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Successive Refinement of Vector Sources Under

Individual Distortion Criteria

Jayanth Nayak, Ertem Tuncel, Deniz Gündüz, Elza Erkip

Abstract

The well-known successive refinement problem is extended to vector sources where individual distortion

constraints are posed on every vector component. This extension is then utilized for the derivation of a necessary

and sufficient condition for vector successive refinability. For 2-D vector Gaussian and binary symmetric sources,

it is shown that the successive refinability is not granted everywhere, unlike in the 1-D case for these source

distributions. Moreover, the behavior of these sources with respect to successive refinability is shown to exhibit

remarkable similarity. For the Gaussian case, the rate loss at the second stage when the first stage achieves the

optimal rate-distortion performance is also analyzed, and it is shown that the rate loss can be as high as 0.161 bits

in an appropriately defined “non-degenerate” refinement scenario. On the other hand, in the degenerate case which

corresponds to what is known as sequential coding of correlated sources, it is shown that the rate loss can be as

high as 0.5 bits.

I. INTRODUCTION

Multiresolution coding, or successive refinement, refers to coding of a source in multiple stages, where

at each stage the quality of reconstruction is improved. This source coding scenario has been extensively

studied in the last two decades by Koshelev [5], Equitz and Cover [4], Rimoldi [9], Effros [1], [2], Lastras

and Berger [6], Tuncel and Rose [10], [11], [12], and many others. Among the most popular questions is

whether a given source is successively refinable at the prescribed distortion levels, i.e., whether it is possible

to achieve the single resolution rate distortion function at every stage. In [4], it is shown that successive

refinability is granted between all distortion levels for Gaussian, Laplacian, and Bernoulli sources under

square error, absolute error, and Hamming distortion measures, respectively. Another celebrated result is

that the rate loss, i.e., the amount of excess rate one needs to expend on top of the rate-distortion function,

can be universally bounded for all sources under square error distortion [6].

In this paper, we extend the multiresolution scenario to vector sources where individual distortion

constraints are posed on every vector component. This regime of source coding for single resolution

coding is analyzed by Xiao and Luo in [15], where they characterize the behavior of the rate-distortion

function for a jointly Gaussian vector source under individual square error distortion criteria. Unlike the
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scalar rate-distortion function for Gaussian sources, the rate-distortion function for vector Gaussian sources

does not have a uniform behavior for all distortion vectors.

While deriving a single-letter characterization of all achievable rate-distortion tuples in the multireso-

lution extension is a rather straightforward task, the computation of the rate-distortion region is not as

easy in general. This is evidenced by the treatment of the special case of successive coding [7], [8],

which proved difficult to solve even for jointly Gaussian sequences under square error distortion measure.

Specifically, the approach in [7], [8] was to employ a generalized Shannon lower bound and rigorously

show its tightness. Presumably, the same approach for the more general successive refinement problem

would be even harder to follow.

In this paper, we instead tackle the issues of (i) successive refinability, and (ii) rate loss in the second

stage when the first stage is optimal. We first use a straightforward extension of the Markovity condition

derived in [4] to investigate whether vector successive refinability holds for two interesting cases: (i) 2-D

Gaussian vectors with square error distortion criterion on each vector component, and (ii) 2-D binary

symmetric vectors with Hamming distortion criterion on each component. Surprisingly, we observe that,

unlike in the scalar case, successive refinability is not granted everywhere (i.e., from any distortion vector

in the first stage to any distortion vector in the second stage) for these two examples. Also, the behavior

of the two source distributions with respect to successive refinability under the corresponding distortion

measures exhibit remarkable similarity.

We then turn to the rate loss problem for jointly Gaussian sources. We first tackle the non-degenerate

refinement case, i.e., when the achieved distortion levels cannot be reduced without increasing the rate in

either stage. In this “fair” scenario, we are able to observe a maximum rate loss of 0.161 bits. We then

analyze the rate loss in a degenerate regime which corresponds to what is known as sequential coding of

correlated sources [14]. We show that the rate loss in this case can be as high as 0.5 bits. The rate loss

in the sequential coding problem was previously bounded universally by 1 bit [6]. Our result implies that

this bound cannot be reduced by more than 0.5 bits.

In a related work, L multiple descriptions of a vector Gaussian source for individual and central

receivers are studied by Wang and Viswanath [13]. One might initially perceive our scenario (for the
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quadratic Gaussian case) as a special case of the problem discussed therein. As usual, the presumptive

specialization would be obtained by choosing a dummy decoder at the terminal receiving only the

refinement information. However, instead of individual distortion criteria on every source component,

Wang and Viswanath consider covariance distortion constraints, i.e., they analyze the case where the

time-averaged covariance of the reconstruction error vector is “less than” a prescribed distortion matrix

(in the sense of a positive semidefinite ordering). Though it is tempting to think that choosing a diagonal

distortion matrix reduces the scenario of [13] to ours, this choice introduces extra constraints on the

off-diagonal entries of the error covariance matrix, and therefore the two distortion regimes are different.

Moreover, the requirement that this diagonal distortion matrix must be less than the covariance of the

source, as assumed for all distortion matrices in [13], is limiting in the sense that one cannot observe the

interesting non-uniform rate-distortion behavior mentioned above.

We begin by introducing the preliminaries and background in the next section. We then investigate the

behavior of 2-D Gaussian sources under square error distortion and of 2-D binary sources under Hamming

distortion with respect to successive refinability in Sections III and IV, respectively. Section V is devoted

to the analysis of the rate loss for 2-D Gaussian sources. Section VI summarizes the results and concludes

the paper.

II. PRELIMINARIES AND BACKGROUND

Let a stationary and memoryless source produce the vector sequence {X(t)}∞t=0 according to a proba-

bility distribution pX, where X(t) = [X1(t) X2(t) . . . XN (t)]T ∈ XN for some underlying alphabet X .

Denote the reconstruction of this sequence as {X̂(t)}∞t=0 where X̂(t) ∈ X̂N . Also denote length-n blocks

of the sequence and its reconstruction as X(1..n) and X̂(1..n), respectively. Similar notation applies to

the ith component of the sequence and its reconstruction: Xi(1..n) and X̂i(1..n). We shall also use X as

a generic random vector representing one sample of the source sequence.

Let di : X × X̂ → [0,∞) with i = 1, 2, . . . , N be the single-letter distortion measures for individual

vector components, i.e.,

di(Xi(1..n), X̂i(1..n)) =
1

n

n
∑

t=1

di(Xi(t), X̂i(t)) .
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We first repeat the definition of the single-stage rate-distortion problem and its single-letter characteri-

zation, which appeared in [15], then define the multi-stage problem, and discuss its connections to similar

problems in the literature.

A. The single-stage problem

Definition 1: A rate-distortion pair (R,D) is achievable if for any ε > 0 and sufficiently large n there

exist an encoder

f : XNn → {1, 2, . . . , b2nRc}

and N decoders

gi : {1, 2, . . . , b2nRc} → X̂ n

such that

E{di(Xi(1..n), X̂i(1..n))} ≤ Di + ε

for i = 1, 2, . . . , N , where

X̂i(1..n) = gi(f(X(1..n))) .

For a fixed distortion vector D, the minimum rate R for which (R,D) is achievable is denoted by R(D).

The block-diagram of the single-stage system is shown in Figure 1. One can observe that, as pointed out

in [7], [8], the single-stage rate-distortion problem is a special case of the more general robust descriptions

problem in [3]. More specifically, in the robust descriptions scenario, the rate-distortion function for source

S and its reconstructions Ŝ1, Ŝ2, . . . , ŜN is given by

R(D) = min
E{ρi(S,Ŝi)}≤Di, ∀i

I(S; Ŝ1, . . . , ŜN )

Substituting S = X, Ŝi = X̂i, and ρi(S, Ŝi) = di(Xi, X̂i) yields the following theorem as a special case.

Theorem 1 ([15]):

R(D) = min
E{d(X,X̂)}≤D

I(X; X̂)

where

d(X, X̂) = [d1(X1, X̂1) d2(X2, X̂2) . . . dN (XN , X̂N )]T

and a ≤ b is a shorthand notation for ai ≤ bi, i = 1, 2, . . . , N .
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Fig. 1. Single-stage vector source coding with individual distortion criteria.

The jointly Gaussian vector source under square error distortion measure is analyzed by Xiao and Luo

in [15]. We now summarize their solution in the 2-D case. Without loss of generality, assume that the

covariance matrix of the source zero-mean jointly Gaussian X is given by

CX =

[

1 ρ
ρ 1

]

,

with 0 < ρ < 1. For convenience, we will use the notation

δi , 1 −Di

when necessary. Define three regions in the unit square on the D-plane as

D1 = {D : ρ2 ≤ δ1δ2},

D2 = Dc
1 ∩
{

D : ρ2 ≤ min

(

δ1

δ2
,
δ2

δ1

)}

,

D3 = Dc
1 ∩ Dc

2,

where the superscript c denotes the complement of a set. Figure 2 illustrates these three regions. Whenever

necessary, we will use the notation Dj(ρ), j = 1, 2, 3 to make explicit the dependence of these regions

on ρ. The rate-distortion function is given by1

R(D) =











1
2
log 1−ρ2

D1D2

D ∈ D1

1
2
log 1−ρ2

D1D2−(ρ−
√

δ1δ2)2
D ∈ D2

1
2
log 1

min(D1,D2)
D ∈ D3

. (1)

The region D3 is essentially a degenerate one in the sense that if, for example, ρ2 > δ2

δ1
, or equivalently,

D2 > 1−ρ2(1−D1), we have R(D) = 1
2
log 1

D1
. The fact that this coincides with the rate-distortion function

1All logarithms in this paper are base 2.
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of a scalar Gaussian source implies that the optimal coding strategy is to ignore X2(1..n) and optimally

compress X1(1..n). The other component X2(1..n) can then be optimally estimated from X̂1(1..n) resulting

in D2 = 1 − ρ2(1 −D1). Similarly for the case D1 > 1 − ρ2(1 − D2).

In [15], the optimal forward test channel is characterized to be a simple additive Gaussian noise channel.

However, we will be extensively using the optimal backward test channel, which, in the non-degenerate

region D1 ∪ D2, is given by

X = X̂∗ + Z,

where both X̂∗ and Z are Gaussian vectors independent of each other. Also

C
X̂∗

=

[

δ1 ρ
ρ δ2

]

,

CZ =

[

D1 0
0 D2

]

for D ∈ D1, and

C
X̂∗

=

[

δ1

√
δ1δ2√

δ1δ2 δ2

]

,

CZ =

[

D1 ρ −
√

δ1δ2

ρ −
√

δ1δ2 D2

]

for D ∈ D2. Note that when D ∈ D2, C
X̂∗

is in fact singular, and hence X̂∗ degenerates to a distribution

on the line

X̂2 =

√

δ2

δ1
X̂1 .

Observing that ρZ, the correlation coefficient of the backward channel noise Z, is given by

ρZ =
E{Z1Z2}

√

E{|Z1|2}E{|Z2|2}
=

{

0 D ∈ D1
ρ−

√
δ1δ2√

D1D2

D ∈ D2
,

or equivalently by

ρZ =
max{0, ρ −

√
δ1δ2}√

D1D2

,

one can rewrite (1) more concisely as

R(D|ρ) =
1

2
log

1 − ρ2

D1D2(1 − ρ2
Z
)

(2)

whenever D ∈ D1(ρ) ∪ D2(ρ), where the dependence of R(D) on ρ is also made explicit.
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Fig. 2. The three regions D1, D2, and D3 for ρ = 0.4.

B. The multi-stage extension

Since subscripts are reserved for vector components, we use superscript l on encoders, decoders, rates,

distortion levels, and random variables to indicate stage l. Exceptions to this rule are expressions such as

ρ2, ρ2
Z

, ρ2
Z1 , etc., which are to be understood as the square of the respective correlation coefficient.

Definition 2: A rate-distortion 2L-tuple (R1, . . . , RL,D1, . . . ,DL) is successively achievable if for any

ε > 0 and sufficiently large n there exist L encoders

f l : XNn → {1, 2, . . . , b2nRlc}

and NL decoders

gl
i : {1, 2, . . . , b2nR1c} × · · · × {1, 2, . . . , b2nRlc} → X̂ n

such that

E{di(Xi(1..n), X̂ l
i(1..n))} ≤ Dl

i + ε

for i = 1, 2, . . . , N and l = 1, 2, . . . , L, where

X̂ l
i (1..n) = gl

i(f
1(X(1..n)), . . . , f l(X(1..n))) .

The following lemma provides a single-letter characterization of the multiresolution rate-distortion

function for vector sources. We omit the proof, since it is a straightforward extension of the proofs in [5],

[9].
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Fig. 3. Multiple-stage vector source coding with individual distortion criteria.

Lemma 1: A rate-distortion tuple (R1, . . . , RL,D1, . . . ,DL) is successively achievable if and only if

there exist auxiliary vectors X̂
1, X̂2, . . . , X̂L satisfying

I(X; X̂1, . . . , X̂l) ≤
l
∑

k=1

Rk

E{d(X, X̂l)} ≤ D
l

for all l = 1, 2, . . . , L.

Figure 3 depicts encoder-decoder structure for the multi-stage scenario.

C. Successive refinability for vector sources

As in multi-stage scalar source coding, an important question is whether one can achieve the single-stage

rate-distortion function at all stages.

Definition 3: The source X is said to be successively refinable at the distortion point (D1, . . . ,DL)

with

D
1 ≥ D

2 ≥ . . . ≥ D
L
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if the rate-distortion tuple (R1, . . . , RL,D1, . . . ,DL) satisfying

l
∑

k=1

Rk = R(Dl)

for l = 1, 2, . . . , L is successively achievable.

For any scheme successively achieving (R1, . . . , RL,D1, . . . ,DL), the associated rate loss at stage l is

given by

Sl =
l
∑

k=1

Rk −R(Dl) .

For the purposes of this paper, the following corollary to Lemma 1 is essential.

Corollary 1: The source X is successively refinable at (D1,D2) with D
1 ≥ D

2 if and only if the

optimal vectors X̂
l
∗ achieving {Dl, R(Dl)} for l = 1, 2 satisfy the Markov chain

X − X̂
2
∗ − X̂

1
∗ .

Proof: If (X̂1, X̂2) achieves {R(D1), R(D2) − R(D1),D1,D2}, we have

R(D1)
(a)

≥ I(X; X̂1)
(b)

≥ R(D1)

and

R(D2)
(c)

≥ I(X; X̂1, X̂2)
(d)

≥ I(X; X̂2)
(e)

≥ R(D2)

where (a) and (c) follow from Lemma 1; (d) follows from the chain rule; and (b) and (e) follow from

the definition of R(D). Thus, we must have X̂
1 = X̂

1
∗, X̂

2 = X̂
2
∗, and X− X̂

2
∗ − X̂

1
∗.

Conversely, if X − X̂
2
∗ − X̂

1
∗, the choice X̂

1 = X̂
1
∗ and X̂

2 = X̂
2
∗ satisfies (a) − (e) with equality.

D. Relation to the successive coding and the sequential coding problems

In this work, we consider N = 2 and L = 2. For this special case, two problems intimately related to

vector successive refinement have been discussed in the literature: successive coding [7], [8] and sequential

coding [14] of vector sources, as illustrated in Figure 4 and Figure 5, respectively. In both problems, the

decoders g1
2 and g2

1 we have in the successive refinement problem do not exist. This is because the first and

the second stage descriptions are to be used exclusively for the reconstructions of X1(1..n) and X2(1..n),

respectively. The difference between the two problem settings is that, in the successive coding problem

the whole source X(1..n) is available at both of the encoders, whereas in the sequential coding problem



10

















X1(1..n)

X2(1..n)

















X̂1(1..n)

X̂2(1..n)

f1(·)

f2(·)

g1

1
(·)

g2

2
(·)

Fig. 4. Successive coding of vector sources as a special case of successive refinement with individual distortion criteria.
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1
(·)
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2
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Fig. 5. Sequential coding of vector sources. For Gaussian sources and square error distortion measure, this becomes a special case of

successive refinement with individual distortion criteria.

X2(1..n) is not available at the first stage encoder. In the sequential coding problem, most exciting results

have been reported for the minimum achievable total rate Rtot = R1 + R2 (See [14, Sections V and VI]

and [6, Section V]).

It is easy to see that the successive coding problem is a special case of the vector successive refinement

problem: simply set D
1 = [D1

1 ∞]T and D
2 = [∞ D2

2 ]
T and let g1

2 and g2
1 output arbitrary sequences.

On the other hand, the connection between sequential coding and vector successive refinement is less

direct due to the unavailability of X2(1..n) at the first stage encoder f1. However, it was shown in [14,

Theorem 4] that for jointly Gaussian sources and square error distortion measure, the minimum total

rate Rtot is achieved by optimally compressing X1(1..n) in the first stage, i.e., R1 = R(D1
1). One could

thus emulate optimal sequential coding using a vector successive refinement coder with first stage rate

R1 = R(D1
1), since with this rate constraint the first stage encoder cannot utilize X2(1..n) even if it

has access to it. In other words, for jointly Gaussian sources and square error distortion measure, a total

rate Rtot is achievable in the sequential coding problem if and only if (R(D1), Rtot − R(D1),D1,D2) is

achievable in the vector successive refinement problem, where, again, D1 = [D1
1 ∞]T and D

2 = [∞ D2
2]

T .
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This connection between the two problems allows us to precisely compute the minimum total rate loss

Stot , Rtot − R(D)

with D = [D1
1 D2

2 ]
T . This definition of rate loss is made in [6], where the authors also show that under the

square error distortion measure, Stot ≤ 1 universally, i.e., for all sources. Here we show that, surprisingly,

the rate loss can be arbitrarily close to 0.5 bits even for jointly Gaussian sources.

E. Connection with the vector Gaussian multiple descriptions problem

In [13], Wang and Viswanath consider the vector Gaussian L-description problem, where there are L

side receivers and one central receiver. When L = 2, for which the complete rate region is characterized

in [13], the only structural difference between this scenario and the successive refinement problem is the

existence of an additional set of N decoders which receive only the refinement information:

g0
i : {1, 2, . . . , b2nR2c} → X̂ n

with

X̂0
i (1..n) = g0

i (f
2(X(1..n)))

for i = 1, 2, . . . , N . As usual, if g0
i are chosen as dummy decoders that disregard the received information

and simply output X̂
0(t) = E{X(t)} for 1 ≤ t ≤ n, the problem reduces to that of successive refinement.

However, this observation still does not render our scenario a special case of that in [13]. Because,

in [13] instead of individual distortion criteria, a covariance distortion constraint is considered, whereby

it is required that

1

n

n
∑

t=1

E

{

(

X(t)− X̂
l(t)
)(

X(t) − X̂
l(t)
)T
}

� K
l

for l = 1, 2, with K
l denoting the prescribed covariance matrix at stage l, and � indicating “less than or

equal to” in the sense of a positive definite ordering. In this setting, even a diagonal choice for K
l with

K
l
i,i = Dl

i

is more constraining than the individual distortion constraints we have in Definition 2. Moreover, the

assumption in [13] that K
l � CX is limiting for our purposes. For instance, when N = 2 and K

l is
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diagonal, this implies that

0 ≤ det
(

CX − K
l
)

= (1 − Dl
1)(1 −Dl

2) − ρ2

or, equivalently, D
l ∈ D1. In fact, as we discuss in the next section, D

1,D2 ∈ D1 is a less interesting

case in which successive refinability is always granted.

III. VECTOR SUCCESSIVE REFINABILITY FOR 2-D GAUSSIAN SOURCES

We now investigate whether conditions in Corollary 1 are satisfied for 2-D Gaussian sources under

individual square error distortion criteria. It turns out that for certain values of D
1 and D

2, successive

refinability is not granted.

We consider three sub-cases: (i) from D1 to D1, (ii) from D2 to D2, and (iii) from D2 to D1, and

investigate whether the source is successively refinable in each of these cases. In all three cases, letting

X = X̂
1
∗ + Z

1 = X̂
2
∗ + Z

2, the Markovity condition reduces to

Z
1 = Z

2 + N

for a Gaussian vector N independent of Z
2. This, in turn, holds if and only if CZ1 � CZ2 .

Case i: D
1,D2 ∈ D1. Since

CZ1 − CZ2 =

[

δ2
1 − δ1

1 0
0 δ2

2 − δ1
2

]

(3)

is positive semi-definite for all D
2 ≤ D

1, successive refinability is granted everywhere in this case.

Case ii: D
1,D2 ∈ D2. We now have

CZ1 − CZ2 =

[

δ2
1 − δ1

1

√

δ2
1δ

2
2 −

√

δ1
1δ

1
2

√

δ2
1δ

2
2 −

√

δ1
1δ

1
2 δ2

2 − δ1
2

]

.

Since we assume D
2 ≤ D

1, we have CZ1 � CZ2 if and only if

0 ≤ det(CZ1 −CZ2)

= (δ2
1 − δ1

1)(δ
2
2 − δ1

2) − δ2
1δ

2
2 − δ1

1δ
1
2 + 2

√

δ2
1δ

2
2δ

1
1δ

1
2

= −δ1
1δ

2
2 − δ2

1δ
1
2 + 2

√

δ2
1δ

2
2δ

1
1δ

1
2 .
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This is equivalent to having

δ1
1δ

2
2 + δ2

1δ
1
2

2
≤
√

δ2
1δ

2
2δ

1
1δ

1
2,

which reveals that the Markovity condition is satisfied if and only if the arithmetic mean of δ1
1δ

2
2 and

δ2
1δ

1
2 is less than or equal to their geometric mean of the same. But since the arithmetic mean cannot be

less than the geometric mean, and the two are equal if and only if the arguments are identical, we have

δ1
1δ

2
2 = δ2

1δ
1
2, or equivalently,

δ1
2

δ1
1

=
δ2
2

δ2
1

. (4)

Hence, the points (δ1
1, δ

1
2) and (δ2

1, δ
2
2) must lie on a straight line passing through the origin in the δ1 − δ2

plane.

Case iii: D
1 ∈ D2 and D

2 ∈ D1. In this case, we assume without loss of generality that δ1
2 = νδ1

1 with

ρ2 ≤ ν ≤ 1
ρ2 and ρ ≥ √

νδ1
1 . Then

CZ1 − CZ2 =

[

δ2
1 − δ1

1 ρ −
√

δ1
1δ

1
2

ρ −
√

δ1
1δ

1
2 δ2

2 − δ1
2

]

=

[

δ2
1 − δ1

1 ρ −√
νδ1

1

ρ −√
νδ1

1 δ2
2 − νδ1

1

]

.

The Markovity condition then reduces to

(δ2
1 − δ1

1)(δ
2
2 − νδ1

1) ≥
(

ρ −
√

νδ1
1

)2
. (5)

As a sanity check, this region should include all (δ2
1, δ

2
2) ∈ D1 such that δ2

1 ≥ ρ√
ν

and δ2
2 ≥ ρ

√
ν .

This follows from the analysis of the previous cases and the observation that the point ( ρ√
ν
, ρ
√

ν) is

simultaneously on the line δ2
2 = νδ2

1 and on the common boundary of D1 and D2. More specifically,

according to (4) one can first successively refine without rate loss from D
1 to any intermediate point

D
0 ∈ D2 on the line δ0

2 = νδ0
1, including ( ρ√

ν
, ρ
√

ν). It then follows from (3) that one can do the same

from D
0 to any D

2 ≤ D
0. Indeed, the point δ2

1 = ρ√
ν

and δ2
2 = ρ

√
ν satisfies (5) with equality, and the

above claim is corroborated. However, it is also clear from (5) that the successive refinability region is

not limited to that rectangular region.

Figure 6 shows the successive refinability region for several choices of (δ1
1, δ

1
2).
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Fig. 6. The successive refinability region in the (δ1, δ2)-plane for Gaussian sources with and several (δ1
1, δ

1
2) pairs (indicated using ◦)

satisfying δ1

2 = νδ1

1 and ν = 0.8. We set ρ = 0.4. The particular choices of δ1

1 for (a)-(d) are 0.05, 0.3, ρ√
ν

= 0.4472, and 0.5, respectively.

When D
1 ∈ D2 as in (a) and (b), the region of D

2 for which successive refinability holds constitutes a line in D2 (indicated in bold) and

everywhere above the bold curve that lies in D1. When D
1 ∈ D1 as in (c) and (d), successive refinability holds for all (δ2

1 , δ2
2) in the

rectangular region above the bold lines.

IV. VECTOR SUCCESSIVE REFINABILITY FOR BINARY SYMMETRIC SOURCES

In this section, we investigate successive refinability of 2-D binary symmetric sources under the

Hamming distortion measure. The behavior of these sources regarding successive refinability exhibits

remarkable similarity with that of Gaussian sources under square error distortion.

Let the probability mass function (p.m.f.) of the source be given by

PX =

[

p 1
2
− p

1
2
− p p

]

, (6)

where we assume 1
4
≤ p ≤ 1

2
without loss of generality. If p < 1

4
, then one could switch the roles of 0
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and 1 in X1 (or X2) and obtain the current form. For this family of sources, we define

δi , 1 − 2Di

and δj
i , 1 − 2Dj

i for proper i, j. Note that since one can achieve Di = 1
2

for i = 1, 2 even with zero

rate, we need only consider the unit square {(δ1, δ2) : 0 < δ1 ≤ 1 and 0 < δ2 ≤ 1}.

We first compute the rate-distortion function and the optimal test channels for the single-stage problem.

Theorem 2: The rate-distortion function for a 2-D binary symmetric source with a p.m.f. given in (6)

is characterized by

R(D) =











H(X) −H(D1) −H(D2) D ∈ E1

H(X) −H(2p) − 2pH
(

D1+D2+2p−1
4p

)

− (1 − 2p)H
(

D1−D2+1−2p

2(1−2p)

)

D ∈ E2

1 −H(min{D1, D2}) D ∈ E3

where H(α) , −α log α − (1 − α) log(1 − α), and

E1 = {D : 4p − 1 ≤ δ1δ2},

E2 = Ec
1 ∩
{

D : 4p − 1 ≤ min

(

δ1

δ2
,
δ2

δ1

)}

,

E3 = Ec
1 ∩ Ec

2 .

Also, in the non-degenerate region D ∈ E1 ∪ E2, the optimal backward channel is always of the form

X = X̂∗ + Z where P
X̂∗

and PZ are given as

P
X̂∗

=

[

q 1
2
− q

1
2
− q q

]

(7)

with

q =
1

4

(

1 +
4p − 1

δ1δ2

)

, (8)

and

PZ =

[

(1 − D1)(1 − D2) (1 − D1)D2

D1(1 −D2) D1D2

]

(9)

for D ∈ E1, and

P
X̂∗

=

[

1
2

0
0 1

2

]

(10)

and

PZ =
1

2

[

2 − D1 − D2 − (1 − 2p) D2 − D1 + (1 − 2p)
D1 − D2 + (1 − 2p) D1 + D2 − (1 − 2p)

]

(11)
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for D ∈ E2.

The proof is given in the Appendix.

The partitioning of the unit square with respect to different rate-distortion behaviors is exactly as shown

in Figure 2 where D1, D2, D3, and ρ2 play the roles of E1, E2, E3, and 4p − 1, respectively. Similar to

the Gaussian case, E3 is degenerate in the sense that if, for example, 4p − 1 > δ2

δ1
, or equivalently

D2 > 1 − 2p + (4p − 1)D1, D2 can be further reduced to D2 = 1 − 2p + (4p − 1)D1 without increasing

R(D). Similarly for the case D1 > 1 − 2p + (4p − 1)D2.

As in the Gaussian problem, we now consider successive refinement for three sub-cases: (i) from E1 to

E1, (ii) from E2 to E2, and (iii) from E2 to E1, and investigate whether the source is successively refinable

in each case. Since X = X̂
1
∗ ⊕Z

1 = X̂
2
∗ ⊕ Z

2, the Markovity condition reduces to

Z
1 = Z

2 ⊕ N

where N is independent of Z
2. To check this condition, we employ a powerful technique well-known in

2-D signal processing, namely, 2-D discrete Fourier transform (DFT). The main observation here is that

Z
1 = Z

2 ⊕N with independent (Z2,N) implies that the p.m.f.’s of these random variables satisfy

PZ1 = PZ2 ◦ PN

where ◦ denotes the 2-D circular convolution operation. This, in turn, implies

F (PZ1) = F (PZ2) · F (PN)

where F and · denote 2-D DFT and element-by-element product, respectively.

Case i: D
1,D2 ∈ E1. It can be shown using (9) that

F (PZi) =

[

1 δi
2

δi
1 δi

1δ
i
2

]

(12)

for i = 1, 2. Thus, we need

PN = F−1

([

1
δ1

2

δ2
2

δ1
1

δ2
1

δ1
1
δ1
2

δ2
1
δ2
2

])

=
1

4

[

1 +
δ1
1

δ2
1

1 − δ1
1

δ2
1

]

[

1 +
δ1
2

δ2
2

1 − δ1
2

δ2
2

]

to be a valid p.m.f. But this is always granted since we only focus on D2 ≤ D1.
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Case ii: D
1,D2 ∈ E2. We have from (11) that

F (PZi) =

[

1 δi
2

δi
1 4p − 1

]

(13)

for i = 1, 2. This, in turn, implies that we need

PN = F−1

([

1
δ1
2

δ2

2

δ1
1

δ2
1

1

])

=
1

4

[

2 +
δ1
1

δ2
1

+
δ1
2

δ2
2

δ1
1

δ2
1

− δ1
2

δ2
2

δ1
2

δ2
2

− δ1
1

δ2
1

2 − δ1
1

δ2
1

− δ1
2

δ2
2

]

to be a valid p.m.f. It can easily be seen that this requires

δ1
1

δ2
1

=
δ1
2

δ2
2

≤ 1

which is granted only when the points (δ1
1, δ

1
2) and (δ2

1, δ
2
2) lie on the same line passing through the origin.

Case iii: D
1 ∈ E2 and D

2 ∈ E1. We assume without loss of generality that δ1
2 = νδ1

1 with 4p − 1 ≤

ν ≤ 1
4p−1

and δ1
1 ≤

√

4p−1
ν

. It follows from (12) and (13) that we need

PN = F−1

([

1
νδ1

1

δ2
2

δ1
1

δ2
1

4p−1
δ2
1
δ2
2

])

4
=

1

4δ2
1δ

2
2

[

r11 r12

r21 r22

]

to be valid, where

r11 = δ2
1δ

2
2 + νδ2

1δ
1
1 + δ2

2δ
1
1 + 4p − 1,

r12 = δ2
1δ

2
2 − νδ2

1δ
1
1 + δ2

2δ
1
1 − 4p + 1,

r21 = δ2
1δ

2
2 + νδ2

1δ
1
1 − δ2

2δ
1
1 − 4p + 1,

r22 = δ2
1δ

2
2 − νδ2

1δ
1
1 − δ2

2δ
1
1 + 4p − 1 .

Observe that the entries of PN always sum up to 1 and r11 ≥ 0 is always granted. Thus, it suffices to

check r12 ≥ 0, r21 ≥ 0, and r22 ≥ 0, which can be re-written as

(δ2
1 + δ1

1)(δ
2
2 − νδ1

1) ≥ 4p − 1 − ν
(

δ1
1

)2
, (14)

(δ2
1 − δ1

1)(δ
2
2 + νδ1

1) ≥ 4p − 1 − ν
(

δ1
1

)2
, (15)

(δ2
1 − δ1

1)(δ
2
2 − νδ1

1) ≥ −
[

4p − 1 − ν
(

δ1
1

)2
]

. (16)

Since D
2 ≤ D

1 translates into δ2
1 ≥ δ1

1 and δ2
2 ≥ νδ1

1, and 4p − 1 ≥ ν (δ1
1)

2
, (16) becomes vacuous.
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Fig. 7. The successive refinability region in the (δ2
1 , δ2

2)-plane for several (δ1
1 , δ1

2) pairs (indicated using ◦) satisfying δ1
2 = νδ1

1 and ν = 0.8.

To emphasize the similarity to the Gaussian case, we set p = 0.29 so that 4p− 1 = ρ2 with ρ = 0.4. The particular choices of δ1

1 for (a)-(d)

are 0.05, 0.3,

q

4p−1

ν
= 0.4472, and 0.5, respectively. When D

1 ∈ E2 as in (a) and (b), the region of D
2 for which successive refinability

holds constitutes a line in E2 (indicated in bold) and everywhere above the bold curve that lies in E1. When D
1 ∈ E1 as in (c) and (d),

successive refinability holds for all (δ2
1 , δ2

2) in the rectangular region above the bold lines.

Similar to the sanity check we had in Case (iii) for 2-D Gaussian vectors, we observe from (14) and

(15) that this region includes all (δ2
1, δ

2
2) such that δ2

1 ≥
√

4p−1
ν

and δ2
2 ≥

√

ν(4p − 1). Inclusion of this

rectangular region intuitively follows from analyses of the previous cases and the observation that the

point
(√

4p−1
ν

,
√

ν(4p − 1)
)

is simultaneously on the line δ2
2 = νδ2

1 and on the common boundary of E1

and E2.

Figure 7 shows the successive refinability region for several choices of (δ1
1, δ

1
2).

V. THE RATE LOSS FOR 2-D GAUSSIAN SOURCES

We now analyze the rate loss for 2-D Gaussian sources when the first stage coding is performed

optimally, i.e., by expending rate R(D1) with D
1 ∈ D2. From Lemma 1, it follows that the minimum
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second stage rate R2 in this case is given by

R2 = min
E{d(X,X̂2)}≤D2

I(X; X̂2|X̂1
∗)

= min
E{d(Z1,X̂2−X̂1

∗)}≤D2

I(Z1; X̂2 − X̂
1
∗|X̂1

∗) .

Letting X
∆ = X̂

2 − X̂
1
∗ and recalling the independence of X̂

1
∗ and Z

1, we further have

R2 = min
E{d(Z1,X∆)}≤D2

I(Z1;X∆|X̂1
∗) + I(Z1; X̂1

∗)

= min
E{d(Z1,X∆)}≤D2

I(Z1;X∆) + I(Z1; X̂1
∗|X∆)

= min
E{d(Z1,X∆)}≤D2

I(Z1;X∆)

where the last step follows from the fact that one can always choose X
∆ so that it minimizes I(Z1;X∆),

and at the same time, X̂
1
∗ is independent from (Z1,X∆), and hence Z

1−X
∆−X̂

1
∗ forms a Markov chain.

Since Z
1 is Gaussian (as are all variables) and the distortion measure is square error, we can utilize the

solution (1), or equivalently, (2). More specifically, we can write

R2 = R(D∆|ρZ1) (17)

where D
∆ = [D∆

1 D∆
2 ]T , [D2

1/D
1
1 D2

2/D
1
2 ]

T . The normalization by D1
1 and D1

2 is due to the fact

that those correspond to the variances of Z1
1 and Z1

2 , respectively. Naturally, the behavior of R(D∆|ρZ1)

depends on which region D
∆ falls into. Define the sets D∆

j for j = 1, 2, 3 as

D∆
j = {(δ2

1, δ
2
2) : (δ∆

1 , δ∆
2 ) ∈ Dj(ρZ1)}

with δ∆
i , 1 − D∆

i for i = 1, 2. Figure 8 shows the three regions for a particular value of D
1. It can be

easily shown that D∆
1 ⊂ D1(ρ) and D∆

2 ⊂ D1(ρ) ∪ D2(ρ).

We are ready to analyze the maximum possible rate loss. We tackle two possible scenarios separately: (i)

non-degenerate refinement, corresponding to D
2 ∈ D∆

1 ∪D∆
2 , and (ii) degenerate refinement, corresponding

to D
2 ∈ D∆

3 . When D
2 ∈ D∆

3 , at first glance, a direct comparison between two stage and single stage

coding may be considered unfair since the rate loss will be partially due to the fact that the second stage

is forced to operate in the degenerate region. More specifically, when D
2 ∈ D∆

3 one of the two distortion

components can be further reduced without increasing the expended rate in the refinement stage. On the

other hand, degenerate refinement is still interesting in those cases where D
1 lies on the boundary between
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D2 and D3 (depending on which of the two boundaries, only one of the sources is optimally encoded

and the other is optimally estimated at the first stage), since these correspond to the sequential coding

scenario in Figure 5. We shall analyze degenerate refinement only for such cases.

A. Maximum rate loss in non-degenerate refinement

When D
∆ ∈ D1 ∪ D2, the backward channel is given by

Z
1 = X

∆ + Z
∆

where Z
∆ is independent of X

∆. Thus, (17) can be further expanded to

R2 =
1

2
log

1 − ρ2
Z1

D∆
1 D∆

2 (1 − ρ2
Z∆)

(18)

where

ρZ∆ =
max

{

0, ρZ1 −
√

δ∆
1 δ∆

2

}

√

D∆
1 D∆

2

.

Now, using (18) with (2), we can write the rate loss at the second stage as

S2 = R(D∆|ρZ1) + R(D1|ρ) −R(D2|ρ)

=
1

2
log

1 − ρ2
Z1

D∆
1 D∆

2 (1 − ρ2
Z∆)

+
1

2
log

1 − ρ2

D1
1D

1
2(1 − ρ2

Z1)
− 1

2
log

1 − ρ2

D2
1D

2
2(1 − ρ2

Z2)

=
1

2
log

1 − ρ2
Z2

1 − ρ2
Z∆

. (19)

As a sanity check, one can re-derive the results in Section III by setting ρZ2 = ρZ∆ . For example,

successive refinability from D2 to D1 corresponds to ρZ2 = ρZ∆ = 0, and thus to D
2 ∈ D∆

1 .

Its simplicity notwithstanding, the expression (19) resisted our efforts for a complete analysis of the

maximum rate loss. Resorting to numerical trial and error, we observed that the rate loss can be as high

as 0.161 bits. We next show that with proper choice of parameters, one can observe the same rate loss

analytically.

For a given ρ, choose δ1
2 = ρ2δ1

1 and δ∆
1 = ρ2

Z1δ∆
2 . The intuition behind this choice is that (δ1

1, δ
1
2)

and (δ2
1, δ

2
2) digress the furthest from being on a line that passes through the origin2. Since in this case

2With the same token, we could have chosen δ1
1 = ρ2δ1

2 and δ∆
2 = ρ2

Z1δ
∆
1 . Without loss of generality, we only analyze the former case.
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D
1,D∆ ∈ D2, we have

ρZ∆ =
ρZ1 −

√

δ∆
1 δ∆

2
√

D∆
1 D∆

2

= ρZ1

√

D∆
2

D∆
1

=
ρ −

√

δ1
1δ

1
2

√

D1
1D

1
2

√

D∆
2

D∆
1

= ρ

√

D1
1D

∆
2

D1
2D

∆
1

= ρ

√

(1 − δ1
1)(1 − δ∆

2 )

1 − ρ2(δ1
1 + δ∆

2 − δ1
1δ

∆
2 )

,

and thus

1 − ρ2
Z∆ =

1 − ρ2

1 − ρ2(δ1
1 + δ∆

2 − δ1
1δ

∆
2 )

.

Similarly, it can be verified after some algebra that

ρZ2 =

max

{

0, ρ −
√

[δ∆
2 (1 − ρ2δ1

1) + ρ2δ1
1 ]
[

ρ2(1−δ1
1
)2δ∆

2

1−ρ2δ1
1

+ δ1
1

]

}

√

(1 − δ1
1)(1 − δ∆

2 ) (1 − ρ2(δ1
1 + δ∆

2 − δ1
1δ

∆
2 ))

,

and hence that

S2 =
1

2
log

1

1 − ρ2











1 − ρ2(δ1
1 + δ∆

2 − δ1
1δ

∆
2 ) −

max

{

0, ρ −
√

[δ∆
2 (1 − ρ2δ1

1) + ρ2δ1
1]
[

ρ2(1−δ1
1
)2δ∆

2

1−ρ2δ1
1

+ δ1
1

]

}2

(1 − δ1
1)(1 − δ∆

2 )











for any ρ, δ1
1, and δ∆

2 .

In all our numerical evaluations, S2 is maximized as ρ → 1, and up to some possible experimental

inaccuracy, the values that attain the maximum are δ1
1 = ρ2 and δ∆

2 = 2
3
. Substituting those values into

S2 yields that

S2 =
1

2
log

1

1 − ρ2



1 − ρ2(2 + ρ2)

3
− 3ρ2

1 − ρ2
max

{

0, 1 −
√

(5 + ρ2)(2 + ρ4)

9(1 + ρ2)

}2


 .

It can be shown that the second argument of the maximum above is non-negative for ρ ≥
√

10−3 ≈ 0.1627.

Thus, for high enough values of ρ, we have

S2 =
1

2
log

1

1 − ρ2



1 − ρ2(2 + ρ2)

3
− 3ρ2

1 − ρ2

[

1 −
√

(5 + ρ2)(2 + ρ4)

9(1 + ρ2)

]2


 . (20)
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Fig. 8. The refinement regions D∆
j , j = 1, 2, 3, when (δ1

1 , δ1
2) = (0.15, 0.12) and ρ = 0.4.

Finally, taking the limit ρ → 1 in (20), we have

S2 → 1

2
log

5

4
≈ 0.161 .

Note that the rate loss can potentially be higher than 0.161 with some other choice of δ1
1, δ1

2, δ∆
1 , δ∆

2 , and

ρ. What we have shown amounts to

sup
δ1
1
, δ1

2
, δ∆

1
, δ∆

2
, ρ

S2 ≥ 0.161 .

B. Maximum rate loss in sequential coding of correlated sources

Without loss of generality, we only consider the case where X1 is optimally encoded and X2 is optimally

estimated, corresponding to δ1
2 = ρ2δ1

1. That is, in the first stage we operate on the boundary between D2

and D3. Also, since no refinement is required for X1, we have δ2
1 = δ1

1. This implies that D
2 ∈ D1 ∪ D2

when δ1
1 ≥ ρ2 and D

2 ∈ D2 ∪ D3 otherwise (see Figure 8). The total rate loss for sequential coding of

correlated sources is given by

Stot = R(D∆|ρZ1) + R(D1|ρ) − R(D2|ρ)

=
1

2
log

1

D∆
2 D1

1

− R(D2|ρ) .



23

Now, if δ1
1 < ρ2 and D

2 ∈ D3, we have

Stot =
1

2
log

D2
2

D∆
2 D1

1

=
1

2
log

D1
2

D1
1

=
1

2
log

1 − ρ2δ1
1

1 − δ1
1

(21)

which is maximized for a fixed ρ when δ1
1 → ρ2, resulting in

Stot =
1

2
log(1 + ρ2),

which, in turn, is maximized as ρ → 1, yielding Stot → 0.5 bits.

In all other cases,

Stot =
1

2
log

1

D∆
2 D1

1

− 1

2
log

1 − ρ2

D2
1D

2
2(1 − ρ2

Z2)

=
1

2
log

(1 − ρ2δ1
1)(1 − ρ2

Z2)

1 − ρ2
. (22)

If δ1
1 ≥ ρ2, the maximum Stot is achieved when ρ2

Z2 = 0, i.e., when D
2 ∈ D1, yielding

Stot =
1

2
log

1 − ρ2δ1
1

1 − ρ2
,

which, as in the previous case, is maximized at δ1
1 = ρ2 (this time equality is allowed) and ρ → 1,

resulting in Stot → 0.5 bits as well.

Finally, when δ1
1 < ρ2 and D

2 ∈ D2, Stot is maximized by the choice δ2
2 =

δ1
1

ρ2 , which corresponds to

the boundary of D2 and D3, and hence the same rate loss is achieved as in the case δ1
1 < ρ2 and D

2 ∈ D3.

To see that δ2
2 =

δ1
1

ρ2 indeed maximizes (22), it suffices to prove that ρ2
Z2 is a non-increasing function of

δ2
2 in the interval ρ2δ1

1 ≤ δ2
2 ≤ δ1

1

ρ2 , which easily follows from the fact that the derivative

dρ2
Z2

dδ2
2

=
ρ −

√

δ1
1δ

2
2

(1 − δ1
1)(1 − δ2

2)
2

(

ρ −
√

δ1
1

δ2
2

)

is non-positive in the same interval.

In [6], it is shown that the rate loss in the sequential coding problem can be universally bounded by

1 bit for square error distortion. It is somewhat surprising to see that the rate loss can be as high as 0.5

bits even for a jointly Gaussian source. Our result also implies that the universal bound of 1 bit cannot

be decreased by more than 0.5 bits.
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Fig. 9. Comparison of the single-stage rate R(D2|ρ) (solid curve) and the rate loss Stot (dashed curve) as a function of δ1
1. Here,

D
2 = [δ1

1 δ2
2 ]T where δ2

2 is chosen so as to maximize Stot .

One may argue that a rate loss of 0.5 bits is insignificant because it is achieved when δ1
1 → ρ2 → 1 and

δ2
2 → 1, in which case the single-stage rate-distortion function R(D2|ρ) diverges. However, as shown in

Figure 9, the maximum rate loss is considerably high when compared with the single-stage rate, except

in the vicinity of the points where the latter diverges.

VI. SUMMARY AND CONCLUSIONS

We have investigated successive refinability of 2-D Gaussian and binary sources under square error and

Hamming distortion measures, respectively. We showed that these sources are not successively refinable

everywhere, while they exhibit extremely similar behavior. Turning then to rate loss, we showed that for

Gaussian sources and with optimal first stage coding, the rate loss in the second stage can be as large as

0.161 bits in an appropriately defined fair scenario. We then argued that the unfair scenario corresponds
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to sequential coding of two sources and the rate loss in that case, which is universally upper bounded by

1 bit, can be as high as 0.5 bits.

Though the analysis in this paper is limited to N = 2 dimensions, the point is to show how vector

sources deviate from scalar ones with respect to successive refinability under individual distortion criteria.

Based on the results of [15], one can also rigorously analyze the case N > 2.

APPENDIX: PROOF OF THEOREM 2

One can tackle the computation problem by solving the Lagrangian minimization

L(β1, β2) = min
p
X̂

[

I(X; X̂) + β1E{X1 ⊕ X̂1} + β2E{X2 ⊕ X̂2}
]

for all β1, β2 ≥ 0. We first observe that coding of vectors with individual distortion criteria corresponds

to a special case of the successive refinement problem where the objective is to minimize the total rate

only. Thus, we can specialize the Kuhn-Tucker conditions derived in [10]3 to

∑

x

pX(x)e−β1(x1⊕x̂1)e−β2(x2⊕x̂2)

∑

x̂′ pX̂
(x̂′)e−β1(x1⊕x̂′

1
)e−β2(x2⊕x̂′

2
)
≤ 1 (23)

for all x̂. The corresponding backward channel is characterized by

p
X|X̂(x|x̂) =

pX(x)e−β1(x1⊕x̂1)e−β2(x2⊕x̂2)

∑

x̂′ pX̂
(x̂′)e−β1(x1⊕x̂′

1
)e−β2(x2⊕x̂′

2
)

. (24)

for all x̂ with p
X̂

(x̂) > 0. We henceforth use the simplified notation s = e−β1 and t = e−β2 .

Guess 1: Our first guess for p
X̂

is given in matrix form as

P
X̂

=

[

q 1
2
− q

1
2
− q q

]

(25)

for some 0 ≤ q ≤ 1
2
. It can be shown that the choice

q =
p(1 + s)(1 + t) − 1

2
(s + t)

(1 − s)(1 − t)
(26)

satisfies (23) with equality for all x̂. Translating 0 ≤ q ≤ 1
2

then yields

s + t

(1 + s)(1 + t)
≤ 1 − 2p . (27)

Also, (24) becomes

p
X|X̂(x|x̂) =

1

(1 + s)(1 + t)
sx1⊕x̂1tx2⊕x̂2

3Specifically, we use α = 0 in the formulation of [10].
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implying that the optimal backward channel is of the form X = X̂⊕Z where Z is independent of X̂ and

pZ is given in matrix form as

PZ =

[

1
1+s

s
1+s

]

[

1
1+t

t
1+t

]

. (28)

Thus

s =
D1

1 − D1
(29)

t =
D2

1 − D2

. (30)

Using (29) and (30) in (26)-(28) yields D ∈ E1 and (7)-(9). Finally, the value of R(D) for D ∈ E1 can

be computed as

R(D) = I(X; X̂)

= H(X) − H(X|X̂)

= H(X) − H(X⊕ X̂|X̂)

= H(X) − H(Z)

= H(X) −H(D1) −H(D2) .

Guess 2: Since the value of q in (25) becomes 1
2

at the boundary of E1, our second guess is of the

form

P
X̂

=

[

1
2

0
0 1

2

]

. (31)

It can be shown that this guess satisfies (23) if and only if

s + t

(1 + s)(1 + t)
≥ 1 − 2p (32)

and (24) becomes

p
X|X̂(x|x̂) =

(

1 − 2p

s + t

)x1⊕x2
(

2p

1 + st

)1⊕x1⊕x2

sx1⊕x̂tx2⊕x̂ (33)

for x̂1 = x̂2 = x̂. Observing

x1 ⊕ x2 = x1 ⊕ x2 ⊕ x̂⊕ x̂

= (x1 ⊕ x̂) ⊕ (x2 ⊕ x̂)
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we conclude from (33) that the optimal backward channel satisfies X = X̂⊕ Z where Z is independent

of X̂ also in this case. However, Z1 and Z2 are not independent as in the previous case since

PZ =

[

2p

1+st

(1−2p)t
s+t

(1−2p)s
s+t

2pst

1+st

]

. (34)

It then follows form (34) that

st

1 + st
=

D1 + D2 + 2p − 1

4p
(35)

s

s + t
=

D1 − D2 + 1 − 2p

2(1 − 2p)
(36)

yielding (11). Finally, using R(D) = H(X) − H(Z) as above yields

R(D) = H(X) −H(2p) − 2pH
(

D1 + D2 + 2p − 1

4p

)

−(1 − 2p)H
(

D1 − D2 + 1 − 2p

2(1 − 2p)

)

It follows from (27) and (32) that we need not make any other guesses. However, not all D ∈ Ec
1 can be

spanned using some s, t ≤ 1. In fact, by careful inspection, we observe that only D ∈ E2 can be attained

using the current solution. The boundaries of E2 correspond to the extreme cases s = 1 and t = 1 for

which R(D) becomes 1−H(D2) and 1−H(D1), respectively. Thus, the expression for R(D) for D ∈ E3

can be compactly written as

R(D) = 1 −H(min{D1, D2}) .
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