finite horizon
performance. Therefore, our approach in this section is to
adapt the LQG scheme of [9] to the transmission of Gaussian
sources over GBCFs and analyze the finite horizon behavior
of the adapted schemes. We investigate how to initialize the
new JSCC-LQG scheme in order to minimize the number of
channel symbols required to achieve a target MSE pair. For
the symmetric setting, we introduce a new initialization by
scaling the transmitted signals, which results in a significantly
better finite horizon performance without degrading the infinite
horizon performance. In particular, we show that the new
proposed scaling technique: 1) Optimally exploits the available
transmission power subject to the per-symbol average power
constraint in (5), 2) Minimizes the distance between the
covariance matrix of the JSCC-LQG initial state and the
covariance matrix of its steady-state (subject to the per-symbol
average power constraint in (5)), and 3) Achieves the same
MSE exponents as in [9]. Thus, the JSCC-LQG scheme derived
in this work is time-invariant, achieves the best known infinite
horizon performance, and achieves a very good performance
in the finite horizon regime.



9

Fig. 3: Control system modeling of transmission over the GBCF. The states
of the system are denoted by Uk = [U1,k, U1,k]T . The controller generates
a scalar signal Xk , and the noisy channel outputs Y1,k and Y2,k , represented
as the vector Yk = [Y1,k, Y1,k]T , are fed back to the system with a unit
delay. (Ŝ1,k, Ŝ2,k) are the reconstructions of (S1, S2) after the k’th channel
use.

A. The LQG scheme for JSCC

In this section we investigate the application of the LQG
scheme of [9] to the transmission of a pair of Gaussian sources
over the GBCF. The JSCC-LQG scheme is derived by mapping
the FB control problem into a linear code for the GBCF. The
asymptotic performance of this scheme is determined by the
eigenvalues of the open-loop matrix of a linear system with
unit memory representing the encoder. These eigenvalues are
determined by the minimal power required to stabilize the
system using the FB. In the finite horizon regime, the JSCC-
LQG scheme is terminated after K channel uses when the
target MSE pair is met.

Consider a two-dimensional unstable dynamical system,
depicted in Fig. 3, which is stabilized by a controller observing
the entire system state vector, Uk=[U1,k, U2,k]T . At time k
the controller outputs a scalar signal Xk, which is received
after being corrupted by additive Gaussian noises. Recall that
Yk is the noisy received control signal at the output of the

channel at time k, stated in (2), and let A =

[
a1 0
0 a2

]
with

ai ∈ R, a1 6= a2, |ai| > 1.7 Recall (13) in which F is a
deterministic matrix, and W ∼ N (0,Qw) independent of S.
The source encoding is incorporated into the control problem
by generating the initial as be a function of the source samples:

U1 = FS + W. (17)

The system state vector at time k, Uk, recursively evolves via:

Uk = AUk−1 + Yk−1, k = 2, 3, . . . ,K. (18)

Encoding: In the communications problem that correspond
to the control problem, the encoder is the combination of
the system stated in (18) and the controller, see Fig. 3. At
each time index, the encoder recursively computes Uk, and
transmits Xk obtained from Uk using the linear controller pre-
sented in [9, Lemma 4]: Xk = −CTUk, where C = [c1, c2]T .
The vector C is given by C = (BTGB + 1)−1AGTB, where
B is defined above (2), and G is the unique positive-definite
solution of the discrete algebraic Riccati equation (DARE) [9,
Eq. (22)]:

G = ATGA− ATGB(BTGB + 1)−1BTGA, (19)

7Note that if a1 = a2 then the pair (A,B) is not controllable, see [10,
Def. 4.1.1 and Prop. 4.4.1].

such that the magnitudes of both eigenvalues of the matrix
A − BCT are smaller than 1. It follows from [9, Lemma 4]
that, as k →∞, the covariance matrix of Uk, Qu,k, converges
to the solution of the discrete algebraic Lyapunov equation [9,
Eq. (23)]:

Qu = (A− BCT )Qu(A− BCT )T + Qz, (20)

where the solution of (20) is restricted to be a positive
semidefinite matrix. Finally, in [9, Lemma 4] the matrix A
is obtained from the minimum asymptotic average power via:
P (A,Qz) = CTQuC = trace(GQz), see [9, Eq. (24)].

The JSCC-LQG scheme described above can be readily
stated within the class of linear and memoryless schemes
defined in Subsection II-C: The encoder state update for
the JSCC-LQG scheme stated in (18) exactly follows the
relationship in (7), while the transmitted signal is given by
Xk = TTkUk with TTk = −CT .

Decoding: The work [9] considered U1 generated with F =
I and W = 0 in (17), and used the so-called “zero trajectory”
(ZT) detector. This detector recursively estimates Ui,k via [9,
Eq. (18)]:

Ûi,1 = 0, Ûi,k = aiÛi,k−1 + Yi,k−1, (21)

for k = 2, 3, . . . ,K+1. Then, it estimates Si from Ûi,k+1 via
[9, Subsec. IV.A]:

Ŝi,k = −a−ki Ûi,k+1, (22)

which results in the MSE [9, proof of Lemma 3]:

E{(Si − Ŝi,k)2} = a−2k
i E{U2

i,k+1}. (23)

Remark 6. Note that in contrast to the JSCC-OL scheme,
in the JSCC-LQG scheme the encoder and the decoders
are decoupled. More precisely, in the JSCC-OL scheme the
transmitted signal at time k is a linear combination of the
estimation errors at time k−1 On the other hand, in the JSCC-
LQG scheme the transmitted signal at time k, Xk, depends
only on Uk, and is not a function of Ûi,k or Ŝi,k.

B. Initialization of the JSCC-LQG Scheme

Similarly to Subsection III-B, optimizing over all determin-
istic matrices F and over all correlation matrices Qw in (17)
is computationally very intensive. An alternative approach is
to select F and W, such that Qu,1, the covariance matrix of
U1, will be equal to Qu, which is the solution of (20). The
motivation for this approach is two-fold:

1) The LQG has the best known infinite horizon perfor-
mance, i.e, MSE exponent, thus, it is preferable that the
system will achieve this MSE exponent for every k.

2) When Qu,1 = Qu then Pk = P,∀k. Therefore, this
initialization leads to optimal utilization of the available
transmission power.

To rigorously analyze the impact of JSCC-LQG initializa-
tion via (17) on the finite horizon performance, we define
a distance between two correlation matrices, e.g., Qu,1 and
Qu, by D(Qu,Qu,1) = ||Qu − Qu,1||F, where ||Q||F =
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√∑2
i=1

∑2
j=1([Q]i,j)2 is the Frobenius matrix norm, see,

e.g., [7, Sec. IV.A].
Note that the initialization objectives in the finite horizon

regime for the JSCC-LQG and for the JSCC-OL schemes are
fundamentally different: The JSCC-OL initialization aims at
increasing |ρ0|, while the JSCC-LQG initialization aims at
minimizing D(Qu,Qu,1) via properly selecting F and W. In
fact, in some cases, e.g., when ρ∗ < |ρs|, increasing |ρ0|
increases the distance between the initial and steady states.

In the next two subsections we consider the special case
of initialization with F = I and W = 0: In Subsection
IV-C we present a new MMSE decoder which achieves MSE
pairs lower than the MSE pairs achieved by the ZT decoder
presented in [9], and in Subsection IV-D we analyze the
finite horizon performance of the JSCC-LQG scheme with this
initialization in the general setting. The JSCC-LQG with the
general initialization U1 = FS + W is studied in Subsection
IV-E, in which we focus on the symmetric setting.

C. An Improved JSCC-LQG Decoder

In this subsection we consider initialization with F = I and
W = 0. Note that the decoding rule (22) is not necessarily
optimal in the instantaneous MMSE sense. Let M , A−BCT
denote the closed-loop matrix, and let Qu,k , E

{
UkU

T
k

}
denote the state covariance matrix at time k, with Qu,1 = Qs.
In (B.1) we show that the closed-loop dynamics of the system
is given by:

Uk = (A− BCT )Uk−1 + Zk−1,

while in (B.7) we show that Qu,k is given by:

E
{
UkU

T
k

}
= Mk−1Qs(M

T )k−1 +

k−2∑
l=0

MlQz(M
T )l.

The MMSE estimator of Si, based on the observation Ûi,k+1

in (21) is stated in the following theorem:

Theorem 2. The MMSE estimator of Si, i = 1, 2, at time k,
based on the observation Ûi,k+1 computed via (21), is:

Ŝi,k =
[MkQs]i,i − σ2

i a
k
i

[Qu,k+1]i,i − 2aki [MkQs]i,i + σ2
i a

2k
i

Ûi,k+1. (24)

Furthermore, the MSE of Ŝi,k is given by:

E
{

(Si−Ŝi,k)2
}

=
σ2
i [Qu,k+1]i,i−

(
[MkQs]i,i

)2
[Qu,k+1]i,i−2aki [MkQs]i,i+σ2

i a
2k
i

, (25)

and as k →∞ the MSE expression in (25) coincides with the
MSE of the decoder in (22).

Proof. The proof is provided in Appendix B-A.

Remark 7. Since the estimator in (24) is the optimal estimator
of Si based on the observation Ûi,k+1, it clearly achieves
an MSE value smaller than or equal to that achieved by the
estimator in (22). In particular, (24) outperforms (22) in the
finite horizon regime, i.e., for large MSEs, see Fig. 6.

D. Finite Horizon Analysis of JSCC-LQG

Next, we study the JSCC-LQG scheme with the decoder
(24) in the finite horizon regime. We begin with the average
instantaneous transmission power which we denote by Pk. In
contrast to the JSCC-OL scheme in which Pk = P,∀k, in the
JSCC-LQG scheme Pk varies with k. While the LQG theory
implies that Pk → P asymptotically as k → ∞, it does not
constrain Pk for any finite k, hence Pk may be larger than
P , thus, violating the per-symbol average power constraint in
(5). This implies that for specific P, σ2

1 and σ2
2 , there are pairs

of sources which cannot be transmitted using the JSCC-LQG
scheme with the initialization U1 = S, i.e., setting F = I
and W = 0 in (17). In the following subsection, we present
a sufficient condition under which the JSCC-LQG scheme,
initialized with U1 = S, satisfies (5). For the symmetric
setting we use the same approach to find a necessary and
sufficient condition, see Subsection IV-E.

1) A Sufficient Condition for Satisfying the Average Per-
Symbol Power Constraint: Let [λ1, λ2]T denote the eigenval-

ues of the closed-loop matrix M, and let V =

[
v1 v2

v3 v4

]
be

a matrix whose columns are the corresponding eigenvectors
of M. Recall that C = [c1, c2]T and for ς1, ς2 ≥ 0 and
ρ ∈ (−1, 1), define:

ω1(ς1, ς2, ρ),
c1(ς1v1v4−ρς2v1v2)+c2(ς1v3v4−ρς2v2v3)

det(V)
(26a)

ω2(ς1, ς2, ρ),
c1(ρς2v1v2−ς1v2v3)+c2(ρς2v1v4−ς1v3v4)

det(V)
(26b)

ω3(ς1, ς2, ρ),
−ς2

√
1−ρ2(c1v1v2+c2v2v3)

det(V)
(26c)

ω4(ς1, ς2, ρ),
ς2
√

1−ρ2(c1v1v2+c2v1v4)

det(V)
. (26d)

Further define:

α1(ς1, ς2, ρ) , ω2
1(ς1, ς2, ρ) + ω2

3(ς1, ς2, ρ) (27a)

α2(ς1, ς2, ρ) , ω2
2(ς1, ς2, ρ) + ω2

4(ς1, ς2, ρ) (27b)

α3(ς1, ς2, ρ) , 2ω1(ς1, ς2, ρ)ω2(ς1, ς2, ρ)

+ 2ω3(ς1, ς2, ρ)ω4(ς1, ς2, ρ), (27c)

and finally define:

η1(ς1, ς2, ρ) ,
α1(ς1, ς2, ρ)

1− λ2
1

(28a)

η2(ς1, ς2, ρ) ,
α2(ς1, ς2, ρ)

1− λ2
2

(28b)

η3(ς1, ς2, ρ) ,
α3(ς1, ς2, ρ)

1− λ1λ2
. (28c)

The following proposition characterizes source pairs for which
the per-symbol average power constraint in (5) is satisfied
when the JSCC-LQG scheme is used:
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Kub
LQG =

max


[
log
(
ϑ1

D1

)]+
2 log |a1|

,

[
log
(
ϑ2

D2

)]+
2 log |a2|


 (30a)

K lb
LQG =

max


[
log

(
[σ2

1σ
2
z,1−β

2
1−D1σ

2
z,1]

+

(2β1+σ2
1)D1

)]+

2 log |a1|
,

[
log

(
[σ2

2σ
2
z,2−β

2
2−D2σ

2
z,2]

+

(2β2+σ2
2)D2

)]+

2 log |a2|


 . (30b)

Proposition 2. If the following condition holds for every k =
1, 2, 3, . . . :

λ
2(k−1)
1

(
α1(σ1, σ2, ρs)− η1(σz,1, σz,2, ρz)

)
+ λ

2(k−1)
2

(
α2(σ1, σ2, ρs)− η2(σz,1, σz,2, ρz)

)
+ (λ1λ2)k−1

(
α3(σ1, σ2, ρs)− η3(σz,1, σz,2, ρz)

)
≤ 0,

(29)

then the JSCC-LQG scheme satisfies the per-symbol average
power constraint in (5).

Proof. The proof is provided in Appendix B-B.

Remark 8. Note that the sufficient condition in Prop. 2 is
implicit. Yet, Prop. 2 can be used to formulate explicit suffi-
cient conditions (on the sources) for the JSCC-LQG scheme
to satisfy the per-symbol average power constraint in (5). For
example, if αj(σ1, σ2, ρs) < ηj(σz,1, σz,2, ρz), j = 1, 2, 3, and
sgn(λ1λ2) = 1, then Pk ≤ P,∀k.

2) Analysis of the Termination Time: Let KLQG denote
the minimal number of channel uses required to achieve an
average MSE pair (D1, D2) with the JSCC-LQG scheme using
the decoder (24). In this subsection we present upper and lower
bounds on KLQG. An explicit characterization of KLQG for
the symmetric setting is provided in Thm. 5, see Subsection
IV-E3.8

We begin with the following definitions:

τ1 ,
σ1 (|v1v4λ1|+ |v2v3λ2|) + |ρsσ2v1v2|(|λ2|+ |λ1|)

|det(V)|

τ2 ,
σ2

√
1− ρ2

s (|v1v2|(|λ2|+ |λ1|))
|det(V)|

τ3 ,
|σ1v3v4|(|λ1|+ |λ2|) + |ρsσ2| (|v1v4λ2|+ |v2v3λ1|)

|det(V)|

τ4 ,
σ2

√
1− ρ2

s (|v1v4λ2|+ |v2v3λ1|)
|det(V)|

ϑ1 , τ2
1 + τ2

2 + [Qu]1,1

ϑ2 , τ2
3 + τ2

4 + [Qu]2,2

β1 ,
σ2

1 (|v1v4λ1|+ |v2v3λ2|) + |ρsσ1σ2v1v2|(|λ2|+ |λ1|)
|det(V)|

β2 ,
σ2

2 (|v1v2λ2|+ |v2v3λ1|) + |ρsσ1σ2v3v4|(|λ2|+ |λ1|)
|det(V)|

,

8Note that using the approach of Thm. 5 for the general setting results only
in an implicit characterization of KLQG.

where Qu is the unique positive semidefinite solution of (20).
The following theorem states upper and lower bounds on
KLQG:

Theorem 3. The JSCC-LQG scheme with the MMSE decoder
in (24) and target MSE values D1 and D2 terminates within
time K lb

LQG ≤ KLQG ≤ Kub
LQG, where Kub

LQG and K lb
LQG are

given in (30) at the top if the page.

Proof. The proof is provided in Appendix B-C.

E. Finite Horizon Analysis of JSCC-LQG for the Symmetric
GBCF

In this subsection we study the JSCC-LQG scheme in the
symmetric setting, for different combinations of initialization
parameters F and W, in (17). We first consider initialization
based on the assignment F =

√
γ · I, γ > 0, and W = 0, for

which we explicitly derive the value of γ, which minimizes
the MSE subject to the per-symbol average power constraint
(5) for all time indices k. We show that this optimal γ
also minimizes the distance D(Qu,Qu,1) among all scaling
coefficients which satisfy (5).

Next, we consider the general initialization framework of
(17). We show that when W 6= 0, or when the off-diagonal
elements of F are non-zero, then JSCC-LQG has an MSE floor.
A numerical comparison of the different initialization methods
indicates that the lowest MSEs are achieved when the optimal
scaling U1 =

√
γS is applied.

Lastly, for U1 =
√
γS, we present an explicit charac-

terization of KLQG in terms of the roots of a quadratic
polynomial. Note that since a1 6= a2 (see Subsection IV-A) in
the symmetric setting we have a1 = −a2, and the components
of the eigenvectors of the matrix M satisfy v1 = v4, and
v2 = v3.

1) Initialization to Satisfy the Per-Symbol Average Power
Constraint: In this subsection we study initialization based on
the parameters F =

√
γ·I and W = 0. To find the scaling value

γ which minimizes the MSE subject to the per symbol average
power constraint (5), we first derive necessary and sufficient
conditions for (5) to be satisfied for the JSCC-LQG scheme
when γ = 1. Then, from these conditions, we find the maximal
γ for which (5) is satisfied for all time indices k. Finally, we
show that this maximal γ simultaneously minimizes the MSE
and the distance D(Qu,Qu,1), for U1 =

√
γS, subject to (5).

We first define the following quantities:
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µ0 = 2c21σ
2
s(1− ρs) (31a)

µ1 =
2c21σ

2
z(1− ρz + (1 + ρz)a

2
1)

1− λ4
1

(31b)

µ2 = 2c21σ
2
s(1 + ρs)a

4
1 (31c)

µ3 =
2c21σ

2
z((1− ρz)λ2

1 + (1 + ρz)a
4
1)

1− λ4
1

. (31d)

Necessary and sufficient conditions for the power constraint to
be satisfied for the JSCC-LQG scheme, with the initialization
in (18), are stated in the following theorem.

Theorem 4. In the symmetric GBCF, the JSCC-LQG scheme
satisfies the per-symbol average power constraint (5) if and
only if µ0 ≤ µ1 and µ2 ≤ µ3.

Proof outline. In Appendix C-A we show that:

Pk =

{
P + (µ0 − µ1)λ

2(k−1)
1 , k is odd,

P + (µ2 − µ3)λ
2(k−1)
1 , k is even.

(32)

Since |λ1| < 1, it follows that (5) is satisfied if and only if
µ0 ≤ µ1 and µ2 ≤ µ3.

From Eqn. (32) and from the fact that |λ1| < 1, it follows
that if (5) is satisfied for some odd k, then it is satisfied for
every odd k. The same observation holds for even values of k.
Thus, using (32) we can characterize the range of γ for which
(5) is satisfied. We further note that scaling the sources at
the transmitter can be beneficial even if (5) is satisfied for the
initialization U1 = S. As we show next, by scaling the sources
we obtain that Pk is equal to P in at least (approximately) half
of the time indices. Consequently, the available transmission
power is used more efficiently. In the following proposition
we characterize the scaling factor which minimizes the MSE,
for the decoder (24), while satisfying the constraint (5). Before
stating the proposition we define ν to be:

ν = min

{
σ2
z(1− ρz + (1 + ρz)a

2
1)

(1− λ4
1)(1− ρs)

,

σ2
z((1− ρz)λ2

1 + (1 + ρz)a
4
1)

(1− λ4
1)(1 + ρs)a4

1

}
, (33)

and let Uk(γ) denote the system state vector at time index k,
when U1 =

√
γ · S, for some γ > 0. In a similar manner we

also define Ûi,k(γ) and Qu,k(γ).

Proposition 3. The optimal scaling factor, in the MMSE sense,
is
√
γ =

√
ν
σ2
s

. Furthermore, when U1 =
√
γ · S, the MMSE

estimator of Si, i = 1, 2, at time k, based on the observation
Ûi,k+1(γ) is:

Ŝi,k =

√
γ
(
[MkQs]i,i − σ2

sa
k
i

)
[Qu,k+1(γ)]i,i − 2γaki [MkQs]i,i + γσ2

sa
2k
i

Ûi,k+1(γ),

(34)

and the MSE of Ŝi,k is given by:

E
{

(Si − Ŝi,k)2
}

=
σ2
s [Qu,k+1(γ)]i,i − γ

(
[MkQs]i,i

)2
[Qu,k+1(γ)]i,i − 2γaki [MkQs]i,i + γσ2

sa
2k
i

. (35)

Proof outline. First, we show that (33) constitutes an upper
bound on the variance of the sources transmitted via a JSCC-
LQG scheme with the initialization U1 = S, which also
satisfies (5). Explicitly writing the conditions of Thm. 4, i.e.,
µ0 ≤ µ1 and µ2 ≤ µ3, we obtain:

σ2
s(1− ρs) ≤

σ2
z(1− ρz + (1 + ρz)a

2
1)

1− λ4
1

,

σ2
s(1 + ρs)a

4
1 ≤

σ2
z((1− ρz)λ2

1 + (1 + ρz)a
4
1)

1− λ4
1

.

This implies that:

σ2
s ≤ min

{
σ2
z(1− ρz + (1 + ρz)a

2
1)

(1− λ4
1)(1− ρs)

,

σ2
z((1− ρz)λ2

1 + (1 + ρz)a
4
1)

(1− λ4
1)(1 + ρs)a4

1

}
.

Therefore, the maximal possible scaling factor which satisfies
(5) is

√
ν
σ2
s

. In Appendix C-B we also derive the MMSE
estimator for scaled transmission, stated in (34), and obtain
its MSE, given by (35). Furthermore, we show that scaling by√

ν
σ2
s

minimizes the MSE. The detailed proof is provided in
Appendix C-B.

Remark 9. As shown in the proof of Prop. 3, the MSE
decreases when the scaling factor increases. Therefore, the
optimal scaling factor is determined by the per-symbol average
power constraint. This implies that when the optimal scaling
factor is used, at least one of the following statements hold:
1) Pk = P for every odd k, and Pk ≤ P for every even k; 2)
Pk = P for every even k, and Pk ≤ P for every odd k.

Next, we demonstrate the results of Thm. 4 and Prop. 3.

Example 2. Consider the transmission of a pair of Gaussian
sources with variance σ2

s and correlation coefficient ρs = 0.4,
over a GBCF with σ2

z = 1.5 and ρz = 0.3. We further set
P = 1. Fig. (4a) depicts Pk vs. k for the JSCC-LQG scheme
without scaling for σ2

s = 1 and σ2
s = 5, and for the JSCC-LQG

scheme with optimal scaling factor specified by Prop. 3. As
ρs = 0.4, it follows that the optimal scaling factor for σ2

s = 1
is
√
γ = 2.0227, while the optimal scaling factor for σ2

s = 5
is
√
γ = 0.9046. In both cases Pk is the same, illustrated

by the blue solid line in Fig. (4a). It can be observed that
both the non-scaled JSCC-LQG scheme with σ2

s = 1 and the
scaled JSCC-LQG scheme satisfy (5); yet, the scaled scheme
uses the available power more efficiently. On the other hand,
when σ2

s = 5, then the non-scaled JSCC-LQG scheme violates
the per-symbol average power constraint (5). It can further
be observed that in the scaled scheme, Pk = P for all even
values of k, as stated in Remark 9. Finally, Fig. 4b illustrates
ν, computed using (33), as a function of ρs. Following the
result of Prop. 3, in order to maximize the MSE, one should
use ν values that lie on the boundary of the shaded area in
Fig. 4b.

The following proposition states that the scaling presented
in Prop. 3 also minimizes the distance D(Qu,Qu,1) among all
scaling coefficients which satisfy (5).
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(b)
Fig. 4: Satisfying the per-symbol average power constraint for σ2

s = 1, ρs = 0.4, ρz = 0.3, σ2
z = 1.5 and P = 1. (a) Pk vs. k for scaled and non-scaled

JSCC-LQG schemes. (b) ν as a function of ρs, see (33).

Proposition 4. Let γ > 0 and write the solution of (20), Qu,

as Qu = σ2
u

[
1 ρu
ρu 1

]
. Under the average per-symbol power

constraint (5), the γ which minimizes the distance D(Qu, γQs)
is given by γ = ν

σ2
s

, where ν is given in (33). Moreover,
the scaling which minimizes D(Qu, γQs), regardless of (5), is
given by:

γ∗ =
σ2
u(1 + ρuρs)

σ2
s(1 + ρ2

s)
.

Proof. The proof is provided in Appendix C-C.

Clearly, if ρs 6= ρu, then D(Qu, γQs) > 0,∀γ. Therefore,
in order to achieve a distance smaller than D(Qu,

ν
σ2
s
Qs), it

is necessary to either add noise or rotate the sources, which
is facilitated in the general initialization (17). In the next
subsection we discuss two special instances of the general
initialization.

2) Investigation of the General Initialization via (17): We
first consider initialization via scaling and noise addition:

Scaling and noise addition: Let F ,
√
ξ0

[
1 0
0 1

]
, ξ0 >

0, and Qw , σ2
w

[
1 ρw
ρw 1

]
. Recall that the objective of

the initialization in the JSCC-LQG scheme is to minimize
D(Qu,Qu,1). Since S and W are independent, Qu,1 = Qu
is achieved by setting:

Qw =

[
σ2
u − ξ0σ2

s ρuσ
2
u − ξ0ρsσ2

s

ρuσ
2
u − ξ0ρsσ2

s σ2
u − ξ0σ2

s

]
. (36)

As Qw is a covariance matrix, its eigenvalues must be non-
negative. Thus, by explicitly expressing the eigenvalues using
σ2
u, ρu, σ

2
s , and ρs, we obtain that ξ0 must lie in the following

range:

0 < ξ0 ≤
σ2
u

σ2
s

min

{
1 + ρu
1 + ρs

,
1− ρu
1− ρs

}
.

From (36) it directly follows that increasing ξ0 increases
the component of the sources, i.e., FS, in U1, and de-
creases the noise component W. As our objective is to

convey S, we set ξ0 =
σ2
u

σ2
s

min{ 1+ρu
1+ρs

, 1−ρu
1−ρs }. Letting ξ1 ,

min
{

1+ρu
1+ρs

, 1−ρu
1−ρs

}
≤ 1, the expression for Qw in (36) can be

written as:

Qw = σ2
u

[
1− ξ1 ρu − ξ1ρs

ρu − ξ1ρs 1− ξ1

]
.

The MMSE estimator and its associated MSE, for the
initialization U1 =

√
ξ0 · S + W can be found by following

similar steps to those leading to (34)–(35). In particular, we
let Uk(U1) denote the system state vector at time index k,
for a given initial state U1, and let Ûk(U1) be the estimate
of U1 at time k. The MMSE estimator for Si at time k can
be expressed as:

Ŝi,k=

√
ξ0
(
[MkQs]i,i−σ2

sa
k
i

)
[Qu,k+1(U1)]i,i−2ξ0aki [MkQs]i,i+σ2

ua
2k
i

Ûi,k+1(U1),

and the achievable MSE is given by:

E
{

(Si − Ŝi,k)2
}

=
σ2
s [Qu,k+1(U1)]i,i − ξ0

(
[MkQs]i,i

)2
+ σ2

sσ
2
wa

2k
i

[Qu,k+1(U1)]i,i − 2ξ0aki [MkQs]i,i + σ2
ua

2k
i

.

Therefore, the MSE in the infinite horizon is given by:

lim
k→∞

E
{

(Si − Ŝi,k)2
}

=
σ2
sσ

2
w

σ2
u

= σ2
s(1− ξ1).

Comparing the asymptotic MSE obtained with the initializa-
tion U1 =

√
ξ0S + W to the asymptotic MSE obtained with

the initialization of Prop. 3 (for which limk→∞E{(Si−Ŝi,k)2}
= 0), we observe that adding the noise W results in an
MSE floor. Note that while 1 − ξ1 reflects the difference
between the initial state and the JSCC-LQG steady state,
it is independent of σ2

s and σ2
u, and therefore it does not

reflect the finite horizon performance of JSCC-LQG with the
initialization U1 =

√
ξ0S+W . Thus, 1−ξ1 can be interpreted

only as a measure of the MSE floor due to the addition of the
noise W in U1.

Extensive numerical study indicates that using noise addi-
tion to generate U1 results in higher MSEs than those achieved
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Fig. 5: MSE vs. number of channel uses for different values of ρs. σ2
s =

1, ρz = 0.3, σ2
z = 1, and P = 0.5.

with the optimal scaling presented in Prop. 3. On the other
hand, this initialization can achieve a lower MSE compared to
setting U1 = S.

Example 3. Fig. 5 depicts MSE vs. K for three different values
of ρs, ρs ∈ {−0.1, 0.4, 0.9}, for three different initialization
approaches: U1 =

√
ξ0S + W, U1 = S, and U1 =

√
γS,

where γ is the optimal scaling value specified in Prop. 3. Here,
σ2
s = 1, ρz = 0.3, σ2

z = 1, P = 0.5, and Qu is computed to
be:

Qu ≈ 8.77299

[
1 −0.1377

−0.1377 1

]
.

It can be observed that as ρs is closer to ρu, the MSE
floor becomes smaller. It can further be observed that for
high target MSEs, the initialization U1 =

√
ξ0S + W is

superior compared to U1 = S. On the other hand, for all
three values of ρs, initialization via U1 =

√
γS achieves the

lowest MSEs for all values of K. These performance gaps are
also reflected in the distances D(Qu,Qu,1) for the different
initializations: First, note that for all considered values of ρs,
D(Qu,Qs) ≈ 11.25, and, indeed, the respective MSE curves
are indistinguishable. For ρs = −0.1, D(Qu, γQs) = 0.735,
while for ρs = 0.9, D(Qu, γQs) = 9.582, which explains the
gap in performance in favor of the lower ρs. Finally, we note
that while the distance in the case of U1 =

√
ξ0S+W is zero

by construction, the addition of noise increases the MSE which
results in an inferior performance compared to initializing via
U1 =

√
γS.

Remark 10. When the encoder and the decoders share a
common source of randomness [38], then the noise W can
be removed, thus, eliminating the MSE floor observed in
Example 3.

Next, we briefly discuss generating U1 from S via multi-
plication by a non-diagonal F.

Generating U1 via Multiplying S by F: Fixing W = 0,
the matrix F with which we achieve Qu,1 = Qu can be found
by applying the Cholesky decomposition to Qs and Qu: Qs =
LsL

T
s ,Qu = LuL

T
u . The matrix F is given by F = LuL

−1
s . Since

in this case F is lower triangular, U1,1 is a scaled version of
S1, while U2,1 is a linear combination of both S1 and S2. Now,
recall that in the LQG scheme the state is first estimated via
(21), and then, the sources are estimated from the estimated
states via, for example, (34). With this decoding sequence, as
U1,1 is a scaled version of S1, Rx1 first estimates U1,1, and
then estimates S1 from U1,k. In fact, in this case S1 enjoys the
optimal rate of decrease of the MSE as the covariance matrix
of the initial state is identical to the steady state covariance
matrix. However, at Rx2, since U2,1 is a linear combination
of S1 and S2 and since S1 is not known and not required at
Rx2, the MSE for estimating S2 from U2,k is generally higher
than the MSE achieved in estimating S2 out of U2,k generated
when U2,1 does not depend in S1. Thus, setting Qu,1 = Qu
via multiplying by F improves the performance at one receiver
while degrading the performance at the other receiver.

Additionally, note that letting Rx2 track (estimate) U1,1, and
then use it to estimate S1 at Rx2, results in a sub-optimal
estimate of U1,1 at Rx2 since U1,k is updated based only on
Y1,k−1 and U1,k−1. Therefore, as Rx2 does not observe Y1,k−1,
it cannot efficiently track it.

3) An Explicit Characterization of the Termination Time
KLQG: Lastly, we explicitly characterize KLQG for the scaled
JSCC-LQG, i.e., with U1 =

√
γ · S. We first define the

following quantities:

Φ(ς, ρ) ,
ς2
((
v2

1 +v2
2−2ρv1v2

)2
+4(1−ρ2)v2

1v
2
2

)
det2(V)

(37a)

Ψ0 ,
σ2
z + λ2

1Φ(σz, ρz)

1− λ4
1

, (37b)

Ψ1 ,
Φ(σz, ρz) + σ2

zλ
2
1

1− λ4
1

. (37c)

Γs ,
σ2
s(v2

1 + v2
2 − 2ρsv1v2)

v2
1 − v2

2

(37d)

Υ0 , Ψ0(D − σ2
s)−Dγσ2

s (37e)

Υ1 , Ψ0(σ2
s −D) + 2Dγσ2

s (37f)

Υ2 , (γΦ(σs, ρs)−Ψ1)(σ2
s −D)− γΓ2

s (37g)

Υ3 , Ψ0(σ2
s −D) + 2DγΓs, (37h)

Furthermore, let y be a positive integer, and define the func-
tions f (e)(y) , 2 ·

⌈
y
2

⌉
, and f (o)(y) , 2 ·

⌈
y−1

2

⌉
+ 1.9 KLQG is

explicitly characterized in the following theorem:

Theorem 5. Let
(
x(e)

1 , x
(e)
2

)
and

(
x(o)

1 , x
(o)
2

)
denote the roots

of the polynomials P (e)(x) , Υ0x
2 + Υ1x − Dγσ2

s , and
P (o)(x) , Υ2x

2 + Υ3x − Dγσ2
s , respectively. Furthermore,

define:

x(e)
0 ,

{
min{x(e)

1 , x
(e)
2 },

−Υ2
1

4Dγσ2
s
≤ Υ0 < 0

a−4, otherwise.

9f (e)(y) is “round up to the nearest even integer”, while f (o)(y) is “round
up to the nearest odd integer”.
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and

x(o)
0 ,



a−2
1 , Υ2 <

−Υ2
3

4D1γσ2
s
,

min
{
x(o)

1 , x
(o)
2

}
,

−Υ2
3

4D1γσ2
s
≤ Υ2 < 0,

Dγσ2
s

Υ3
, Υ2 = 0,

max
{
x(o)

1 , x
(o)
2

}
, otherwise.

Then, KLQG is given by:

KLQG = min

{
f (e)

(⌈
− log x(e)

0

2 log |a1|

⌉)
,

f (o)

(⌈
− log x(o)

0

2 log |a1|

⌉)}
. (38)

Proof outline. The detailed proof is provided in Appendix
C-D. We first note that the result of Thm. 5 holds if γ is
replaced by any arbitrary constant, regardless of whether (5)
is satisfied or not. The proof consists of the following steps:

1) From (35) we conclude that the decoder terminates when:

σ2
s [Qu,k+1(γ)]i,i − γ

(
[MkQs]i,i

)2
[Qu,k+1(γ)]i,i − 2γaki [MkQs]i,i + γσ2

sa
2k
i

≤ D. (39)

Expressing [Qu,k+1(γ)]i,i and [MkQs]i,i in terms of
v1, v2, λ1, γ, and k, we observe that since λ1 = −λ2,
then a different analysis needs to be applied for even and
for odd values of k.

2) We let x = a−2k
1 , and recall that λ1 = 1

a1
(see [42,

Lemma 2.4]).
3) Using the definitions in step 2 we write (39) as a quadratic

polynomial in x. As even values and odd values of k
are analyzed separately, we use P (e)(x) to denote the
quadratic polynomial for even values of k, and P (o)(x)
to denote the quadratic polynomial for odd values of k.

4) For even values of k, we find the minimal k for which
P (e)(x) ≤ 0 (for odd values of k we find the minimal k
for which P (o)(x) ≤ 0). KLQG is therefore a function of
the roots of the polynomials P (e)(x) or P (o)(x).

5) Explicitly computing the roots of the polynomials P (e)(x)
and P (o)(x) we obtain (38).

Remark 11. Consider the expression for x(o)
0 . It can be ob-

served that if Υ2 ≥ −Υ2
3

4Dγσ2
s

and Υ2 6= 0, then x(o)
0 is one of two

real roots of P (o)(x), selected as follows: If −Υ2
3

4Dγσ2
s
≤ Υ2 < 0

then it is shown in Appendix C-D that P (o)(x) is concave with
two positive roots: one smaller then 1 and one larger than 1.
For this case, we choose the minimal root. On the other hand,
if 0 < Υ2 then it is shown in Appendix C-D that P (o)(x) is
convex with one negative root and one positive root smaller
than 1. For this case, we choose the maximal root. Note that
when Υ2 <

−Υ2
3

4Dγσ2
s

then P (o)(x) is concave and does not have
any real roots. This implies that the condition P (o)(x) ≤ 0
always holds, and the target MSE is obtained for every k.
Therefore, in this case we set x(o)

0 = a−2, which results in
KLQG = 1. Finally, when Υ2 = 0, then x(o)

0 is a solution of a
simple linear equation. For x(e)

0 we follow similar steps while
noting that Υ0 < 0. Hence, for even values of k we only need
to analyze the case of a concave polynomial.

Recall that both the JSCC-OL scheme considered in Section
III and the JSCC-LQG scheme studied in this section are linear
and memoryless JSCC transmission schemes, see Subsection
II-C. In the next section, we use DP to formulate a linear and
memoryless JSCC transmission scheme which outperforms
both JSCC-OL and JSCC-LQG in the symmetric setting.

V. LINEAR AND MEMORYLESS JSCC TRANSMISSION
SCHEME VIA DYNAMIC PROGRAMMING

A fundamental difference between the JSCC-OL and the
JSCC-LQG schemes discussed in Sections III and IV, recep-
tively, is the fact that the first is time-varying while the second
is time-invariant. Therefore, as stated in Subsection II-C, the
JSCC-OL scheme can better exploit the available power and
the correlation between the sources to achieve MSEs lower
than JSCC-LQG in the finite horizon regime for some GBCF
scenarios. On the other hand, the MSE exponent of the JSCC-
LQG scheme is larger than the MSE exponent of the JSCC-
OL scheme. Thus, for large enough number of channel uses,
the JSCC-LQG scheme achieves MSE lower than JSCC-OL.
As none of the two schemes, JSCC-OL and JSCC-LQG,
dominates the other in the finite horizon regime, we utilize the
the DP approach for solving finite horizon control problems
[10, Sec. 4.1] to derive the JSCC-DP scheme which achieves
MSE at least as low as the smallest MSE among the JSCC-OL
and JSCC-LQG schemes, for any a-priori fixed finite number
of channel uses.

A. Problem Formulation - Revisited

In this section we consider a complimentary problem to
the one formulated in Section II: Let DK denote the MSE
after K channel uses. Our objective in this section is to find
a linear and memoryless transmission scheme which, for a
given K, achieves the minimal MSE at each receiver, denoted
by DK,min.

In the following we adopt (most of) the notations used in
Sections II and III, and denote the estimation error at Rxi after
k transmissions by εi,k−1 = Ŝi,k−1−Si, i = 1, 2. As we focus
on linear and memoryless schemes, we let ε̂i,k−1 = bi,kYi,k
be the estimator of εi,k−1, and write εi,k as:

εi,k = (εi,k−1 − bi,kYi,k) , bi,k ∈ R, (40)

Similarly to (10): Ŝi,k = −
∑K
m=1 ε̂i,m−1. To simplify the

analysis, we limit our focus to the symmetric setting, set
|b1,k| = |b2,k|, and let bk , b1,k. Furthermore, following [7]
we let mk ∈ {1,−1} be a modulation coefficient. We now
have the following structure of Xk, the transmitted signal:

Xk
(a)
= dk−1 (ε1,k−1 +mk−1ε2,k−1)

(b)
= dk−1 ((ε1,k−2 − bk−1Y1,k−1)

+mk−1 (ε2,k−2 −mk−2bk−1Y2,k−1)) , (41)

where in (a) dk > 0 is a gain factor chosen to minimize DK

under the constraint Pk ≤ P ; in (b) we used b2,k = mk−1bk.
Next, similarly to Section III, we let αi,k , E{ε2i,k},

and note that since b2,k = mk−1bk, then α1,k = α2,k ,
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bk =


√

P (αk−1+mk−1rk−1)
2

ηk+θkmkmk−1

ηk(P+σ2
z)+θkmkmk−1(P+ρzσ2

z) , k = 1, 2, . . . ,K − 1√
P (αK−1+mK−1rK−1)

2(P+σ2
z)2 , k = K.

(48)

αk∀k. With this formulation, similarly to Section III, αk
is the MSE after k channel uses. Furthermore, we define
rk , E{ε1,kε2,k}. In Appendix D-B we show that the optimal
choice of dk for the proposed JSCC-DP scheme is such that
the instantaneous average transmission power obeys Pk = P .
This results in the following expression for dk:

dk =

√
P

2 (αk +mkrk)
. (42)

Finally, similarly to Section III, we initialize the scheme by
setting Ŝi,0 = 0, εi,0 = −Si, α0 = σ2

s and r0 = ρsσ
2
s .

Similarly to the JSCC-OL scheme, the JSCC-DP scheme
described above can be stated within the class of linear and
memoryless schemes defined in Subsection II-C: The encoder
state update for the JSCC-DP scheme can be written in the
from of (7) by setting Uk = [ε1,k−1, ε2,k−1]T , the transmitted
signal Xk is a linear function of the encoder states as given
in (41), and the state evolves via Ui,k+1 ≡ εi,k = εi,k−1 −
ε̂i,k−1, ε̂i,k−1 = bi,kYi,k.

Our objective is to minimize the MSE after K channel
uses, over all possible vectors of estimation coefficients b =
[b1, b2, . . . , bK ] ∈ RK , and over all possible vectors of mod-
ulation coefficients m = [m0,m1, . . . ,mK−1] ∈ {1,−1}K .
We denote this minimal MSE by DK,min:

DK,min = min
b∈RK ,m∈{1,−1}K

αK(m,b). (43)

As the joint minimization in (43) is computationally very
intensive, we define αK,min(m) to be the minimal achievable
MSE after K channel uses, given a specific modulation vector
m:

αK,min(m) = min
b∈RK

αK(m,b). (44)

We use DP to calculate αK,min(m), thereby arriving at the
optimization problem:

DK,min = min
m∈{1,−1}K

αK,min(m), (45)

which can be solved by searching over the possible 2K mod-
ulation vectors. In Remark 13 we comment on the practical
implementation of this search. In the sequel we refer to the
transmission scheme (40)–(41) which uses the optimal b and
m as the DP scheme. Next, we present the algorithm for
finding the minimizing b and the minimal αK,min(m) for a
given m.

B. The Minimizing b and the Minimal αK,min(m)

Let m be a given modulation vector. Then, from (1) and
(40)–(42) we obtain the following recursive expressions for

αk and rk (see Appendix D-A for the details):

αk = αk−1 + b2k · (P + σ2
z)

− bk
√

2P (αk−1 +mk−1rk−1) (46a)

rk = rk−1 + b2kmk−1 · (P + ρzσ
2
z)

− bkmk−1

√
2P (αk−1 +mk−1rk−1). (46b)

Observe that (αk−1, rk−1) can be treated as a state vari-
able, which, given bk and m, evolves deterministically at
time k. Thus, finding αK,min(m) can be cast as a DP with
state (αk−1, rk−1), actions bk, and cost function αK(m).
Note that with this formulation, given m, bk is a func-
tion of the constants P, σ2

z , ρz , and of (αk−1, rk−1). Hence,
the last action bK is the linear MMSE estimation coeffi-
cient for estimating ε1,K−1 from Y1,K .10 Finally, the DP
solution [10, Ch. 1.3] implies that αk can be written as
αk = ηk−1αk−1 +θk−1mk−1rk−1, where the sequences ηk
and θk, k = 1, 2, . . . ,K − 1, are obtained using backwards
recursion (in time). The minimizing b and the sequences ηk
and θk are given in the following theorem:

Theorem 6. For a fixed m, the sequences ηk and θk, k =
1, 2, . . . ,K− 1, are defined through the backwards recursions
(in time):

ηk−1 = ηk −
P (ηk + θkmkmk−1)

2

2(ηk(P +σ2
z)+θkmkmk−1(P +ρzσ2

z))
(47a)

θk−1 = θkmkmk−1

− P (ηk + θkmkmk−1)
2

2(ηk(P +σ2
z)+θkmkmk−1(P +ρzσ2

z))
, (47b)

where ηK−1 =
(

1− P
2(P+σ2

z)

)
and θK−1 = − P

2(P+σ2
z) .

Furthermore, the coefficients bk, k = 1, 2, . . . ,K, are given
by (48) at the top of the page. The corresponding MSE at
time K is the minimal MSE given m.

Proof. The proof is provided in Appendix D-A.

Thm. 6 can be used for calculating the optimal b for a given
m. The procedure is summarized in Alg. 1.

Remark 12. As we aim at minimizing αK(m,b) for a given
m, then bK is the MMSE estimation coefficient for estimating
ε1,K−1 from Y1,K , given m. It should be noted that for k < K,
setting the bk’s to be the MMSE estimation coefficients is not
necessarily optimal as the bk’s affect the future time indices.
With this observation, it is clear why the JSCC-OL scheme,
which applies the MMSE estimator for all k’s, is not optimal,
even among the memoryless linear transmission schemes.

Remark 13. Note that any choice of m will result in an upper
bound on DK,min. While finding DK,min requires searching

10Note that since ε1,k−1 and Y1,k are jointly Gaussian, then in this case
the linear MMSE is the full MMSE.
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Algorithm 1 Calculating the Minimizing b and αK,min(m)

1: Initialization: ηK−1←
(

1− P
2(P+σ2

z)

)
, θK−1←− P

2(P+σ2
z)

2: Compute the sequences ηk and θk using the backwards
recursions (47)

3: α0 ← σ2
s , r0 ← ρs

4: for k = 1, 2, . . . ,K do
5: Calculate bk as in (48)
6: Calculate αk and rk as in (46)
7: end for
8: Output: b, αK,min(m)

over all 2K possible m sequences, in practice, the search can
be shortened at the expense of possibly achieving a larger
MSE. One approach for reducing the search space is motivated
by the alternating sign of ρk in the JSCC-OL and JSCC-LQG
schemes, for for asymptotic large values of k, (see [9, Eqs.
(23), (36)–(37)]): We can enforce such a behavior one m by
setting m to be a sequence with alternating signs after some
L� K channel uses, thereby searching only over the first
possible 2L sequences. Numerical simulations show that when
the SNR is not too low, then this approach performs well, as
shown in the next section.
Remark 14. The results of [10, Ch. 1.3] imply that for the
symmetric setting in which the MSEs at both receivers are
restricted to be the same for every k, the JSCC-DP scheme,
described in Alg. 1, is optimal. Hence, for this scenario,
the MSE of the JSCC-DP scheme constitutes a lower bound
and a benchmark on the MSE of any linear and memoryless
scheme for the GBCF in the finite horizon regime. For the
general setting, e.g., if the MSEs are not required to be the
same at every k, the optimal transmission coefficients can be
obtained via a numerical search. Moreover, a simple (and non-
tight) lower bound on the MSE achieved by any linear and
memoryless scheme is obtained by treating each transmitter-
receiver pair as a Gaussian PtP channel with FB and using the
expression for the optimal MSE given in [37, Eq. (9)]. Using
this bounding technique, the MSE at Rxi, i = 1, 2, after k
channel uses is lower bounded by σ2

i

(P+σ2
z,i)

k .

VI. COMPARATIVE DISCUSSION AND NUMERICAL
EXAMPLES

In this section we compare the different JSCC transmis-
sion schemes, i.e., JSCC-OL, JSCC-LQG and JSCC-DP, and
demonstrate our results via numerical examples.

A. JSCC-DP Outperforms JSCC-OL and JSCC-LQG

The following proposition formally states that the JSCC-DP
scheme outperforms both the JSCC-OL and the JSCC-LQG
schemes:
Proposition 5. For any fixed number of channel uses K, the
JSCC-DP scheme achieves MSE at least as low as the MSEs
achieved by the JSCC-OL and JSCC-LQG schemes.

Proof outline. As stated in Remark 12, JSCC-DP outperforms
JSCC-OL. Now, recall that in Appendix D-B it is shown that

choosing Pk = P in the JSCC-DP scheme is optimal. Thus,
the JSCC-DP scheme is the optimal scheme (in the sense of
minimizing the MSE after K channel uses) among the class
of linear JSCC schemes which can be formulated via (40)–
(41), and satisfy the constraint Pk ≤ P . In Appendix E we
explicitly show that the JSCC-LQG scheme can be written in
the form of (40)–(41). Furthermore, we show that all three
JSCC-LQG decoders considered in this work, (22), (24), and
(35), have the same structure as the decoder applied by the
JSCC-DP scheme. We conclude that any JSCC-LQG scheme
which satisfies the per-symbol average power constraint (5) is
within the search range of the JSCC-DP scheme, and therefore
JSCC-DP achieves MSE at least as low as JSCC-LQG.

B. Numerical Examples

We first consider the low SNR regime as it facilitates
demonstrating different characteristics of the JSCC schemes
studied in the paper. Consider the transmission of a pair
of Gaussian sources with σ2

s = 1 and ρs = 0.4, over a
GBCF, with noise parameters σ2

z = 1.5, ρz = 0.3, and
power constraint P = 0.03. Fig. 6 depicts the MSE values
corresponding to (11), (23), (35), and the approximation of
(45) described in Remark 13 for L = 15 and L = 25. The
JSCC-OL scheme is initialized via εi,0 = −Si, while for
the JSCC-LQG scheme we consider two initializations: either
U1 = S or U1 =

√
γS with the optimal γ. The line marked by

ZT LQG refers to the original LQG scheme applied as in [9],
namely using a zero trajectory (ZT) decoder at the receivers
and using the initialization U1 = S. It can be observed that for
low values of K the new decoder (24) significantly improves
upon the ZT decoder, while for large values of K the two
decoders achieve approximately the same MSE. It can be
further observed from the figure that scaling can significantly
improve the performance in the low SNR regime.

Fig. 6 also shows the importance of the parameter L
in the approximated DP solution: When L = 15, JSCC-
OL outperforms JSCC-DP, while when L = 25, JSCC-DP
outperforms JSCC-OL. Our simulations indicate that for the
current scenario parameters the optimal m sequence starts
alternating for L ≥ 25, and setting L = 25 does not
result in any difference in the MSE compared to the exact
solution of (45).11 The numerical results also support the
conclusion of the discussion on lower bounding the MSE
in Subsection V-B as JSCC-DP with a proper value of L
outperforms both JSCC-OL and JSCC-LQG. Note that, while
the gap between JSCC-DP and JSCC-OL in Fig. 6 is very
small for the scenario parameters specified above, this gap
becomes larger as the total number of steps K increases. Fig.
6 also shows that, there is a relatively large gap between
JSCC-LQG and JSCC-OL, in particular when scaling is not
applied for JSCC-LQG. This gap follows from the fact that
the distance between the covariance matrix of the sources
and the covariance matrix of the JSCC-LQG steady state is
large (using the terminology of Subsection IV-B). Explicitly
calculating this distance we have D(Qu,Qs) ≈ 213.515, while

11This was verified for 25 ≤ K ≤ 30.
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Fig. 6: MSE vs. time for σ2
s = 1, ρs = 0.4, ρz = 0.3, σ2

z = 1.5 and
P = 0.03. mk is set to an alternating sequence starting from L = 25 (solid
line), and from L = 15 (dashed line).

the distance D(Qu, γQs) ≈ 88.77 is much smaller, and indeed,
a significant performance improvement is observed.

We next focus on the setting in which the sources and the
channel are almost matched. For this setting, following the
discussion in Subsection IV-B, it is expected that the JSCC-
LQG scheme will have a fast convergence. Furthermore, for
this scenario, due to this fast convergence, all the JSCC-LQG
versions should perform roughly the same. These expectations
are indeed confirmed in Fig. 7. The scenario parameters in Fig.
7 are σ2

z = 1, ρz = 0.5 and P = 0.2, which leads to σ2
u ≈

11.85 and ρu ≈ −0.067. We set σ2
s = 11.8 and ρs = −0.066,

which results in D(Qu,Qs) ≈ 0.0722. The scaled JSCC-LQG
decreases this distance to D(Qu, γQs) ≈ 0.015. It can be
observed that the plots corresponding to the different schemes
are almost indistinguishable. This follows as for small values
of K JSCC-OL is close to JSCC-DP, while the JSCC-LQG
versions are very close to their steady state, thus, no slow-start
is observed. Furthermore, the correlation between the sources
is very low which eliminates the most significant advantage
of JSCC-OL over JSCC-LQG. A closer look in the “zoom-
in” plots in Fig. 7 shows that for very small K’s JSCC-OL
achieves MSEs smaller than the JSCC-LQG schemes, yet, this
relationship changes when K increases. This is a consequence
of JSCC-LQG achieving a higher MSE exponent. It can also
be observed that, as expected, the performance improvement
of the JSCC-LQG scaling when Qs is close to Qu is minor,
and that JSCC-DP outperforms both JSCC-OL and JSCC-LQG
and has the same slope as the LQG schemes (the best known
MSE exponent).12 Finally, Figs. 6 and 7 indicate that while
the JSCC-LQG schemes have the best known MSE exponent,
their finite horizon performance can sometimes be hindered
by the issue of initialization.

The last numerical example shows the impact of having
a source of common randomness at the transmitter and the
receivers. Using this common randomness, the transmitter
can generate the initial state by transforming the pair of
sources without causing an MSE floor. However, as stated in
Subsection IV-B, the initializations of the JSCC-OL and the
JSCC-LQG schemes aims at achieving different objectives.
While in the JSCC-OL scheme it is desirable to have |ρ0| as

12In this setting we used L = 15.
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Fig. 7: MSE vs. time for σ2
s = 11.8, ρs = −0.066, σ2

z = 1, ρz = 0.5 and
P = 0.2. For this setting Qs ≈ Qu.

high as possible, the JSCC-LQG scheme aims at matching the
sources and the channel. To demonstrate this idea we consider
a setting in which the sources and the channel are perfectly
matched, and a common source of randomness is available.
For such a source, the JSCC-LQG scheme simply initializes
U1 = S, without using the common randomness. On the other
hand, the OL scheme uses the common randomness to set |ρ0|
to some value close to 1.

To highlight the difference between the JSCC-OL and
JSCC-LQG, we consider a low SNR scenario, by setting
σz = 1, ρz = 0 and P = 0.1. Consequently, the achievable
MSE exponents are low. The stationary covariance matrix of
the JSCC-LQG scheme for this setting is given by:

Qu ≈
[

21.0606721498435 −1.00118909550747
−1.00118909550747 21.0606721498435

]
,

which implies that ρu ≈ −0.04754. Let the sources to be trans-
mitted be distributed according to S ∼ N (0,Qu). Thus, in this
scenario, the JSCC-LQG scheme minimizes D(Qu,QU,1) by
setting U1 = S, regardless if common source of randomness
is available or not. On the other hand, if the transmitter and the
receivers share a common source of randomness, the JSCC-
OL scheme can use it to set ρ0 = 0.95.13 Figure 8 depicts the
MSE achieved by the two schemes. It can be observed that,
for the considered values of K, the JSCC-OL scheme strictly
outperforms the JSCC-LQG scheme even though the sources
and channel are matched. This gain is achieved by the JSCC-
OL as it takes advantage of the common source of randomness
to increase |ρ0|, while the common source of randomness
is not used by the JSCC-LQG scheme as the sources and
the channel are already matched.. It should be noted that if
a common source of randomness is not available, then the
JSCC-LQG scheme indeed outperforms the JSCC-OL scheme
in this scenario, and in fact, for this setting, the JSCC-LQG
scheme achieves the same MSE as the JSCC-DP scheme.14

C. When Does JSCC-OL Outperform JSCC-LQG?
Recall that for channel coding in the infinite horizon regime

JSCC-LQG outperforms JSCC-OL. Yet, in the finite horizon
regime, Figs. 6 and 7 demonstrate that JSCC-OL can out-
perform JSCC-LQG. This leads to the question: When does

13Note that this example can be adapted to any |ρ0| < 1.
14In this setting we used L = 15.
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Fig. 8: Matched sources and channel. σz = 1, ρz = 0 and P = 0.1. The
LQG scheme sets U1 = S while the OL scheme sends S̄.

JSCC-OL outperform JSCC-LQG? To answer this question
we focus on the symmetric setting, and note that Figs. 6
and 7 imply that the answer changes for different target
MSEs. More precisely, using Thm. 1 and Thm. 5 one can
answer the question which scheme (JSCC-OL or JSCC-LQG)
achieves the target MSE with the least number of channel
uses. For instance, consider the scenario illustrated in Fig. 6,
i.e., σ2

s = 1, ρs = 0.4, σ2
z = 1.5, ρz = 0.3, P = 0.03 and let

D = 10−2. Here, KLQG = 498 and Kub
OL = 470. Thus, JSCC-

OL outperforms JSCC-LQG. In fact, using the upper bound
presented in Thm. 1, it can be shown that for D = 10−2,
JSCC-OL outperforms JSCC-LQG for all P < 0.1978.

VII. CONCLUSION

In this work we studied the transmission of a pair of
correlated Gaussian sources over the two-user GBCF focusing
on linear and memoryless transmission schemes in the finite
horizon regime. We characterized the minimal number of
channel uses required to achieve a non-zero pair of MSEs
for three finite horizon JSCC schemes: An adaptation of the
OL scheme of [8], an adaptation of the LQG scheme of [9],
and a novel scheme derived in this work designed using the
DP approach.

For the JSCC-OL scheme, we first demonstrated that the
initialization which takes advantage of the correlation between
the sources is superior to the one suggested in [8]. Then,
for the proposed JSCC-OL scheme we derived upper and
lower bounds on the number of channel uses required to
achieve a target pair of MSEs. For the symmetric setting with
independent sources and independent noise components, we
showed that, even though JSCC-OL does not encode over
blocks of source symbols, in the low SNR regime, it achieves
approximately the same source-channel bandwidth ratio as the
best known SSCC scheme, which applies a source code and a
channel code with an asymptotically large blocklength. More
precisely, the gap between the source-channel bandwidth ratios
achieved by the JSCC-OL and the SSCC schemes is bounded
by a quantity independent of the SNR.

For the JSCC-LQG scheme, we first introduced a new
decoder based on the MMSE criterion, which achieves MSE
values smaller than or equal to those achieved by the original

decoder proposed in [9]. For the general setting, we presented
lower and upper bounds on the number of channel uses
required to achieve a target pair of MSEs, while for the
symmetric setting we explicitly characterized this number of
channel uses. For the symmetric setting we also showed that,
by properly scaling the transmitted sources, it is possible to
arrive at the target MSE much faster than with the original
initialization of [9]. This optimal scaling leads to a linear
and memoryless transmission scheme with very good finite
horizon performance and with the best known infinite horizon
performance.

Lastly, we used DP to derive the optimal linear and memo-
ryless JSCC scheme in the symmetric setting. This scheme
requires finding a vector of modulation coefficients and a
vector of estimation coefficients which minimize the MSE
after K channel uses. We showed that this minimization
problem can be simplified into the problem of searching
only over the possible modulation vectors, while the optimal
vector of estimation coefficients, per modulation vector, was
formulated as a DP problem whose solution is obtained using
a recursive deterministic relationship. For a finite number
of channel uses, the JSCC-DP scheme achieves MSE values
lower than both JSCC-OL and JSCC-LQG. Since finding the
optimal modulation vector becomes computationally infeasible
as the number of channel uses increases, we proposed a com-
putationally feasible approximate solution, which performs
well for moderate to high SNR values.

The comparison of the three JSCC schemes indicate their
differences: JSCC-OL is time-varying, and reaches steady
state relatively quickly, but it is suboptimal in the infinite
horizon regime. JSCC-LQG is time-invariant, reaches steady
state relatively slowly, but has the best known performance
in the infinite horizon regime. JSCC-DP is time-varying,
and outperforms both JSCC-OL and JSCC-LQG in the finite
horizon regime. As JSCC-DP applies backwards recursion, it
can be applied only in the finite horizon regime. While JSCC-
LQG reaches steady state relatively slowly, by applying the
proposed scaling, and using the improved MMSE decoder,
its finite horizon performance can be significantly improved.
However, even with these improvements JSCC-OL can out-
perform JSCC-LQG in the finite horizon regime. Finally,
the initialization objectives in the finite horizon regime for
JSCC-LQG and for JSCC-OL are fundamentally different: The
JSCC-OL scheme aims at increasing the correlation between
the transmitted signals, while the JSCC-LQG scheme aims at
matching the covariance matrices of the the initial and steady
states.

We remark that the results presented in this work are im-
portant in identifying simple yet efficient coding schemes for
the transmission of correlated Gaussian sources over multiuser
channels with FB when strict delay constraints are imposed.
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APPENDIX A
JSCC-OL IN THE FINITE HORIZON REGIME - PROOFS

A. Deriving the MSE for the Case ε0 = S + W in Eq. (13)
Recall that we focus here on the symmetric setting, and

define S̄ , S + W. Rxi estimates Si in two steps: First
Rxi estimates S̄i via (10). Let ˆ̄Si,k denote this estimation.
Then, Rxi computes the MMSE estimate of Si from ˆ̄Si,k. The
scheme is initialized via ˆ̄Si,0 = 0 and εi,0 = −S̄i, i = 1, 2.

From the theory of MMSE estimation [36, Ch. 11.4], the
MSE in estimating Si from ˆ̄Si,k is given by:

E
{

(Si − ˆ̄Si,k)2
}

= σ2
s −

(E{Si ˆ̄Si,k})2

E{ ˆ̄S2
i,k}

. (A.1)

From OL decoding (10) we write ˆ̄Si,k = −
∑k
m=1 ε̂i,m−1,

where the terms ε̂i,m−1 denote the estimates of εi,m−1 during
the transmission of S̄i. Since εi,k = εi,k−1− ε̂i,k−1, it follows
that ˆ̄Si,k = εi,k − εi,0. Therefore, the MSE can be written as:

E
{

(Si − ˆ̄Si,k)2
}

= σ2
s −

(E{Siεi,k}+ σ2
s)2

αi,k + σ2
s + σ2

w + 2E{(Si +Wi)εi,k}
. (A.2)

Next, to explicitly evaluate the MSE (A.2) we derive recursive
expressions for E{Siεi,k} and E{(Si +Wi)εi,k}. First, plug-
ging the relationship εi,k = εi,k−1−ε̂i,k−1 into the expectation
E{Siεi,k} we obtain:

E{Siεi,k} = E{Siεi,k−1} − E{Siε̂i,k−1}. (A.3)

Using (9), letting αi,k , αk, and considering i = 1, we write:

E{S1ε̂1,k−1}

=
E {ε1,k−1Y1,k}

E
{
Y 2

1,k

} E{S1Y1,k}

=
Ψk−1

√
αk−1(1 + |ρk−1|)
P + σ2

z

E{S1Y1,k}

=
Ψ2
k−1(1 + |ρk−1|)

P + σ2
z

E{S1(ε1,k−1 + ε2,k−1sgn(ρk−1))}.

(A.4)

Let λ , P
2(P+σ2

z) . Combining (A.3) and (A.4), and noting that
Ψ2
k = P

2(1+|ρk|) , we have:

E{S1ε1,k} = E{S1ε1,k−1}

− P

2(P+σ2
z)
E{S1(ε1,k−1+ε2,k−1sgn(ρk−1))}

=

(
1− P

2(P + σ2
z)

)
E{S1ε1,k−1}

− P · sgn(ρk−1)

2(P + σ2
z)

E{S1ε2,k−1}

= (1− λ)E{S1ε1,k−1}
− λ · sgn(ρk−1)E{S1ε2,k−1}, (A.5)

Following similar steps, we write E{S1ε2,k} as:

E{S1ε2,k} = (1− λ)E{S1ε2,k−1}
− λ · sgn(ρk−1) · E{S1ε1,k−1}. (A.6)

Finally, since E{S1ε1,0}=−σ2
s , and E{S1ε2,0}=−ρsσ2

s , we
can recursively calculate E{S1ε1,k}.

To evaluate E{(Si+Wi)εi,k}, we recall that S̄i = Si+Wi,
and follow the steps leading to (A.5)–(A.6) to obtain:

E{S̄1ε1,k} = (1− λ)E{S̄1ε1,k−1}
− λ · sgn(ρk−1)E{S̄1ε2,k−1}, (A.7)

E{S̄1ε2,k} = (1− λ)E{S̄1ε2,k−1}
− λ · sgn(ρk−1) · E{S̄1ε1,k−1}, (A.8)

with the initial conditions E{S̄1ε1,0} = −σ2
s − σ2

w, and
E{S̄1ε2,0} = −ρsσ2

s − ρwσ2
w. Therefore, using (A.2) and the

recursive relationships (A.5)–(A.8) we recursively obtain the
MSEs of the two-step estimator.

B. Proof of Theorem 1

Recall that αi,0 = σ2
i , i = 1, 2, and that αi,k is the MSE at

Rxi after the k’th transmission. From (11) we have:

log

(
α1,K

σ2
1

)
=

K∑
k=1

log

(
σ2
z,1 + Ψ2

k−1g
2(1− ρ2

k−1)

π1

)
.

As |ρk| ∈ [0, 1], it follows that:

Ψ2
k−1g

2(1− ρ2
k−1) =

Pg2(1− ρ2
k−1)

1 + g2 + 2g|ρk − 1|
≤ Pg2

1 + g2
.

Thus, we obtain the upper bound
σ2
z,1+Ψ2

k−1g
2(1−ρ2k−1)

π1
≤

σ2
z,1+π1g

2

π1+π1g2
. Next, we use the fact that log(x) ≤ x − 1 and

write:

log

(
σ2
z,1 + π1g

2

π1 + π1g2

)
≤
σ2
z,1 + π1g

2

π1 + π1g2
− 1 = − P

π1 + π1g2
.

Thus, it follows that log
(
α1,K

σ2
1

)
= log

(
D1

σ2
1

)
≤ − KP

π1+π1g2
,

which implies that:

Kub
OL=

⌈
(1 + g2)

P
max

{
π1 log

(
σ2

1

D1

)
,
π2

g2
log

(
σ2

2

D2

)}⌉
.

To obtain K lb
OL we note that 0 ≤ Ψ2

k−1g
2(1 − ρ2

k−1) where
equality is obtained by setting ρk−1 = 1. Then, we use the
inequality 1− 1

x ≤ log x to obtain:

log

(
σ2
z,1

σ2
z,1 + P

)
≥ 1−

σ2
z,1 + P

σ2
z,1

= − P

σ2
z,1

.

Thus, we have log
(
D1

σ2
1

)
≥ −KP

σ2
z,1

, which results in the
following lower bound:

K lb
OL =

⌈
max

{
σ2
z,1

P
log

(
σ2

1

D1

)
,
σ2
z,2

P
log

(
σ2

2

D2

)}⌉
.

C. Proof of (15)
From [8, pg. 671] it follows that if R is an achievable

symmetric rate for the GBCF, and ρz = 0, then R <
1
2 log

(
1 + 2χ0P

σ2
z

)
, where χ0 is the unique positive root of

the polynomial (in χ): χ2 +
3σ2
z

2P χ−
σ2
z

2P = χ2 + 3
2SNR −

1
2SNR .

The roots of this polynomial are given by:

χ1,2 =
1

2

(
− 3

2SNR
±
√

9

4SNR2 +
2

SNR

)
.
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Hence, χ0 is given by χ0 = 1
2

(
− 3

2SNR +
√

9
4SNR2 + 2

SNR

)
.

Plugging χ0 into the upper bound on R we write:

R <
1

2
log (1 + 2χ0SNR)

=
1

2
log

(
1 + SNR

(
− 3

2SNR
+

√
9

4SNR2 +
2

SNR

))

=
1

2
log

(√
9

4
+ 2SNR− 1

2

)
.

D. Proof of (16a)

First, we obtain an upper bound on 2 log |a1|. Following
steps similar to those described in [9, Section IV.C] for the
symmetric GBCF with independent noises, we conclude that
a2

1 = x0, where x0 is the unique real positive root15 of the
equation:

σ2
zx

3 + σ2
zx

2 − (σ2
z + 2P )x− σ2

z = 0.

Rewriting this equation equivalently as:

x3 + x2 −
(

1 +
2P

σ2
z

)
x− 1 = 0, (A.9)

we upper bound x0 using Budan’s theorem [43]:

Theorem. (Budan’s theorem) Let p(x) = a0 + a1x + · · · +
anx

n be a polynomial of degree n, and let p(j)(x) be its j’th
derivative. Define the function V (α) as the number of sign
variations in the sequence p(α), p(1)(α), . . . , p(n)(α). Then,
the number of roots of the polynomial p(x) in the open interval
(a, b) is either equal to V (a)−V (b), or less by an even number.

Let p(x) be the polynomial in (A.9). Then we have:

p(0)(x) = x3 + x2 −
(

1 +
2P

σ2
z

)
x− 1, (A.10a)

p(1)(x) = 3x2 + 2x−
(

1 +
2P

σ2
z

)
, (A.10b)

p(2)(x) = 6x+ 2, (A.10c)

p(3)(x) = 6. (A.10d)

For x = 1 we have V (1) = 1. Note that sgn(p(1)(1)) depends
on the term 2P

σ2
z

, however, since sgn(p(0)(1)) = −1 and
sgn(p(2)(1)) = 1, in both cases we have V (1) = 1. Next,
we let χ = P

2σ2
z

, and set x = 1 + χ to obtain:

p(0)(1 + χ) = χ3 > 0,

p(1)(1 + χ) = 3χ2 + 4χ+ 4 > 0,

p(2)(1 + χ) = 6χ+ 8 > 0,

p(3)(1 + χ) = 6 > 0.

all larger than zero. Therefore, V (1 + χ) = 0. Thus, Budan’s
theorem implies that the number of roots of (A.9) in the
interval (1, 1 + χ) is 1. From Descartes’ rule we know that
there is a unique positive root, therefore 1 + χ is an upper
bound on x0: x0 < 1 + P

2σ2
z

.

15The uniqueness of a real positive root follows from Descartes’ rule [39,
Subsection 1.6.3.2].

Next, recall that a2
1 = x0, which implies that 2 log(|a1|) =

log(x0) ≤ log
(

1 + P
2σ2
z

)
. Using the fact that log(x) ≤ x− 1

we have the following bound on 2 log(|a1|):

2 log(|a1|) ≤
P

2σ2
z

. (A.11)

Next, we explicitly upper bound KOL−κub
sep in the symmetric

setting (we set g = 1 in (14a)):

KOL − κub
sep ≤ Kub

OL − κub
sep

(a)
=

2(P + σ2
z)

P
log

(
σ2
s

D

)
− 1

2 log |a1|
log

(
σ2
s

D

)
(b)

≤ log

(
σ2
s

D

)(
2(P + σ2

z)

P
− 2σ2

z

P

)
≤
⌈

2 log

(
σ2
s

D

)⌉
, (A.12)

where (a) follows from specializing Thm. 1 to the symmetric
setting, and (b) follows from the bound 2 log(|a1|) ≤ P

2σ2
z

.

E. Proof of (16b)

Recall that κlb
sep ,

log

(
σ2s
D

)
log

(√
9
4 +2SNR− 1

2

) . Thus, we write:

KOL − κlb
sep ≤ Kub

OL − κlb
sep

=
2(P + σ2

z)

P
log

(
σ2
s

D

)
− 1

log
(√

9
4 + 2SNR− 1

2

) log

(
σ2
s

D

)

= log

(
σ2
s

D

)2+
2

SNR
− 1

log
(√

9
4 +2SNR− 1

2

)


(a)

≤ log

(
σ2
s

D

)(
2 +

2

SNR
− 1√

2SNR

)
≤
⌈(

2 +
2

SNR
− 1√

2SNR

)
log

(
σ2
s

D

)⌉
,

where (a) follows from the fact that log
(√

9
4 + 2SNR− 1

2

)
≤√

9
4 + 2SNR− 3

2 ≤
√

2SNR.

APPENDIX B
JSCC-LQG IN THE FINITE HORIZON REGIME - PROOFS

A. Proof of Theorem 2

The MMSE estimator of Si based on Ûi,k is the conditional
expectation E{Si|Ûi,k}, [36, Eqn. (11.10)]. Now, from (18) we
can write:

Uk = AUk−1 + Yk−1

= AUk−1 − BCTUk−1 + Zk−1

= (A− BCT )Uk−1 + Zk−1, (B.1)
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and from (21) we have:

Ûk = AÛk−1 + Yk−1

= Ak−1Û1 +

k−1∑
m=1

Ak−m−1Ym

=

k−1∑
m=1

Ak−m−1(−BCTUk−1 + Zk−1). (B.2)

From the fact that Zk is a zero-mean Gaussian vector, from
the linear relationship in (B.2), and from the fact that U1 = S,
it follows that for i = 1, 2, Ûi,k+1 and Si are jointly Gaussian,
both with zero mean. From [36, Eqn. (10.16)] it follows that

E
{
Si
∣∣Ûi,k+1

}
=

E{SiÛi,k+1}
E{Û2

i,k+1}
Ûi,k+1. Next, we expand (18)

as:

Uk = AUk−1 + Yk−1

= Ak−1S +

k−1∑
m=1

Ak−m−1Ym. (B.3)

Therefore, combining (B.3) and (B.2) we have Uk+1 −
Ûk+1 = AkS ⇒ Ûk+1 = Uk+1 − AkS, and since A is a
diagonal matrix it follow that Ûi,k+1 = Ui,k+1 − aki Si. At
time k + 1, the MMSE estimate of Si based on Ûi,k+1 is
given by:

Ŝi,k =
E
{
Si(Ui,k+1−aki Si)

}
E
{

(Ui,k+1−aki Si)2
} Ûi,k+1

=
E {SiUi,k+1}−aki σ2

i

E{U2
i,k+1}−2akiE {SiUi,k+1}+a2k

i σ
2
i

Ûi,k+1. (B.4)

From the independence of S and Zk we have E
{
Uk+1S

T
}

=
(A − BCT )E

{
UkS

T
}

, and since U1 = S it follows that
E
{
Uk+1S

T
}

= (A−BCT )kQs. Recalling the definition M ,
A− BCT we conclude that:

E {SiUi,k+1} = [MkQs]i,i. (B.5)

Using the definition of Qu,k in Subsection IV-C and plugging
(B.5) into (B.4) we obtain (24). Next, we use (24) to obtain a
recursive expression for the MSE. By plugging the expression
for Ŝi,k in (B.4) into E{(Si − Ŝi,k)2} we obtain that:

E{(Si − Ŝi,k)2} = σ2
i −

(
[MkQs]i,i−σ2

i a
k
i

)2
[Qu,k+1]i,i−2aki [MkQs]i,i+σ2

i a
2k
i

=
σ2
i [Qu,k+1]i,i−

(
[MkQs]i,i

)2
[Qu,k+1]i,i−2aki [MkQs]i,i+σ2

i a
2k
i

,

(B.6)

which is Eqn. (25). Finally, we consider (B.6) for k→∞. As
the magnitudes of eigenvalues of the matrix M are smaller
than unity it follows that limk→∞

(
[MkQs]i,i

)2
= 0 and

limk→∞[MkQs]i,i = 0. Furthermore, since |ai| > 1 and since
limk→∞Qu,k = Qu it follows that:

lim
k→∞

a2k
i

(
[Qu,k+1]i,i

a2k
i

− 2
[MkQs]i,i

aki
+ σ2

i

)
= σ2

i a
2k
i .

Therefore, for k large enough we have:

σ2
i [Qu,k+1]i,i −

(
[MkQs]i,i

)2
[Qu,k+1]i,i − 2aki [MkQs]i,i + σ2

i a
2k
i

≈ a−2k
i [Qu,k+1]i,i

= a−2k
i E

{
U2
i,k+1

}
.

B. Proof of Proposition 2

We begin with explicitly writing Pk using Uk:

Pk = E
{
X2
k

} (a)
= E

{
CTUkU

T
k C
}

= CTE
{
UkU

T
k

}
C,

where (a) follows from the structure of the controller. Now,
recalling that M = (A−BCT ), we use (B.1) and the fact that
Uk and Zk are independent and write:

E
{
UkU

T
k

}
= ME

{
Uk−1U

T
k−1

}
MT + Qz

= M
(
ME

{
Uk−2U

T
k−2

}
MT
)
MT

+ MQzM
T + Qz

= Mk−1Qs(M
T )k−1 +

k−2∑
l=0

MlQz(M
T )l. (B.7)

Therefore, we have:

Pk = CTE
{
UkU

T
k

}
C

= CTMk−1Qs(M
T )k−1C +

k−2∑
l=0

CTMlQz(M
T )lC. (B.8)

Next, we focus on the term CTMk−1Qs(M
T )k−1C. Since

|ρs| < 1 we can apply Cholesky decomposition [39, Sub-
section 19.2.1.2] on Qs and obtain:

MkQs(M
k)T = MkLLT (Mk)T , L =

[
σ1 0

ρsσ2 σ2

√
1− ρ2

s

]
.

We now write Mk in terms of the eigenvalues and eigenvectors
of M, see [39, Subsection 4.5.2.2]. Let D = diag(λ1, λ2) be the

diagonal matrix of the eigenvalues of M, while V =

[
v1 v2

v3 v4

]
is the matrix whose columns are the corresponding eigenvec-
tors of M. Thus, we have:

M = VDV−1 ⇒ Mk = VDkV−1. (B.9)

Next, we define R , VDkV−1L =

[
r1 r2

r3 r4

]
. Note that R is

a function of k, yet, to reduce clutter we omit this notation.
This implies that:

CTMkQs(M
T )kC =CTRRTC

=(c1r1+c2r3)2+(c1r2+c2r4)2. (B.10)

Writing VDkV−1 explicitly we have:

VDkV−1 =

[
v1 v2

v3 v4

] [
λk1 0
0 λk2

] [
v1 v2

v3 v4

]−1

=
1

det(V)

[
v1v4λ

k
1 − v2v3λ

k
2 v1v2(λk2 − λk1)

v3v4(λk1 − λk2) v1v4λ
k
2 − v2v3λ

k
1

]
.

(B.11)



23

Therefore, it follows that:

R = VDkV−1L

=
1

det(V)

[
v1v4λ

k
1 − v2v3λ

k
2 v1v2(λk2 − λk1)

v3v4(λk1 − λk2) v1v4λ
k
2 − v2v3λ

k
1

]
×
[
σ1 0

ρsσ2 σ2

√
1− ρ2

s

]
,

which implies that:

r1 =
σ1(v1v4λ

k
1 − v2v3λ

k
2) + ρsσ2v1v2(λk2 − λk1)

det(V)
(B.12a)

r2 =
σ2

√
1− ρ2

s · v1v2 · (λk2 − λk1)

det(V)
(B.12b)

r3 =
σ1v3v4(λk1 − λk2) + ρsσ2

(
v1v4λ

k
2 − v2v3λ

k
1

)
det(V)

(B.12c)

r4 =
σ2

√
1− ρ2

s

(
v1v4λ

k
2 − v2v3λ

k
1

)
det(V)

. (B.12d)

Next, we explicitly write c1r1 + c2r3:

c1r1+c2r3

=
c1

det(V)

(
σ1(v1v4λ

k
1−v2v3λ

k
2)+ρsσ2v1v2(λk2−λk1)

)
+

c2
det(V)

(
σ1v3v4(λk1−λk2)+ρsσ2

(
v1v4λ

k
2−v2v3λ

k
1

))
= λk1

c1(σ1v1v4−ρsσ2v1v2)+c2(σ1v3v4−ρsσ2v2v3)

det(V)

+λk2
c1(ρsσ2v1v2−σ1v2v3)+c2(ρsσ2v1v4−σ1v3v4)

det(V)

= λk1ω1(σ1, σ2, ρs)+λk2ω2(σ1, σ2, ρs). (B.13a)

Similarly, we explicitly write c1r2 + c2r4:

c1r2 + c2r4 =λk1
−σ2

√
1− ρ2

s(c1v1v2 + c2v2v3)

det(V)

+ λk2
σ2

√
1− ρ2

s(c1v1v2 + c2v1v4)

det(V)

=λk1ω3(σ1, σ2, ρs)+λk2ω4(σ1, σ2, ρs), (B.13b)

where ωj(ς1, ς2, ρ), j = 1, 2, 3, 4, are defined in (26). Hence,
squaring (B.13a) and (B.13b), summing and using the expres-
sions αj , j = 1, 2, 3, defined in (27) we obtain:

(c1r1 + c2r3)2 + (c1r2 + c2r4)2

= (λk1ω1(σ1, σ2, ρs) + λk2ω2(σ1, σ2, ρs))
2

+ (λk1ω3(σ1, σ2, ρs) + λk2ω4(σ1, σ2, ρs))
2

= λ2k
1 ω2

1(σ1, σ2, ρs)+λ2k
2 ω2

2(σ1, σ2, ρs)

+2λk1λ
k
2ω1(σ1, σ2, ρs)ω2(σ1, σ2, ρs)+λ2k

1 ω2
3(σ1, σ2, ρs)

+λ2k
2 ω2

4(σ1, σ2, ρs)+2λk1λ
k
2ω3(σ1, σ2, ρs)ω4(σ1, σ2, ρs)

= λ2k
1

(
ω2

1(σ1, σ2, ρs) + ω2
3(σ1, σ2, ρs)

)
+ λ2k

2

(
ω2

2(σ1, σ2, ρs) + ω2
4(σ1, σ2, ρs)

)
+ λk1λ

k
2 (2ω1(σ1, σ2, ρs)ω2(σ1, σ2, ρs)

+2ω3(σ1, σ2, ρs)ω4(σ1, σ2, ρs))

= λ2k
1 α1(σ1, σ2, ρs)

+ λ2k
2 α2(σ1, σ2, ρs) + λk1λ

k
2α3(σ1, σ2, ρs), (B.14)

We conclude that:

CTMkQs(M
T )kC

= λ2k
1 α1(σ1, σ2, ρs)

+ λ2k
2 α2(σ1, σ2, ρs) + λk1λ

k
2α3(σ1, σ2, ρs). (B.15)

Next, we focus on the second term in (B.8):∑k−2
l=0 CTMlQz(M

T )lC. Following identical steps to
those leading to (B.15), and recalling that |ρz| < 1, we write:

CTMlQz(M
T )lC

= λ2l
1 α1(σz,1, σz,2, ρz)

+ λ2l
2 α2(σz,1, σz,2, ρz) + λl1λ

l
2α3(σz,1, σz,2, ρz).

Therefore, summing over l we obtain:

k−2∑
l=0

CTMlQz(M
T )lC

=

k−2∑
l=0

λ2l
1 α1(σz,1, σz,2, ρz)

+ λ2l
2 α2(σz,1, σz,2, ρz) + λl1λ

l
2α3(σz,1, σz,2, ρz)

=
1− λ2(k−1)

1

1− λ2
1

α1(σz,1, σz,2, ρz)

+
1− λ2(k−1)

2

1− λ2
2

α2(σz,1, σz,2, ρz)

+
1− λk−1

1 λk−1
2

1− λ1λ2
α3(σz,1, σz,2, ρz). (B.16)

Combining (B.15) and (B.16) and using the expressions
ηj(ς1, ς2, ρ), j = 1, 2, 3, defined in (28), results in:

Pk = CTMk−1Qs(M
T )k−1C +

k−2∑
l=0

CTMlQz(M
T )lC

= λ
2(k−1)
1 α1(σ1, σ2, ρs) + λ

2(k−1)
2 α2(σ1, σ2, ρs)

+ (λ1λ2)k−1α3(σ1, σ2, ρs)

+
1− λ2(k−1)

1

1− λ2
1

α1(σz,1, σz,2, ρz)

+
1− λ2(k−1)

2

1− λ2
2

α2(σz,1, σz,2, ρz)

+
1− (λ1λ2)k−1

1− λ1λ2
α3(σz,1, σz,2, ρz)

= η1(σz,1, σz,2, ρz)+η2(σz,1, σz,2, ρz)+η3(σz,1, σz,2, ρz)

+λ
2(k−1)
1

(
α1(σ1, σ2, ρs)−η1(σz,1, σz,2, ρz)

)
+λ

2(k−1)
2

(
α2(σ1, σ2, ρs)−η2(σz,1, σz,2, ρz)

)
+(λ1λ2)

k−1
(
α3(σ1, σ2, ρs)−η3(σz,1, σz,2, ρz)

)
, (B.17)

From [42, Lemma 2.4] we have |λi| < 1, i = 1, 2,16 which

16Recall that C = (BTGB + 1)−1AGT B where G is the unique positive-
definite solution of the DARE (19). Now, from [42, Lemma 2.4, item (iv)] it
follows that the eigenvalues of the closed-loop matrix M = A−BCT are given
by λi = 1

ai
. Note that [42, Lemma 2.4] assumes a DARE of the form (19) and

studies the properties of the matrix A−BCT , for C = (BTGB+1)−1AGT B,
see [42, Equation below (11)]. Therefore, it follows that λ1 = 1

a1
.
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implies that:

lim
k→∞

CTMk−1Qs(M
T )k−1C +

k−2∑
l=0

CTMlQz(M
T )lC

= η1(σz,1, σz,2, ρz)

+ η2(σz,1, σz,2, ρz) + η3(σz,1, σz,2, ρz). (B.18)

Recall that the JSCC-LQG scheme is designed such that the
asymptotic average transmit power is P . This implies that:

η1(σz,1, σz,2, ρz) +η2(σz,1, σz,2, ρz) +η3(σz,1, σz,2, ρz) = P.

For the power constraint in (5) to be satisfied for every k =
1, 2, 3, . . . , we should have Pk ≤ P . From (B.17) we conclude
that this condition can be equivalently stated as follows:

λ
2(k−1)
1

(
α1(σ1, σ2, ρs)− η1(σz,1, σz,2, ρz)

)
+ λ

2(k−1)
2

(
α2(σ1, σ2, ρs)− η2(σz,1, σz,2, ρz)

)
+ (λ1λ2)k−1

(
α3(σ1, σ2, ρs)− η3(σz,1, σz,2, ρz)

)
≤ 0.

C. Proof of Theorem 3

We begin with Kub
LQG. Since (24) is the optimal estimator

based on the observation Ûi,k+1, it follows that we can upper
bound KLQG by upper bounding the number of channel uses
required to achieve a target MSE pair using the decoder in
(22). Recall that the MSE of the decoder in (22) is given
by (23): E{(Si − Ŝi,k)2} = a−2k

i E{U2
i,k+1}. Let E{(Si −

Ŝi,k)2} , Di,k be the MSE after k channel uses, i.e., at time
instance k + 1. We upper bound Di,k via upper bounding
E{U2

i,k+1}.
Since the eigenvalues of M are inside the unit circle, it

follows that
[
MkQs(M

T )k
]
i,i
→ 0 as k →∞, and therefore,

limk→∞

[∑k−1
l=0 MlQz(M

T )l
]
i,i

= [Qu]i,i.17 Since Qs is a

covariance matrix then the diagonal elements of MkQs(M
T )k

are non-negative and we can write:

E
{
U2
i,k+1

}
≤
[
MkQs(M

T )k
]
i,i

+ [Qu]i,i.

Next, we derive an upper bound on
[
MkQs(M

T )k
]
i,i

. Fol-
lowing the arguments leading to (B.10) we can write
MkQs(M

k)T = RRT , again omitting the dependence in k from
the matrix R, we write:[

MkQs(M
T )k
]
1,1

= r2
1 + r2

2,

where r1 and r2 are given in (B.12). For ease of reference we
repeat the expressions for r1 and r2:

r1 =
1

det(V)

(
σ1(v1v4λ

k
1 − v2v3λ

k
2) + ρsσ2v1v2(λk2 − λk1)

)
r2 =

1

det(V)
σ2

√
1− ρ2

s · v1v2 · (λk2 − λk1).

17Note that
[∑k−1

l=0 MlQz(MT )l
]
i,i
≥ 0, k = 1, 2, . . . , i = 1, 2, since

the diagonal elements are sum of the variances of the noise.

Next, we upper bound
[
MkQs(M

T )k
]
1,1

via upper bounding
r2
1 and r2

2:

|r1| ≤
1

|det(V)|
(
σ1

(
|v1v4||λ1|k + |v2v3||λ2|k

)
+|ρs| · σ2 · |v1v2|(|λ2|k + |λ1|k)

)
(a)

≤ σ1 (|v1v4λ1|+ |v2v3λ2|) + |ρsσ2v1v2|(|λ2|+ |λ1|)
|det(V)|

, τ1

where (a) follows from the fact that |λi| < 1, i = 1, 2. Using
similar arguments we bound |r2| as follows:

|r2| ≤
σ2

√
1− ρ2

s|v1v2|(|λ2|+ |λ1|)
|det(V)|

, τ2.

Hence, we have
[
MkQs(M

T )k
]
1,1
≤ τ2

1 +τ2
2 , and this implies

that:
E
{
U2

1,k

}
≤ τ2

1 + τ2
2 + [Qu]1,1 , ϑ1.

Following similar arguments we have
[
MkQs(M

T )k
]
2,2
≤

τ2
3 + τ2

4 , where:

τ3 ,
|σ1v3v4|(|λ1|+ |λ2|) + |ρsσ2| (|v1v4λ2|+ |v2v3λ1|)

|det(V)|

τ4 ,
σ2

√
1− ρ2

s (|v1v4λ2|+ |v2v3λ1|)
|det(V)|

,

and therefore:

E
{
U2

2,k

}
≤ τ2

3 + τ2
4 + [Qu]2,2 , ϑ2.

To conclude, we have:

KLQG ≤
log
(
ϑi
Di

)
2 log |ai|

, i = 1, 2.

To lower bound KLQG we first lower bound the MSE in
(25) as follows:

E
{

(Si − Ŝi,k)2
}

= σ2
i

[Qu,k+1]i,i − 1
σ2
i

(
[MkQs]i,i

)2
[Qu,k+1]i,i − 2aki [MkQs]i,i + σ2

i a
2k
i

(a)

≥ σ2
i

[Qz]i,i − 1
σ2
i

(
[MkQs]i,i

)2
[Qz]i,i − 2aki [MkQs]i,i + σ2

i a
2k
i

.

(B.19)

To see why step (a) holds we note that:

0 ≤
[Qu,k+1]i,i − 1

σ2
i

(
[MkQs]i,i

)2
[Qu,k+1]i,i − 2aki [MkQs]i,i + σ2

i a
2k
i

≤ 1.

This follows as E
{

(Si − Ŝi,k)2
}

= σ2
i − E

{
Ŝ2
i,k

}
, and

therefore we have:

σ2
i

1−
[Qu,k+1]i,i− 1

σ2
i

(
[MkQs]i,i

)2
[Qu,k+1]i,i−2aki [MkQs]i,i+σ2

i a
2k
i

=E
{
Ŝ2
i,k

}
≥0,

which implies that
[Qu,k+1]i,i− 1

σ2
i
([MkQs]i,i)

2

[Qu,k+1]i,i−2aki [MkQs]i,i+σ2
i a

2k
i

≤ 1. Next,
consider the function f(x) = x+a

x+b , x > 0, a, b ∈ R. We now
show that if 0 ≤ f(x) ≤ 1, then f(x) is an increasing function.
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The derivative of f(x) is given by: f ′(x) = b−a
(x+b)2 . Consider

the following cases:
• a, b ≥ 0: From the fact that f(x) ≤ 1, it follows that
b ≥ a, and therefore f ′(x) ≥ 0.

• b ≥ 0, a ≤ 0: For this case, it is clear that f ′(x) ≥ 0.
• a, b ≤ 0: From the fact that f(x) ≤ 1, it follows that
a ≤ b, and therefore f ′(x) ≥ 0.

• b < 0, a > 0: This assignment is not valid since f(x) ≤
1.

We conclude that for all valid cases f ′(x) ≥ 0 which implies
that f(x) is an increasing function. With this in mind we note
that [Qu,k+1]i,i ≥ [Qz]i,i,18 which concludes the proof of step
(a) in (B.19).

Next, we lower bound the numerator of (B.19) and upper
bound the denominator of (B.19). Recall that Mk = (A −
BCT )k and consider upper bounding [MkQs]1,1. Similarly to
Section B-B we write Mk in terms of the eigenvalues matrix
D and the eigenvectors matrix V of M as in (B.9): Mk =
VDkV−1. From (B.11) we have:

VDkV−1Qs

=
1

det(V)

[
v1v4λ

k
1 − v2v3λ

k
2 v1v2(λk2 − λk1)

v3v4(λk1 − λk2) v1v4λ
k
2 − v2v3λ

k
1

]
×
[

σ2
1 ρsσ1σ2

ρsσ1σ2 σ2
2

]
,

from which we compute:

[MkQs]1,1 =
σ2

1

(
v1v4λ

k
1−v2v3λ

k
2

)
+ρsσ1σ2v1v2(λk2−λk1)

det(V)
.

(B.20)

Using the fact that |λi| < 1, i = 1, 2, we obtain the following
upper bound on [MkQs]1,1, k ≥ 1:∣∣[MkQs]1,1

∣∣
≤ σ2

1 (|v1v4λ1|+ |v2v3λ2|) + |ρsσ1σ2v1v2|(|λ2|+ |λ1|)
|det(V)|

, β1.

Similarly, we also bound:∣∣[MkQs]2,2
∣∣

≤ σ2
2 (|v1v4λ2|+ |v2v3λ1|) + |ρsσ1σ2v2v4|(|λ2|+ |λ1|)

|det(V)|
, β2.

Now, for i = 1, 2, plugging βi into (B.19) and setting Di,k =
Di we write:

Di ≥
σ2
i [Qz]i,i − β2

i

[Qz]i,i + 2|ai|kβi + σ2
i |ai|2k

,

which can also be written as:

Di[Qz]i,i − σ2
i [Qz]i,i + β2

i ≥ −Di

(
2|ai|kβi + σ2

i |ai|2k
)
,

⇒σ2
i [Qz]i,i − β2

i −Di[Qz]i,i
Di

≤ 2|ai|kβi + σ2
i |ai|2k.

18From (B.7) it follows that E{U2
i,k} ≥ [Qz ]i,i.

Next, we recall that |ai| > 1 and write:

σ2
i [Qz]i,i − β2

i −Di[Qz]i,i
Di

≤ (2βi + σ2
i )|ai|2k.

Applying the log to both sides we have:

log

(
σ2
i [Qz]i,i − β2

i −Di[Qz]i,i
Di

)
≤ log

(
(2βi + σ2

i )|ai|2k
)
,

which can be written as:

log

(
σ2
i [Qz]i,i − β2

i −Di[Qz]i,i
(2βi + σ2

i )Di

)
≤ 2k log |ai|.

Thus, we write:

log
(
σ2
i [Qz ]i,i−β2

i−Di[Qz ]i,i
(2βi+σ2

i )Di

)
2 log |ai|

≤ KLQG,

which is stated in (30b).

APPENDIX C
PROOFS FOR THE JSCC-LQG SCHEME FOR THE

SYMMETRIC SETTING

A. Proof of Theorem 4

We begin with the following lemma:

Lemma 1. For symmetric GBCFs c2 = −c1.

Proof. We explicitly express c1 in terms of a1. Recall the
definition of the vector C in Section IV-A:

C = (BTGB + 1)−1AGTB (C.1)

where G is the unique positive-definite solution of the DARE
G = ATGA − ATGB(BTGB + 1)−1BTGA, such that all the
eigenvalues of the matrix A− BCT have magnitudes smaller

than 1. Let G =

[
g1 g2

g3 g4

]
. From [44, Prop. 1] we have that

for the symmetric case and for A =

[
a1 0
0 −a1

]
the elements

of G are given by:

g1 = g4 =
(a2

1 − 1)(1 + a2
1)2

4a2
1

,

g2 = g3 =
(1− a2

1)2(1 + a2
1)

4a2
1

,

and it follows that G = GT . Writing AGTB = AGB explicitly:

AGB =

[
a1 0
0 −a1

] [
g1 g2

g2 g1

] [
1
1

]
=

[
a1(g1 + g2)
−a1(g1 + g2)

]
.

Using the explicit expressions for g1 and g2 we can write
g1 + g2 =

(1+a21)(a21−1)
2 . Next, writing BTGB + 1 explicitly

we obtain:

BTGB + 1 = 2(g1 + g2) + 1 = (1 + a2
1)(a2

1 − 1) + 1.
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We now can explicitly compute c1, the first element of C in
(C.1):

c1 =
a1(g1 + g2)

2(g1 + g2) + 1

=
a1(1 + a2

1)(a2
1 − 1)

2((1 + a2
1)(a2

1 − 1) + 1)

=
a4

1 − 1

2a3
1

(C.2)

Computing c2 via similar arguments we find c2 = −c1.

Next, we recall (B.8):

Pk = CTMk−1Qs(M
T )k−1C +

k−2∑
l=0

CTMlQz(M
T )lC,

and note that with c2 = −c1 (B.10) is specialized to:

CTMkQs(M
T )kC = c21

(
(r1 − r3)2 + (r2 − r4)2

)
. (C.3)

In the symmetric setting we also have σ1 = σ2 = σs and
σz,1 = σz,2 = σz . From the expression for the matrix M and
from the expression for c1 it follows that v1 = v4, v2 = v3,
and −λ2 = λ1. Therefore, (B.12) is specialized to:

r1 =
λk1σs

det(V)

(
v2

1 − v2
2(−1)k + ρsv1v2((−1)k − 1)

)
(C.4a)

r2 =
λk1σs

√
1− ρ2

s

det(V)

(
v1v2((−1)k − 1)

)
(C.4b)

r3 =
λk1σs

det(V)

(
v1v2(1−(−1)k)+ρs

(
v2

1(−1)k−v2
2

))
(C.4c)

r4 =
λk1σs

√
1− ρ2

s

det(V)

(
v2

1(−1)k − v2
2

)
. (C.4d)

Next, we explicitly write r1 − r3:

r1−r3 =
λk1σs

det(V)

(
v2

1−v2
2(−1)k+ρsv1v2((−1)k−1)

−v1v2(1−(−1)k)−ρs
(
v2

1(−1)k−v2
2

))
=

λk1σs
det(V)

(
v2

1(1−ρs(−1)k)+v2
2(ρs−(−1)k)

+v1v2(ρs+1)((−1)k−1)
)
,

and by squaring we obtain:

(r1 − r3)2

=
λ2k

1 σ2
s

det2(V)

(
v2

1(1− ρs(−1)k) + v2
2(ρs − (−1)k)

+v1v2(ρs + 1)((−1)k − 1)
)2

=
λ2k

1 σ2
s

det2(V)

(
v4

1(1−ρs(−1)k)2+v4
2(ρs−(−1)k)2

+v2
1v

2
2(1+ρs)

2((−1)k−1)2

+2v2
1v

2
2(1−ρs(−1)k)(ρs−(−1)k)

+2v3
1v2(1−ρs(−1)k)(ρs+1)((−1)k−1)

+2v1v
3
2(ρs−(−1)k)(ρs+1)((−1)k−1)

)
.

Now, for even values of k we have:

(r1 − r3)2

=
λ2k

1 σ2
s

det2(V)

(
v4

1(1− ρs(−1)k)2

+v4
2(ρs − (−1)k)2 − 2v2

1v
2
2(1− ρs)2

)
=

λ2k
1 σ2

s

det2(V)

(
(1− ρs)2(v2

1 − v2
2)2
)

= λ2k
1 σ2

s(1− ρs)2, (C.5)

while for odd values of k we have:

(r1 − r3)2

=
λ2k

1 σ2
s

det2(V)

(
v4

1(1 + ρs)
2 + v4

2(1 + ρs)
2

+ 4v2
1v

2
2(1 + ρs)

2 + 2v2
1v

2
2(1 + ρs)

2

− 4v3
1v2(1 + ρs)

2 − 4v1v
3
2(1 + ρs)

2
)

= λ2k
1 σ2

s(1 + ρs)
2 v

4
1 + v4

2 + 6v2
1v

2
2 − 4v1v2(v2

1 + v2
2)

det2(V)
(a)
= λ2k

1 σ2
s(1 + ρs)

2a4
1, (C.6)

where (a) follows from the following lemma.

Lemma 2. The following equality holds:
v41+v42+6v21v

2
2−4v1v2(v21+v22)

det2(V)
= a4

1.

Proof. We begin with expressing λ1, v1, and v2. From [42,
Lemma 2.4] it follows that λ1 = 1

a1
, see Footnote 16

for a detailed explanation. Next, we explicitly write M =[
a1 − c1 c1
−c1 −(a1 − c1)

]
, and note that an eiegenvector V0 of

M, corresponding to the eigenvalue λ1, obeys MV0 = λ1V0.
This equation can also be written using a matrix form:

(M− λ1I)V0 =

[
a1 − c1 − λ1 c1
−c1 −(a1 − c1)− λ1

] [
v1

v2

]
=0.

Recalling that eigenvectors have unit norm, we obtain an
explicit expression for V0:

[
v1

v2

]
=

 c1√
c21+(a1−c1−λ1)2

− a1−c1−λ1√
c21+(a1−c1−λ1)2

 .
Substituting λ1 = 1

a1
we obtain:

v1 =
c1√

c21 + (a1 − c1 − 1
a1

)2

=
a1c1√

a2
1c

2
1 + ((a1 − c1)a1 − 1)2

(C.7a)

v2 = −
a1 − c1 − 1

a1√
c21 + (a1 − c1 − 1

a1
)2

=
1− (a1 − c1)a1√

a2
1c

2
1 + ((a1 − c1)a1 − 1)2

. (C.7b)
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v4
1 + v4

2 + 6v2
1v

2
2 − 4v1v2(v2

1 + v2
2)

det2(V)

=
(a4

1−1)4 +(a2
1−1)8 +6(a4

1−1)2(a2
1−1)4 +4(a4

1−1)(a2
1−1)2((a4

1−1)2 +(a2
1−1)4)

((a4
1 − 1)2 − (a2

1 − 1)4)2
. (C.9)

Note that (C.2) implies that 0 ≤ c1 ≤ a1. Using the expression
for c1 we now write a1(a1 − c1)− 1 in terms of a1:

a1(a1 − c1)− 1 = a1

(
a1 −

(a4
1 − 1)

2a3
1

)
− 1

=
a5

1 + a1

2a3
1

− 1

=
(a2

1 − 1)2

2a2
1

. (C.8)

Thus, the numerator of (C.7a) equals a1c1 =
a41−1

2a21
, while the

numerator of (C.7b) equals 1− (a1 − c1)a1 = − (a21−1)2

2a21
. We

further note that the denominators of (C.7a) and (C.7b) are the
same. Therefore, we write (C.9) at the top of the page. The
denominator of (C.9) can be written as:

((a4
1−1)2−(a2

1−1)4)2 =((a2
1−1)2(a2

1+1)2−(a2
1−1)4)2

=16a4
1(a2

1−1)4. (C.10a)

The numerator of (C.9) can be written as:

(a4
1−1)4 +(a2

1−1)8 +6(a4
1−1)2(a2

1−1)4

+ 4(a4
1−1)(a2

1−1)2((a4
1−1)2 +(a2

1−1)4)

= (a2
1 − 1)4

(
8a8

1 + 8 + 8(a8
1 − 1)

)
= 16a8

1(a2
1 − 1)4. (C.10b)

Thus, by combining (C.10a) and (C.10b) we obtain:

v4
1 + v4

2 + 6v2
1v

2
2 − 4v1v2(v2

1 + v2
2)

det2(V)
=

16a8
1(a2 − 1)4

16a4
1(a2 − 1)4

= a4
1. (C.11)

This concludes the proof of the lemma.

Similarly to (C.6), we write:

(r2 − r4)2

=
λ2k

1 σ2
s(1− ρ2

s)

det2(V)

(
v1v2((−1)k − 1)− v2

1(−1)k + v2
2

)2
=
λ2k

1 σ2
s(1− ρ2

s)

det2(V)

(
v2

1v
2
2((−1)k − 1)2 + v4

1 + v4
2

−2v3
1v2(−1)k((−1)k − 1)

+2v1v
3
2((−1)k − 1)− 2v2

1v
2
2(−1)k

)
=

{
λ2k

1 σ2
s(1− ρ2

s), k is even,
λ2k

1 σ2
s(1− ρ2

s)a
4
1, k is odd.

(C.12)

Hence, combining (C.3) and (C.5)–(C.12) we obtain:

CTMk−1Qs(M
T )k−1C

=

{
2c21λ

2(k−1)
1 σ2

s(1− ρs), k − 1 is even,
2c21λ

2(k−1)
1 σ2

s(1 + ρs)a
4
1, k − 1 is odd.

(C.13)

Next, we focus on
∑k−2
l=0 CTMlQz(M

T )lC. Following the
steps leading to (C.13) we write:

CTMlQz(M
T )lC =

{
2c21λ

2l
1 σ

2
z(1− ρz), l is even,

2c21λ
2l
1 σ

2
z(1 + ρz)a

4
1, l is odd.

For even values of k − 1 we have:
k−2∑
l=0

CTMlQz(M
T )lC

=

k−1
2 −1∑
m=0

2c21σ
2
z(1−ρz)λ4m

1 +

k−1
2 −1∑
m=0

2c21σ
2
z(1+ρz)a

4
1λ

4m+2
1

= 2c21σ
2
z((1− ρz) + (1 + ρz)a

4
1λ

2
1)

k−1
2 −1∑
m=0

λ4m
1

(a)
=

2c21σ
2
z((1− ρz) + (1 + ρz)a

2
1)

1− λ4
1

(1− λ2(k−1)
1 )

= µ1 · (1− λ2(k−1)
1 ), (C.14)

where (a) follows from the fact that a1 = 1
λ1

. For odd values
of k − 1 we have:
k−2∑
l=0

CTMlQz(M
T )lC

=

k−2
2∑

m=0

2c21σ
2
z(1− ρz)λ4m

1 +

k−2
2 −1∑
m=0

2c21σ
2
z(1+ρz)a

4
1λ

4m+2
1

= 2c21σ
2
z(1− ρz)λ2(k−2)

1 + 2c21σ
2
z((1− ρz)

+ (1 + ρz)a
4
1λ

2
1)

k−2
2 −1∑
m=0

λ4m
1

=
(1− λ4

1)2c21σ
2
z(1− ρz)λ2(k−2)

1 + 2c21σ
2
z((1− ρz)

1− λ4
1

+
(1 + ρz)a

4
1λ

2
1)(1− λ2(k−2)

1 )

1− λ4
1

=
2c21σ

2
z(1− ρz)λ2(k−2)

1

1− λ4
1

− 2c21σ
2
z(1− ρz)λ2k

1

1− λ4
1

+
2c21σ

2
z((1− ρz) + (1 + ρz)a

4
1λ

2
1)

1− λ4
1

− 2c21σ
2
z((1− ρz) + (1 + ρz)a

4
1λ

2
1)λ

2(k−2)
1

1− λ4
1

=
2c21σ

2
z((1− ρz) + (1 + ρz)a

2
1)

1− λ4
1

− 2c21σ
2
z((1− ρz)λ2

1 + (1 + ρz)a
4
1)

1− λ4
1

λ
2(k−1)
1

= µ1 − µ3 · λ2(k−1)
1 . (C.15)
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Recalling that µ0 = 2c21σ
2
s(1−ρs) and µ2 = 2c21σ

2
s(1+ρs)a

4
1,

we combine (C.13)–(C.15) to obtain (32). Similarly to (B.18)
we have that limk→∞ Pk = P , and since |λ1| < 1 it follows
that µ1 = P . Therefore, the power constraint (5) is satisfied
if and only if µ0 ≤ µ1 and µ2 ≤ µ3.

B. Proof of Proposition 3

First, we show that the maximal possible scaling which
satisfies (5) is:

√
ν
σ2
s

. Then, we prove that the optimal estimator
and the obtained MSE are given in (34) and (35), respectively.
Finally, we show that setting γ = ν

σ2
s

indeed minimizes the
MSE.

1) Maximal Scaling: Recall that (33) constitutes an upper
bound on the variance of the sources transmitted via a JSCC-
LQG scheme initialized with U1 = S, which satisfy (5).
Explicitly writing the conditions of Thm. 4, i.e., µ0 ≤ µ1

and µ2 ≤ µ3, where µj , j = 0, . . . , 3 are defined in (31), we
obtain:

σ2
s(1− ρs) ≤

σ2
z(1− ρz + (1 + ρz)a

2
1)

1− λ4
1

,

σ2
s(1 + ρs)a

4
1 ≤

σ2
z((1− ρz)λ2

1 + (1 + ρz)a
4
1)

1− λ4
1

.

This implies that:

σ2
s ≤ min

{
σ2
z(1− ρz + (1 + ρz)a

2
1)

(1− λ4
1)(1− ρs)

,

σ2
z((1− ρz)λ2

1 + (1 + ρz)a
4
1)

(1− λ4
1)(1 + ρs)a4

1

}
, (C.16)

and therefore, the maximal possible scaling which satisfies (5)
is:
√

ν
σ2
s

.
2) Optimal Estimator and Resulting MSE: Following the

same arguments as those applied in Appendix B-A the optimal
estimator of Si based on the observation Ûi,k+1(γ) is given

by E
{
Si|Ûi,k(γ)

}
=

E{SiÛi,k(γ)}
E{Û2

i,k(γ)} Ûi,k. Letting S̃ =
√
γ · S

we can write:

E
{
Si
∣∣Ûi,k(γ)

}
=

1
√
γ
E
{
S̃i
∣∣Ûi,k(γ)

}
.

Note that E
{
S̃i
∣∣Ûi,k(γ)

}
can be obtained from (24) by setting

σ2
i = γ · σ2

s . Let Qs̃ , E{S̃S̃T }. Following the arguments
leading to (B.4) we write:

E
{
Si
∣∣Ûi,k(γ)

}
=

1
√
γ
· [MkQs̃]i,i − σ2

s̃a
k
i

[Qu,k+1(γ)]i,i−2aki [MkQs̃]i,i+σ2
s̃a

2k
i

Ûi,k+1(γ)

=

√
γ
(
[MkQs]i,i − σ2

sa
k
i

)
[Qu,k+1(γ)]i,i − 2γaki [MkQs]i,i + γσ2

sa
2k
i

Ûi,k+1(γ).

Moreover, by following the arguments leading to (B.6) we
obtain (35):

E
{

(Si − Ŝi,k)2
}

=
σ2
s [Qu,k+1(γ)]i,i − γ

(
[MkQs]i,i

)2
[Qu,k+1(γ)]i,i − 2γaki [MkQs]i,i + γσ2

sa
2k
i

. (C.17)

3) Explicit Expression of the MSE: We now derive an
explicit expression for the MSE. From (C.17) it follows that
we need to characterize [Qu,k+1(γ)]1,1 and [MkQs]1,1. Next,
we explicitly characterize [Qu,k+1(γ)]1,1 as a function of k.

a) Analysis of [Qu,k+1(γ)]1,1: From (B.7) we have:

[Qu,k+1(γ)]1,1

= γ ·
[
MkQs(M

T )k
]
1,1

+

[
k−1∑
l=0

MlQz(M
T )l

]
1,1

. (C.18)

We now separately analyze the two terms on the RHS of
(C.18).

Analysis of γ·
[
MkQs(M

T )k
]
1,1

: Following arguments sim-
ilar to those leading to (B.10) we have

[
MkQs(M

T )k
]
1

=
r2
1 +r2

2 , where r1 and r2, specialized to the symmetric setting,
are given in (C.4). Further simplifying the expressions we
obtain:

r1 =

{
λk1σs, k is even,
σsλ

k
1

det(V)

(
v2

1 + v2
2 − 2ρsv1v2

)
k is odd.

r2 =

{
0, k is even,
−2λk1σs

√
1−ρ2sv1v2

det(V) k is odd.

Thus, as Φ(ς, ρ),
ς2

(
(v21+v22−2ρv1v2)

2
+4(1−ρ2)v21v

2
2

)
det2(V)

, see (37a),
we obtain:

γ ·
[
MkQs(M

T )k
]
1,1

=

{
λ2k

1 γσ2
s , k is even,

λ2k
1 γΦ(σs, ρs) k is odd,

(C.19)

where we note that Φ(σs, ρs) ≥ 0. Next, we analyze the
second term on the RHS of (C.18).

Analysis of
[∑k−1

l=0 MlQz(M
T )l
]

1,1
: Following the same

arguments used for deriving (C.19), we write:

[
MlQz(M

T )l
]
1,1

=

{
λ2l

1 σ
2
z , l is even,

λ2l
1 Φ(σz, ρz) l is odd.

Now, for even k, following similar arguments that led to to
(C.14), we obtain:

[
k−1∑
l=0

MlQz(M
T )l

]
1,1

=
(
σ2
z +Φ(σz, ρz)λ

2
1

) k
2−1∑
m=0

λ4m
1

=
σ2
z + λ2

1Φ(σz, ρz)

1− λ4
1

(1−λ2k
1 )

= Ψ0(1−λ2k
1 ),

where Ψ0 , σ2
z+λ2

1Φ(σz,ρz)

1−λ4
1

is defined in (37b). Since
Φ(σ1, ρs) ≥ 0 and 0 < λ1 < 1, it follows that Ψ0 > 0.
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E
{

(S1−Ŝ1,k)2
}

=


σ2
s(λ2k

1 (γσ2
s −Ψ0) + Ψ0)− γ

(
λk1σ

2
s

)2
λ2k

1 (γσ2
s −Ψ0) + Ψ0 − 2γσ2

s + γσ2
sλ
−2k
1

, k is even,

σ2
s(λ2k

1 (γΦ(σs, ρs)−Ψ1) + Ψ0)− γλ2k
1 Γ2

s

λ2k
1 (γΦ(σs, ρs)−Ψ1) + Ψ0 − 2γΓs + γσ2

sλ
−2k
1

, k is odd.

=


σ2
sΨ0(1− λ2k

1 )

γσ2
s(λ2k

1 − 2 + λ−2k
1 ) + Ψ0(1− λ2k

1 )
, k is even,

γ(λ2k
1 σ2

sΦ(σs, ρs)− λ2k
1 Γ2

s) + σ2
s(Ψ0 − λ2k

1 Ψ1)

γ(λ2k
1 Φ(σs, ρs)− 2Γs + σ2

sλ
−2k
1 ) + Ψ0 − λ2k

1 Ψ1

, k is odd.
(C.23)

For odd k, we follow steps similar to those leading to (C.15)
to obtain:[
k−1∑
l=0

MlQz(M
T )l

]
1,1

=
(
σ2
z + Φ(σz, ρz)λ

2
1

) k−1
2 −1∑
m=0

λ4m
1

+ σ2
zλ

2(k−1)
1

=

(
σ2
z+Φ(σz, ρz)λ

2
1

) (
1−λ2(k−1)

1

)
+
(
1−λ4

1

)
σ2
zλ

2(k−1)
1

1− λ4
1

=
σ2
z + λ2

1Φ(σz, ρz)

1− λ4
1

− λ2k
1

Φ(σz, ρz) + λ2
1σ

2
z

1− λ4
1

= Ψ0 − λ2k
1 Ψ1.

Hence, we have:[
k−1∑
l=0

MlQz(M
T )l

]
1,1

=

{
Ψ0(1− λ2k

1 ), k is even,
Ψ0 − λ2k

1 Ψ1 k is odd.
(C.20)

Next, we combine (C.19) and (C.20) to obtain:

[Qu,k+1(γ)]1,1 =

{
λ2k

1 (γσ2
s −Ψ0) + Ψ0, k is even,

λ2k
1 (γΦ(σs, ρs)−Ψ1) + Ψ0 k is odd.

(C.21)
b) Analysis of [MkQs]1,1: Recall the definition of Γs ,

σ2
s(v21+v22−2ρsv1v2)

v21−v22
in (37d). For the symmetric setting, we

rewrite [MkQs]1,1, given in (B.20), as follows:

[MkQs]1,1 =
σ2
sλ

k
1

(
v2

1 − v2
2(−1)k + ρsv1v2((−1)k − 1)

)
v2

1 − v2
2

=

λ
k
1σ

2
s , k is even,

λk1
σ2
s(v

2
1+v22−2ρsv1v2)
v21−v22

k is odd.

=

{
λk1σ

2
s , k is even,

λk1Γs k is odd.
(C.22)

c) An Explicit Expression: By plugging (C.21) and
(C.22) into (C.17) we obtain an explicit expression for the
MSE given in (C.23) at the top of the page. Next, we show
that (C.23) decreases when γ increases.

4) The MSE Decrease with γ: We begin with the case of
even values of k:

a) Even values of k: Note that Ψ0 > 0. Thus, as λ2k
1 < 1,

we have that if λ2k
1 − 2 + λ−2k

1 > 0 then the MSE decreases
when γ increases:

λ2k
1 −2+λ−2k

1 =
λ4k

1 −2λ2k
1 +1

λ2k
1

=
(λ2k

1 −1)2

λ2k
1

>0, k>0.

Thus, for even values of k, the MSE decreases with γ.
b) Odd values of k: Recalling the definitions of

Φ(σs, ρs) and ΓS in (37a) and (37d), respectively, we write:

C0 ,

(
v2

1 + v2
2 − 2ρsv1v2

)2
+ 4(1− ρ2

s)v
2
1v

2
2

det2(V)
,

C1 ,
v2

1 + v2
2 − 2ρsv1v2

det(V)
.

which implies that Φ(σs, ρs)=σ2
s ·C0 and Γs=σ2

s ·C1. Thus,
for odd values of k, we write the MSE as follows:

E
{

(S1−Ŝ1,k)2
}

=
γσ4

sλ
2k
1 (C0−C2

1 )+σ2
s(Ψ0−λ2k

1 Ψ1)

γσ2
s(λ2k

1 C0−2C1+λ−2k
1 )+Ψ0−λ2k

1 Ψ1

.

Defining θ1 , σ4
sλ

2k
1 (C0 − C2

1 ), θ2 , σ2
s(Ψ0 − λ2k

1 Ψ1), θ3 ,
σ2
s(λ2k

1 C0−2C1+λ−2k
1 ) and θ4 , Ψ0−λ2k

1 Ψ1, the MSE is of
the form: MSE(γ) = γ·θ1+θ2

γ·θ3+θ4
. Clearly, if θj > 0, j = 1, 2, 3, 4,

and θ3 > θ1, then MSE(γ) decreases with γ. Thus, we now
show that these conditions hold.

Positivity of θ1: The positivity of θ1 follows directly from the
definitions of C0 and C1.

Positivity of θ2 and θ4: Note that both Ψ0 and Ψ1 are positive.
Furthermore, since λ2

1 < 1, it is enough to show that Ψ0 −
λ2

1Ψ1 > 0. We have:

Ψ0−λ2
1Ψ1 =

σ2
z+λ2

1Φ(σz, ρz)

1−λ4
1

−λ2
1

Φ(σz, ρz)+σ2
zλ

2
1

1−λ4
1

=σ2
z>0.

Positivity of θ3: Let χ = λ2k
1 , and write θ3 = σ2

s(χC0 −
2C1 + χ−1) =

σ2
s

χ (χ2C0 − 2C1χ + 1). Therefore, as χ > 0

and C0 > 0, θ3 > 0 if the discriminant of χ2C0 − 2C1χ+ 1
is negative:

∆ = 4C2
1 − 4C0 =

−16(1− ρ2
s)v

2
1v

2
2

det2(V)
< 0. (C.24)

Thus, we conclude that θ3 > 0.
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Proving that θ1 > θ3: We have:

θ3 − θ1 = σ2
s(λ2k

1 C0 − 2C1 + λ−2k
1 )− σ2

sλ
2k
1 (C0 − C2

1 )

= σ2
sλ

2k
1 (λ−4k

1 − 2λ−2k
1 C1 + C2

1 )

= σ2
sλ

2k
1 (λ−2k

1 − C1)2 > 0.

Thus, for odd values of k, the MSE decreases with γ. We
conclude that the MSE decreases with γ, for all values of k.
Hence, the optimal γ is determined by the per-symbol average
power constraint, and is given by

√
ν
σ2
s

, where ν is specified
in (33).

C. Proof of Proposition 4

We first show that the global minimizer (regardless of the
per-symbol average power constraint) of the distance between
th initial and steady state covariance matrices D(Qu,Qu,1) is
given by γ∗. Recalling that U1 =

√
γS, we write D(Qu,Qu,1)

as:

D(Qu,Qu,1) =
√

2(σ2
u − γσ2

s)2 + 2(ρuσ2
u − γρsσ2

s). (C.25)

Therefore, to find the minimizing γ we minimize following
polynomial in γ:

q(γ) = γ2σ4
s(1 + ρ2

s)− 2γσ2
uσ

2
s(1 + ρuρs) + σ4

u(1 + ρ2
u).

Differentiating q(γ) and equating the result to zero we obtain
the minimizing γ as:

γ∗ =
σ2
u(1 + ρuρs)

σ2
s(1 + ρ2

s)
. (C.26)

Now, to show that γ = ν
σ2
s

minimizes (C.25) under (5),
we first recall that in the proof of Prop. 3 we showed that
the MSE monotonically decreases when the scaling coefficient
increases, and also showed that γ = ν

σ2
s

is the maximal scaling
such that (5) is satisfied. In the following we show that ν

σ2
s
≤

γ∗, and therefore, since q(γ) is convex, γ = ν
σ2
s

minimizes
D(Qu,Qu,1) under (5).

To prove that ν
σ2
s
≤ γ∗ we first derive explicit expressions

for σ2
u and ρu. Recall that σ2

u = [Qu]1,1, and that ρuσ2
u =

[Qu]1,2, where Qu is the solution of (20). The following lemma
provides explicit expressions for σ2

u and ρu:
Lemma 3. σ2

u and ρu are given by:

σ2
u=

σ2
z(1−a2

1+a4
1+a6

1+ρz(−1+a2
1−a4

1+a6
1))

2a2
1(a2

1−1)
, (C.27a)

ρu =
1−a8

1−ρz(1−2a6
1+a8

1)

1+2a6
1+a8

1+ρz(a8
1−1)

. (C.27b)

Proof. The matrix Qu is the solution of the discrete algebraic
Lyapunov equation:

Qu = MQuM
T + Qz, M = A− BCT . (C.28)

To prove the lemma we show that σ2
u and ρu satisfy the

following equations:

M0

[
σ2
u

ρuσ
2
u

]
=

[
σ2
z

ρzσ
2
z

]
⇒

[
σ2
u

ρuσ
2
u

]
= M−1

0

[
σ2
z

ρzσ
2
z

]
,

where the matrix M0 is a full rank matrix derived as fol-
lows: First, recall the proof of Lemma 2 which states that

M =

[
a1 − c1 c1
−c1 −(a1 − c1)

]
. Using the relationship between

c1 and a1 in (C.2): c1 =
a41−1

2a31
, the matrix M can be written

as:

M =

 a41+1

2a31

a41−1

2a31

−a
4
1−1

2a31
−a

4
1+1

2a31

 . (C.29)

Writing Qu =

[
σ2
u ρuσ

2
u

ρuσ
2
u σ2

u

]
=

[
q1 q2

q2 q1

]
and plugging the

expression for M from (C.29) into (C.28) we have:[
q1 q2

q2 q1

]
=

 q1+a81q1−(1−a81)q2
2a61

q1−a81q1−(1+a81)q2
2a61

q1−a81q1−(1+a81)q2
2a61

q1+a81q1−(1−a81)q2
2a61


+

[
σ2
z ρzσ

2
z

ρzσ
2
z σ2

z

]
,

which can also be written as:− (1−2a61+a81)q1+(−1+a81)q2
2a61

(−1+a81)q1+(1+2a61+a81)q2
2a61

(−1+a81)q1+(1+2a61+a81)q2
2a61

− (1−2a61+a81)q1+(−1+a81)q2
2a61


=

[
σ2
z ρzσ

2
z

ρzσ
2
z σ2

z

]
. (C.30)

Note that the two rows of (C.30) are in fact the same equation.
Therefore, we obtain the following system of equations for
[q1, q2]T : − 1−2a61+a81

2a61

a81−1

2a61
a81−1

2a61

1+2a61+a81
2a61

[q1

q2

]
=

[
σ2
z

ρzσ
2
z

]

⇒ M0 =

− 1−2a61+a81
2a61

a81−1

2a61
a81−1

2a61

1+2a61+a81
2a61

 .
Lastly, we note that since a1 > 1, the matrix M0 is invertible.
Thus, we obtain:

q1 =
σ2
z(1− a2

1 + a4
1 + a6

1 + ρz(−1 + a2
1 − a4

1 + a6
1))

2a2
1(a2

1 − 1)
,

q2 =
σ2
z(−(1− a2

1 + a4
1 + a6

1) + ρz(1 + a2
1 + a4

1 − a6
1))

2a2
1(a2

1 + 1)
.

Finally, recalling that ρu = q2
q1

we conclude the proof of the
lemma.

Next, we use the explicit expressions for σ2
u and ρu to show

that ν
σ2
s
≤ γ∗, or equivalently ν ≤ σ2

u(1+ρuρs)
1+ρ2s

. Recall the
definition of ν in (33), repeated here for ease of reference:

ν = min

{
σ2
z(1− ρz + (1 + ρz)a

2
1)

(1− λ4
1)(1− ρs)

,

σ2
z((1− ρz)λ2

1 + (1 + ρz)a
4
1)

(1− λ4
1)(1 + ρs)a4

1

}
.

Using the relationship λ1 = 1
a1

, we write ν = min{ν1, ν2},
where:

ν1 ,
σ2
za

4
1(1 + a2

1 + ρz(a
2
1 − 1))

(a4
1 − 1)(1− ρs)

ν2 ,
σ2
z(1 + a6

1 + ρz(a
6
1 − 1))

a2
1(a4

1 − 1)(1 + ρs)
.
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∆γ,1 =
σ2
z(1 + ρs)

2a2
1(a4

1 − 1)(1 + ρ2
s)
· −1 + ρs + 2a6

1ρs + a8
1(1 + ρs) + ρz(1− 2a6

1 − ρs + a8
1(1 + ρs))

ρs − 1
, (C.31a)

∆γ,2 =
σ2
z(1− ρs)

2a2
1(a4

1 − 1)(1 + ρ2
s)
· −1 + ρs + 2a6

1ρs + a8
1(1 + ρs) + ρz(1− 2a6

1 − ρs + a8
1(1 + ρs))

ρs + 1
. (C.31b)

We now show that either ∆γ,1 , σ2
u(1+ρuρs)

1+ρ2s
− ν1 ≥ 0

or ∆γ,2 , σ2
u(1+ρuρs)

1+ρ2s
− ν2 ≥ 0, which implies that ν ≤

σ2
u(1+ρuρs)

1+ρ2s
. Plugging the expressions for σ2

u and ρu in (C.27)

into (C.26) we write σ2
u(1+ρuρs)

1+ρ2s
as:

σ2
u(1 + ρuρs)

1 + ρ2
s

=
σ2
z(1 + 2a6

1 − a8
1(ρs − 1) + ρs)

2a2
1(a4

1 − 1)(1 + ρ2
s)

+
σ2
z(−ρz(1 + a8

1(ρs − 1) + ρs − 2a6
1ρs))

2a2
1(a4

1 − 1)(1 + ρ2
s)

.

Thus, ∆γ,1 and ∆γ,2 are given in (C.31) at the top of the page.
Note that since |ρs| < 1, the first terms on the RHSs of (C.31a)
and (C.31b) have the same sign. Therefore, since |ρs| < 1,
we conclude that sgn(∆γ,1) = −sgn(∆γ,2). This implies that
either ∆γ,1 ≥ 0 or ∆γ,2 ≥ 0. Finally, since ν = min{ν1, ν2}
we conclude that ν

σ2
s
≤ γ∗.

D. Proof of Theorem 5

To explicitly characterize KLQG we solve the inequality
E{(S1−Ŝ1,k)2}≤D, where E{(S1−Ŝ1,k)2} is given in (C.23).
We begin with even values of k.

1) Analysis for even values of k: For even values of k we
are interested in the minimal even k such that:

σ2
sΨ0(1− λ2k

1 )

γσ2
s(λ2k

1 − 2 + λ−2k
1 ) + Ψ0(1− λ2k

1 )
≤ D, (C.32)

where
√
γ is a scaling factor of the transmitted sources, i.e.,

U1 =
√
γ · S. This inequality can also be written as:19

σ2
sΨ0(1− λ2k

1 )≤D
(
γσ2

s(λ2k
1 − 2 + λ−2k

1 ) + Ψ0(1− λ2k
1 )
)
.

Next, we multiply both sides of the inequality by λ2k
1 , and

collect common terms to obtain the inequality:

λ4k
1

(
Ψ0(D − σ2

s)−Dγσ2
s

)
+ λ2k

1

(
Ψ0(σ2

s −D) + 2Dγσ2
s

)
−Dγσ2

s ≤ 0,

which, by using the definitions of Υ0 and Υ1, can also be
written as λ4k

1 Υ0 +λ2k
1 Υ1−Dγσ2

s ≤ 0. Next, we set x = λ2k
1

and note that Υ0 < 0.20 Thus, we obtain the following monic
polynomial inequalities:

x2 + x
Υ1

Υ0
− Dγσ2

s

Υ0
≥ 0 (C.33)

The discriminant of x2 + xΥ1

Υ0
− Dγσ2

s

Υ0
is equal to 1

Υ2
0
(Υ2

1 +

4Dγσ2
sΥ0). Therefore, if Υ0 <

−Υ2
1

4Dγσ2
s

then P (e)(x) has no

19Note that γσ2
s(λ2k1 − 2 + λ−2k

1 ) + Ψ0(1− λ2k1 ) > 0.
20From the fact that Φ(σz , ρz) ≥ 0 it follows that Ψ0 ≥ 0. Furthermore

from (6) we have that D1 ≤ σ2
s . Therefore, as D1, γ, σ2

s > 0 it follows that
Υ0 = Ψ0(D1 − σ2

s)−D1γσ2
s < 0.

real roots. Since x2 + xΥ1

Υ0
− Dγσ2

s

Υ0
is convex, if it has no

real roots then it is strictly positive. Hence, in this case the
required distortion is achieved for every even k. Therefore, we
set k = 2 and obtain x(e)

0 = a−4
1 .

On the other hand, if Υ0 >
−Υ2

1

4Dγσ2
s

then P (e)(x) has two real

roots. We write x2 +xΥ1

Υ0
− Dγσ2

s

Υ0
as:

x2 + px+ q, p =
Υ1

Υ0
, q = −Dγσ

2
s

Υ0
.

The roots of this polynomial are given by −p2 ±
√

p2

4 − q.
Now, since Υ1 > 0 and Υ0 < 0 we have −p2 > 0. As Υ0 < 0,
then q > 0. Therefore, P (e)(x) has two positive roots; one is
smaller than −p2 , and the other is larger. In fact, it is easy
to see that P (e)(1) = 0, thus, the larger root equals 1. Let
(x(e)

1 , x
(e)
2 ) denote the real roots of P (e)(x). Since x = λ2k

1 ,
and since k ≥ 1, then the root we seek is min{x(e)

1 , x
(e)
2 }. Let

x(e)
0 denote the required root. Then we have:

x(e)
0 ,

{
min

{
x(e)

1 , x
(e)
2

}
,

−Υ2
1

4Dγσ2
s
≤ Υ0 < 0

a−4
1 , otherwise.

2) Analysis of Odd k’s: For odd k’s we use (C.23) to write:

γ(λ2k
1 σ2

sΦ(σs, ρs)− λ2k
1 Γ2

s) + σ2
s(Ψ0 − λ2k

1 Ψ1)

γ(λ2k
1 Φ(σs, ρs)− 2Γs + σ2

sλ
−2k
1 ) + Ψ0 − λ2k

1 Ψ1

≤ D.

(C.34)

Based on Subsection C-B3c, this inequality can also be written
as:

λ4k
1

(
(γΦ(σs, ρs)−Ψ1)(σ2

s −D)− γΓ2
s

)
+ λ2k

1

(
Ψ0(σ2

s −D) + 2DγΓs
)
−Dγσ2

s ≤ 0,

which, by using the definitions of Υ2 and Υ3, can also be
written as λ4k

1 Υ2 + λ2k
1 Υ3 − Dγσ2

s ≤ 0. Now, similarly
to (C.33), we set x = λ2k

1 to obtain the following monic
polynomial inequalities:

x2 + xΥ3

Υ2
− Dγσ2

s

Υ2
≤ 0, Υ2 > 0,

x2 + xΥ3

Υ2
− Dγσ2

s

Υ2
≥ 0 Υ2 < 0,

xΥ3 −Dγσ2
s ≤ 0, Υ2 = 0.

(C.35)

The discriminant of P (o)(x) = x2 + xΥ3

Υ2
− D1γσ

2
s

Υ2
is given

by 1
Υ2

2
(Υ2

3 + 4D1γσ
2
sΥ2). Therefore, by applying arguments

similar to those applied in Subsection C-D1 we have:

x(o)
0 ,



a−2
1 , Υ2 <

−Υ2
3

4D1γσ2
s
,

min
{
x(o)

1 , x
(o)
2

}
,

−Υ2
3

4D1γσ2
s
≤ Υ2 < 0,

Dγσ2
s

Υ3
, Υ2 = 0,

max
{
x(o)

1 , x
(o)
2

}
, otherwise.
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Note that if Υ2 > 0, then one of the roots is negative while the
other is positive and smaller than 1. In such case we choose
the positive root. Furthermore, if P (o)(x) has no real roots,
then we set x(o)

0 = a−2
1 which results in the minimal possible

odd k, i.e., k = 1.
Next, we focus on the case of Υ2 = 0 and note that for

Υ2 = 0 equation (C.35) can be written as: x ≤ Dγσ2
s

Υ3
. This

follows from the fact that Υ3 = Ψ0(σ2
s −D) + 2DγΓs > 0.

To see this note that Ψ0 ≥ 0, σ2
s ≥ D and D, γ > 0.

Furthermore, the numerator of Γs in (37d) is positive, while
the positivity of the denominator of Γs follows from (C.11)
which implies that v2

1 − v2
2 > 0. Next, we show that 0 <

Dγσ2
s

Υ3
< 1. The first inequality follows from the fact that

Υ3, D, γ, σ
2
s > 0. The second inequality follows from the fact

that Γs =
σ2
s(v21+v22−2ρsv1v2)

v21−v22
> σ2

s . We conclude that when

Υ2 = 0 we can set x(o)
0 =

Dγσ2
s

Υ3
.

Lastly, as x = λ2k
1 = a−2k

1 then k = − log(x)
2 log |a1| . This

implies that we have two candidates for the required K: K (e)

obtained from x(e)
0 and K (o) obtained from x(o)

0 . Since K is
an integer, we use d·e, and the functions f (e)(·) and f (o)(·) to
round up to the nearest even and odd integers, respectively.

APPENDIX D
PROOFS FOR THE DYNAMIC PROGRAMMING SCHEME

A. Proof of Theorem 6

Let Wk = {αk, rk} be a “state” variable, and let m =
[m0,m1, . . . ,mK−1] be a given modulation vector. In the
following we show that there exists a deterministic function
fDP such that Wk = fDP(Wk−1, bk,m), k = 1, 2, . . . ,K.
Namely, given the action bk and the modulation vector m,
the state evolves deterministically as in (46). In appendix D-B
we show that Pk = P is the optimal assignment for the JSCC-
DP scheme which implies that the JSCC-DP scheme exploits
all the available instantaneous average transmission power. For
αk we write:

αk = E
{

(ε1,k−1 − bkY1,k)
2
}

(a)
= αk−1 + b2k(P + σ2

z)− 2bkE{ε1,k−1Y1,k}
(b)
= αk−1 + b2k(P + σ2

z)

− 2bkdk−1E{ε1,k−1(ε1,k−1 +mk−1ε2,k−1)} (D.1a)

= αk−1 + b2k(P + σ2
z)− bk

√
2P (αk−1 +mk−1rk−1),

(D.1b)
where (a) follows from the fact that since the transmitted
signal and the noises are independent, then when Pk = P
we have E{Y 2

1,k} = P + σ2
z ; (b) follows by noting that

E{ε1,k−1Y1,k} = E{ε1,k−1Xk} = dkE{ε1,k−1(ε1,k−1 +
mk−1ε2,k−1)}. For rk we write:

rk = E {(ε1,k−1 − bkY1,k) (ε2,k−1 − bkmk−1Y2,k)}
= rk−1 + b2kmk−1(P + ρzσ

2
z)

− bkdk−1mk−1(αk−1 +mk−1rk−1)

− bkdk−1(mk−1αk−1 + rk−1) (D.2a)

= rk−1 + b2kmk−1(P + ρzσ
2
z)

− bkmk−1

√
2P (αk−1 +mk−1rk−1). (D.2b)

Therefore, the optimization problem in (45) can be cast as a
dynamic program with state Wk, actions {bk}Kk=1 and cost
function αK,min(m), namely, a cost function that takes into
account only the MSE at time K and ignores all the MSEs at
times k < K.

As we aim at minimizing αK,min(m), the last action, bK ,
should be the MMSE estimator of εK−1 based on Y1,K , which
is given by bK =

E{ε1,K−1Y1,K}
E{Y 2

1,K}
:

bK
(a)
=

dK−1(αK−1 +mK−1rK−1)

P + σ2
z

(D.3a)

(b)
=

√
P

2(αK−1 +mK−1rK−1)

(αK−1 +mK−1rK−1)

P + σ2
z

=

√
P (αK−1 +mK−1rK−1)

2(P + σ2
z)2

, (D.3b)

where (a) is obtained by assuming that Pk = P in evaluating
E{Y 2

1,K}; and (b) is obtained by plugging the expression for
dK−1 which is given in (42). In order to find the optimal
{bk}Kk=1, we first plug (D.3b) into (46a) and write:

αK = αK−1+b2K(P+σ2
z)−bK

√
2P (αK−1+mK−1rK−1)

= αK−1+
P (αK−1+mK−1rK−1)

2(P+σ2
z)

− P (αK−1+mK−1rK−1)

P+σ2
z

= αK−1

(
1− P

2(P + σ2
z)

)
− P

2(P + σ2
z)
mK−1rK−1

(a)
= ηK−1αK−1 + θK−1mK−1rK−1, (D.4)

where (a) follows by defining ηK−1 , 1 − P
2(P+σ2

z) and
θK−1 , − P

2(P+σ2
z) . Next, plugging (D.1a) and (D.2a) into

(D.4) we write:

αK = ηK−1αK−1 + θK−1mK−1rK−1

= ηK−1

(
αK−2 + b2K−1(P + σ2

z)

−2bK−1dK−2(αK−2 +mK−2rK−2))

+ θK−1mK−1

(
rK−2 + b2K−1mK−2(P + ρzσ

2
z)

−2bK−1dK−2mK−2(αK−2 +mK−2rK−2))

= b2K−1

(
ηK−1(P+σ2

z)+θK−1mK−1mK−2(P+ρzσ
2
z)
)

− 2bK−1dK−2 (ηK−1 + θK−1mK−1mK−2)

× (αK−2 +mK−2rK−2)

+ ηK−1αK−2 + θK−1mK−1rK−2. (D.5)

Hence, given WK−2,m, ηK−1 and θK−1, αK is a quadratic
function of bK−1. This implies that the optimizing bK−1 is
given in (D.6b) at the top of the next page. We note that (D.6b)
holds with K−1 replaced by k, k ≤ K−1, and K−2 replaced
by k−1. In the following we derive the backwards calculation
of ηk and θk. Hence, (D.6b) along with (D.3b) constitute (48).
Note that given WK−2 and m, bK−1 is a function of ηK−1

and θK−1. Next, we plug (D.6b) back into (D.5) to obtain
(D.7) at the top of the next page. Hence, (D.7) implies that the
sequences ηk and θk, for k = K − 1,K − 2, . . . , 1 obey the
backwards recursive formulation given in (47), where ηK−1
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bK−1 =
dK−2 (ηK−1 + θK−1mK−1mK−2) (αK−2 +mK−2rK−2)

ηK−1(P + σ2
z) + θK−1mK−1mK−2(P + ρzσ2

z)
(D.6a)

=

√
P

2 (αK−2 +mK−2rK−2)

(ηK−1 + θK−1mK−1mK−2) (αK−2 +mK−2rK−2)

ηK−1(P + σ2
z) + θK−1mK−1mK−2(P + ρzσ2

z)

=

√
P (αK−2 +mK−2rK−2)

2

ηK−1 + θK−1mK−1mK−2

ηK−1(P + σ2
z) + θK−1mK−1mK−2(P + ρzσ2

z)
. (D.6b)

αK = −
d2
K−2 (ηK−1 + θK−1mK−1mK−2)

2
(αK−2 +mK−2rK−2)

2

ηK−1(P + σ2
z) + θK−1mK−1mK−2(P + ρzσ2

z)

+ ηK−1αK−2 + θK−1mK−1rK−2

= −P (ηK−1 + θK−1mK−1mK−2)
2

(αK−2 +mK−2rK−2)

2(ηK−1(P + σ2
z) + θK−1mK−1mK−2(P + ρzσ2

z))

+ ηK−1αK−2 + θK−1mK−1rK−2

= αK−2

(
ηK−1 −

P (ηK−1 + θK−1mK−1mK−2)
2

2(ηK−1(P + σ2
z) + θK−1mK−1mK−2(P + ρzσ2

z))

)

+mK−2rK−2

(
θK−1mK−1mK−2−

P (ηK−1+θK−1mK−1mK−2)
2

2(ηK−1(P+σ2
z)+θK−1mK−1mK−2(P+ρzσ2

z))

)
, ηK−2αK−2 + θK−2mK−2rK−2. (D.7)

bK−1 =
dK−2 (ηK−1 + θK−1mK−1mK−2) ζK−2

2d2
K−2ζK−2(ηK−1 + θK−1mK−1mK−2) + σ2

z(ηK−1 + θK−1mK−1mK−2ρz)
. (D.12)

and θK−1 are provided just below (D.4). We conclude that
given the sequences ηk and θk, and given m and Wk−1, the
optimal coefficient bk can be calculated via (D.6b), and then,
the computed bk can be used in the forward calculation (46).
The optimal αK for the given modulation vector m is given
by (D.4).

B. Optimality of Pk = P in the JSCC-DP Scheme

In this subsection we prove that the optimal scaling dk, in
the MMSE sense, results in Pk = P, ∀k. We begin our anal-
ysis with dK−1, and recall that E{Y 2

1,K} = 2d2
K−1(αK−1 +

mK−1rK−1) + σ2
z . Thus, rewriting (D.1b) for k = K we

obtain:

αK =αK−1+b2K(2d2
K−1(αK−1+mK−1rK−1)+σ2

z)

−2bKdK−1(αK−1+mK−1rK−1). (D.8)

Similarly, (D.3a) becomes:

bK =
dK−1(αK−1 +mK−1rK−1)

2d2
K−1(αK−1 +mK−1rK−1) + σ2

z

(D.9)

Next, we plug (D.9) into (D.8) to obtain:

αK = αK−1 −
d2
K−1(αK−1 +mK−1rK−1)2

2d2
K−1(αK−1 +mK−1rK−1) + σ2

z

. (D.10)

Now, fix αK−1 and let rK−1 = ρK−1αK−1, |ρK−1| ≤
1,1 which implies that αK−1 + mK−1rK−1 = αK−1(1 +

mK−1ρK−1) ≥ 0. Let ζk , αk+mkrk and define x , d2
K−1.

We write:
d2
K−1(αK−1+mK−1rK−1)2

2d2
K−1(αK−1+mK−1rK−1)+σ2

z

=
ζ2
K−1 · x

2ζK−1 · x+σ2
z

=f0(x),

where x, ζK−1 ≥ 0. It can be easily shown that df0(x)
dx =

ζ2K−1σ
2
z

(2ζK−1·x+σ2
z)2 ≥ 0, which implies that f0(x) is a monotonic

non-decreasing function for x ≥ 0. We conclude that for any
given αK−1 (D.10) is minimized when d2

K−1 is maximized,

i.e., dK−1 =
√

P
2(αK−1+mK−1rK−1) and therefore PK = P ,

thus, satisfying the average per-symbol power constraint with
equality.

Next, we consider the case of k = K − 1, and since setting
PK = P is optimal we can use ηK−1 and θK−1 given below
(D.4). Recall that E{X2

k} = d2
k−1(2αk−1 + 2mk−1rk−1) =

2d2
k−1ζk−1. Hence, we rewrite (D.5) with P replaced by

2d2
K−2ζK−2 to obtain:

αK = b2K−1

(
ηK−1(2d2

K−2ζK−2 + σ2
z)

+θK−1mK−1mK−2(2d2
K−2ζK−2 + ρzσ

2
z)
)

− 2bK−1dK−2 (ηK−1 + θK−1mK−1mK−2) ζK−2

+ ηK−1αK−2 + θK−1mK−1rK−2, (D.11)

where the optimal bK−1, in terms of dK−2, is given in (D.12)
at the top of the page, see (D.6a). Plugging (D.12) into
(D.11) we write (D.13) at the top of the next page. Again,
ηK−1, αK−2, θK−1,mK−1, and rK−2 can be viewed as con-
stants. Let γk , ηk + θkmkmk−1, ξk , ηk + θkmkmk−1ρz .
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αK = −
d2
K−2 (ηK−1 + θK−1mK−1mK−2)

2
ζ2
K−2

2d2
K−2ζK−2(ηK−1 + θK−1mK−1mK−2) + σ2

z(ηK−1 + θK−1mK−1mK−2ρz)

+ ηK−1αK−2 + θK−1mK−1rK−2. (D.13)

−
d2
K−2 (ηK−1 + θK−1mK−1mK−2)

2
ζ2
K−2

2d2
K−2ζK−2(ηK−1 + θK−1mK−1mK−2) + σ2

z(ηK−1 + θK−1mK−1mK−2ρz)

=
ζ2
K−2γ

2
K−1 · x

2ζK−2γK−1 · x+ ξK−1σ2
z

= f1(x). (D.14)

We now write the first term on the RHS of (D.13) as (D.14) at
the top of the page. Since df1(x)

dx =
ζ2K−2γ

2
K−1ξK−1σ

2
z

(2ζK−2γK−1·x+ξK−1σ2
z)2 ,

we conclude that the sign of df1(x)
dx does not depend on x,

and therefore f1(x) is monotonic. Now, if ξK−1 > 0 then
αK is minimized when d2

K−2 is maximized, i.e., PK−1 = P .
On the other hand, if ξK−1 < 0 then αK is minimized
when d2

K−2 = 0. Clearly, the case of dK−2 = 0 implies
that PK−1 = 0, which cannot be optimal as it implies that
αK = αK−1. Finally, if ξK−1 = 0 we have that αK is
independent of dK−2 which clearly cannot hold. We conclude
that the optimal choice of dK−2 is the one which results in
PK−1 = P . Furthermore, we note that similarly to Subsection
D-A, the analysis for k = K − 1 holds for any k < K, which
implies that Pk = P is optimal for all values of K.

APPENDIX E
PROOF OF PROPOSITION 5

From Remark 12 it is clear that JSCC-DP outperforms
JSCC-OL. Next, to compare JSCC-DP with JSCC-LQG we
show that both schemes have the same structure of state
evolution, transmitted signal, and decoders. Therefore, the
JSCC-LQG scheme is in the search space of JSCC-DP.

The JSCC-DP scheme: In the JSCC-DP scheme the trans-
mitted signal is given by (41):

Xk+1 = dk (ε1,k +mkε2,k) , (E.1)

where εi,k evolves as:

ε1,k = ε1,k−1 − b1,kY1,k, ε2,k = ε2,k−1 − b2,kY2,k. (E.2)

Here, b1,k = bk and b2,k = mk−1bk. From (10), and
similarly to [37, Eq. (7)], it follows that the JSCC-DP scheme
estimates the source Si via Ŝi =

∑K
m=1 bi,mYi,m. Note that

in the JSCC-DP scheme we optimize over the sequences
{dk}Kk=1, {bk}Kk=1 and {mk}K−1

k=0 .
The JSCC-LQG scheme: We can write the transmitted

signal in the JSCC-LQG scheme as follows, see Subsection
IV-A:

Xk = c̃ (U1,k − U2,k) , (E.3)

where c̃ = −c1/a. Together with (E.3), the states Ui,k evolve
as (18):

U1,k = U1,k−1 +
1

a
Y1,k, U2,k = −U2,k−1 +

1

a
Y2,k. (E.4)

Next, recall that the decoding in the JSCC-LQG scheme is
applied in two stages. First the state Ui,k is estimated as in
(21), and then Si is estimated from the estimated state. From
(B.2) we have that the estimated state Ûi,k+1 obeys:

Ûi,k+1 =

K∑
m=1

ak−m−1
i Yi,m. (E.5)

Now, for any decoder which estimates Si from Ûi,k+1 via:
τi,kÛi,k−1, where {τi,k}Kk=1 is a sequence which depends on
the decoder in use,21 Ŝi,k has the following form:

Ŝi,k =

K∑
m=1

τi,ka
k−m−1
i Yi,m =

K∑
m=1

τ̃i,mYi,m (E.6)

for a known sequence {τ̃i,k}Kk=1. In particular, this holds for
the three decoders (22), (24), and (35). Therefore, as the
transmitted signals, the state evolution, and the decoders have
the same linear (recursive) structure, and as in the JSCC-DP
scheme we optimize over the sequences {dk}Kk=1, {bk}Kk=1 and
{mk}K−1

k=0 , we conclude that JSCC-DP outperforms JSCC-
LQG with each one of the decoders, as long as (5) is satisfied.
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