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Bivariate Polynomial Coding for Efficient
Distributed Matrix Multiplication
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Abstract—Coded computing is an effective technique to
mitigate “stragglers” in large-scale and distributed matrix
multiplication. In particular, univariate polynomial codes have
been shown to be effective in straggler mitigation by making the
computation time depend only on the fastest workers. However,
these schemes completely ignore the work done by the strag-
gling workers resulting in a waste of computational resources.
To reduce the amount of work left unfinished at workers, one
can further decompose the matrix multiplication task into smaller
sub-tasks, and assign multiple sub-tasks to each worker, possibly
heterogeneously, to better fit their particular storage and com-
putation capacities. In this work, we propose a novel family of
bivariate polynomial codes to efficiently exploit the work carried
out by straggling workers. We show that bivariate polynomial
codes bring significant advantages in terms of upload communica-
tion costs and storage efficiency, measured in terms of the number
of sub-tasks that can be computed per worker. We propose two
bivariate polynomial coding schemes. The first one exploits the
fact that bivariate interpolation is always possible on a rectan-
gular grid of evaluation points. We obtain such points at the cost
of adding some redundant computations. For the second scheme,
we relax the decoding constraints and require decodability for
almost all choices of the evaluation points. We present inter-
polation sets satisfying such decodability conditions for certain
storage configurations of workers. Our numerical results show
that bivariate polynomial coding considerably reduces the aver-
age computation time of distributed matrix multiplication. We
believe this work opens up a new class of previously unexplored
coding schemes for efficient coded distributed computation.

Index Terms—Bivariate polynomial interpolation, coded com-
putation, distributed computation, distributed matrix multiplica-
tion, polynomial codes.
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Burak Hasırcıoğlu and Deniz Gündüz are with the Department of Electrical
and Electronic Engineering, Imperial College London, London SW7 2AZ,
U.K. (e-mail: b.hasircioglu18@imperial.ac.uk; d.gunduz@imperial.ac.uk).

Jesús Gómez-Vilardebó is with Centre Tecnológic de Telecomunicacions
de Catalunya (CTTC/CERCA), 08860 Barcelona, Spain (e-mail:
jesus.gomez@cttc.es).

This article has supplementary downloadable material available at
https://doi.org/10.1109/JSAIT.2021.3105365, provided by the authors.

Digital Object Identifier 10.1109/JSAIT.2021.3105365

I. INTRODUCTION

THE AVAILABILITY of massive datasets and model
sizes makes computation tasks for machine learning

applications so demanding that they cannot be carried out on
a single machine within a reasonable time frame. To speed up
learning, most demanding computation tasks, e.g., matrix mul-
tiplication, are distributed to multiple dedicated servers, called
workers. However, due to unpredictable delays in their service
time, some workers, called stragglers, may become a bottle-
neck for the overall computation task. One can mitigate the
effects of stragglers by assigning redundant computations. In
particular, one can treat stragglers as random erasures, and
improve the computation time by creating redundant com-
putations similarly to channel coding for erasure channels.
Assuming all the workers start computing simultaneously, we
define the computation time as the time from the start until
sufficiently many computations that allow decoding AB at the
master are received. It excludes the communication time as
well as the encoding and decoding times. For the matrix mul-
tiplication task, the authors in [3] propose to partition one of
the matrices, encode its partitions by using an MDS code, and
send coded partitions to the workers together with the other
matrix (which is not partitioned or coded). It is then shown that
the full matrix multiplication can be decoded by using only a
subset of the multiplications between the coded partitions of
the first matrix and the second matrix.

In [4], polynomial codes are proposed to speed up the mul-
tiplication of matrices A and B. In this scheme, a master
partitions A row-wise and B column-wise. Then, two separate
encoding polynomials, whose coefficients are the partitions
of A and B, respectively, are generated. The master evaluates
both polynomials at the same point and sends the evalua-
tions to the workers, which multiply them and return the
result to the master. Using a subset of the responses from
the fastest workers, the full multiplication can be recovered.
This scheme is optimal in terms of the download rate, which
is defined as the ratio between the total number of bits needed
to be downloaded from the workers and the number of bits
needed to represent the result of the multiplication. In [5],
MatDot codes are proposed, which use an alternative partition-
ing scheme for matrices; that is, A is partitioned column-wise
and B is partitioned row-wise. The authors show that, com-
pared to [4], their approach improves the recovery threshold,
which is defined as the minimum number of responses the
master must receive from the workers to guarantee decoding
the product AB. However, both the amount of computation
each worker should carry out, referred to as the compu-
tation cost, and the download rate are higher than in [4].
Also in [5], PolyDot codes are proposed as an interpolation
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between polynomial codes in [4], and MatDot codes by trading
off between the recovery threshold and the computation and
download costs. In [6], the same problem is studied, and
entangled polynomial codes are proposed, which improve the
recovery threshold in [5] under a fixed computation cost and a
fixed download rate. Generalized PolyDot codes are proposed
in [7] achieving the same recovery threshold in [6]. In [8],
batch multiplication of matrices, i.e., AiBi, i ∈ [L] where
L > 1, is studied and cross subspace alignment (CSA) codes
are proposed. It is shown that, in the batch multiplication set-
ting, CSA codes improve the upload-download cost trade-off
compared to applying entangled polynomial codes separately
for each multiplication task in the batch. Since the decoding
process in the polynomial coding approaches is based on poly-
nomial interpolation, numerical stability becomes an important
research problem for practical implementations. In [9]–[12],
numerically stable coding schemes are proposed for distributed
coded matrix multiplication problem.

In all of these approaches, the result of all the work assigned
to a worker is communicated to the master only if it is finished
completely. Workers that fail to complete all their assignments
by the time the recovery threshold is reached are treated as
erasures, which implies ignoring completely the work done by
them. Such an approach is sub-optimal, especially if the work-
ers’ speeds are close to each other, in which case, the ignored
workers have probably completed a significant portion of the
work assigned to them [13], [14]. To exploit the partially com-
pleted work done by stragglers, a multi-message approach is
considered in [14]–[16], where workers’ tasks are divided into
smaller sub-tasks, and the result of each sub-task is communi-
cated to the master as soon as it is completed. The approaches
in [14], [16] are based on uncoded computation and a hybrid of
uncoded and coded computation, respectively, and it is shown
that uncoded computation may be more beneficial if the work-
ers’ computation speeds are similar. In our work, we allow
the workers to be heterogeneous, as encountered in serverless
computing, peer-to-peer applications, or edge computing, and
consider coded computation with multi-message communica-
tion. A similar setting is considered in [15], and product codes
are employed.

In [13], a hierarchical coding framework for the straggler
exploitation problem is proposed, also taking into account
the decoding complexity. This work is extended to matrix-
vector and matrix-matrix multiplications in [17]. It is shown
that while gaining in terms of the decoding complexity, the
computation time of hierarchical coding is only slightly larger
than [15] with univariate polynomial coding. Thus, the benefits
of hierarchical coding are significant mainly if the decoding
time is comparable to the computation time.

In all of the aforementioned polynomial-type coding
approaches [3]–[8], univariate polynomials are used. As we
will show in this paper, under fixed storage capacities at the
workers, in univariate polynomial coding, dividing a task into
sub-tasks by a given factor reduces the fraction of work that
can be done by the workers by the same factor, resulting
in inefficient use of workers’ storage capacity and upload
costs. Product codes proposed in [15], which are basically a
combination of two MDS codes, partially address this issue.
However, in product codes, computations at workers are not
one-to-any replaceable, i.e., some might be redundant, and
hence, not useful, which results in poor performance in vari-
ous scenarios. Moreover, univariate polynomial codes, as well
as product codes, impose certain constraints preventing fully
heterogeneous workloads across workers.

In this work, we propose bivariate polynomial codes to
improve the computation time of distributed matrix-matrix
multiplication under limited storage at the workers. The main
contributions of this work can be summarized as follows:

• We first show the limitation of univariate polynomial
codes in terms of both computational and storage effi-
ciency when extended to the multi-message setting.

• We introduce bivariate polynomial coding schemes to
address these limitations. Interpolation of bivariate poly-
nomials cannot be guaranteed by simply requiring all
evaluation points to be distinct. Here, we introduce the
concepts of regular (always invertible), and almost regular
(almost always invertible) interpolation matrices.

• We first extend the product coding scheme of [15] to
bivariate polynomial coding, which leads to a regular
interpolation matrix by imposing a particular rectangular
grid structure on the interpolation points. This strategy
attains maximum storage efficiency, but the computation
efficiency can be limited due to redundant computations.

• Next, we propose two novel bivariate coding schemes. We
demonstrate that unlike univariate schemes, for bivariate
coding, the order by which the computations are done
at the workers has a non-trivial impact on decodabil-
ity; and hence, we impose a special computation order
for the tasks assigned to each worker. These schemes
achieve maximum computation efficiency by completely
avoiding redundant computations. Their storage efficiency
is limited, yet higher than that of univariate schemes.
We further propose two alternative bivariate polynomial
codes with higher storage efficiency at the cost of a slight
decrease in computation efficiency.

• We numerically validate our findings assuming a shifted
exponential model for computation speeds, and show the
superiority of the proposed bivariate schemes compared
to univariate alternatives and product codes.

• While polynomial codes have been extensively studied
with numerous applications in practice, to the best of
our knowledge, our work provides the first examples
of bivariate polynomial code constructions with superior
performance compared to their univariate counterparts.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In our system, illustrated in Fig. 1, a master server wants to
multiply two matrices A ∈ R

r×s and B ∈ R
s×c, r, s, c ∈ Z

+,
by offloading partial computations to N workers with het-
erogeneous storage capacities and computation speeds. The
master divides A horizontally and B vertically into K and L
partitions, respectively, such that A = [

AT
1 AT

2 · · · AT
K

]T

and B = [
B1 B2 · · · BL

]
, where Ai ∈ R

r
K ×s, ∀i ∈ [1 : K]1

and Bj ∈ R
s× c

L , ∀j ∈ [1 : L]. The master generates and sends to
worker i ∈ [1 : N], mA,i and mB,i coded matrix partitions Ãi,k
and B̃i,l based on A and B, respectively, for k ∈ [1 : mA,i] and
l ∈ [1 : mB,i], where mA,i and mB,i ∈ Z

+, and Ãi,k ∈ R
r
K ×s,

B̃i,l ∈ R
s× c

L . Thus, worker i ∈ [1 : N] is assumed to store a
fraction MA,i = mA,i

K of A and MB,i = mB,i
L of B. How these

coded matrix partitions are generated depends on the specific
coding scheme employed. In this work, they will be obtained
as linear combinations of the original matrix partitions.

Depending on the coding scheme employed, worker i can
compute all, or a subset of the products of coded matrix par-
titions assigned to it, i.e., Ãi,kB̃i,l, k ∈ [1 : mA,i], l ∈ [1 : mB,i]

1 Given a < b, we define [a : b] � {a, a + 1, a + 2, . . . , b − 1, b}
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Fig. 1. The master computes AB by offloading partial computations to N workers.

TABLE I
COMPARISON OF THE KEY PARAMETERS AND SYSTEM CONSTRAINTS

in a prescribed order, which is also specific to the coding
scheme. We denote by ηi the maximum number of computa-
tions worker i can provide, which can be possibly used by the
master for decoding AB. Thus, ηi ≤ mA,imB,i, and the specific
value of ηi depends on the coding scheme. In order to exploit
the partial work done by straggling workers, the results of
these individual products are sent to the master as soon as they
are finished. The master collects the responses from the work-
ers until the received set of computations allow the master to
uniquely recover AB. Then, the master instructs all the work-
ers to stop computing and decodes AB. Note that the recovery
threshold, which is defined as the minimum number of com-
putations that guarantee the decodability of AB, does not have
to be a fixed quantity in our setting. Depending on the coding
scheme, Rth can be a function of the collected computations
by the master.

As is common in the related literature, we specify the stor-
age capacity at workers separately for each of the two matrices,
i.e., MA,i and MB,i. However, in practice, it is more appropriate
to assume a total storage capacity at each worker, which can
be freely allocated between the partitions of the two matri-
ces. Assume that the rows of A and the columns of B require
the same amount of storage. We define the storage capacity

of worker i, denoted by si ∈ N
+, as the sum of the total

number of rows of A and the total number of columns of B
that the ith worker can store. Accordingly, for a given K, L,
and si, we allocate mA,i and mB,i to maximize ηi subject to
MA,ir+MB,ic = si. Defining Cpart � 1

KL as the fraction of work
corresponding to a single partial product Ãi,jB̃i,l, the maximum
fraction of work that can be done by worker i is given by

Cmax,i � ηiCpart = ηi

mA,imB,i
MA,iMB,i. (1)

Under the same storage constraints, a code that can provide
more fraction of work uses its storage more efficiently; hence,
Cmax,i will be used to measure the storage efficiency.

We define Cwasted as the worst-case fraction of wasted com-
putations with respect to the full product, AB. There are two
sources of wasted computations. Firstly, depending on the
coding scheme, some of the computations completed by the
workers may not be used in decoding AB. Secondly, when Rth
is reached, the master instructs all the workers to stop their
computations and the ongoing computations of the workers are
wasted. We assume that the communication time for the stop
signal to reach from the master to the workers is short enough
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that the workers receive this instruction before finishing their
ongoing computations. In the following sections, we compute
the fraction of the wasted computations of the second type
based on this assumption. If this assumption does not hold, the
wasted computations of the second type may increase. While it
is out of the scope of this work, designing coding schemes that
minimize wasted computations of the second type when the
relative speed of communication is comparable to the speed
of a unit computation can be an interesting challenge for a
follow-up study.

For a fixed N and a total storage capacity at worker i, si,
our objective is to minimize the average computation time
of AB. This depends on the statistics of the computation
speeds of the workers and is difficult to obtain in closed
form. Instead, we use Cmax,i and Cwasted as proxies for the
performance of a code. These metrics do not depend on the
worker’s speeds and provide general indicators on the code
performance. Note that, especially in heterogeneous settings,
in which some workers may be much faster than the others,
the higher fraction of work provided by faster workers helps to
finish the task earlier. Therefore, storage efficiency, or Cmax,i,
is a factor to be optimized to improve the average computation
time. Moreover, low Cwasted implies that more of the available
computation capacity across the workers is exploited towards
completing the desired computation. Therefore, to minimize
the average computation time, we are interested in maximiz-
ing Cmax,i and minimizing Cwasted. Table I summarizes the key
code parameters Cmax,i, Cwasted and system constraints for the
schemes considered in this work. A detailed discussion on
these parameters is postponed to the later sections.

III. UNIVARIATE SCHEMES

We first review the codes based on univariate polynomial
interpolation.

Univariate Polynomial Codes (UPC): With the univariate
polynomial codes presented in [4], the master encodes the
matrix partitions using the polynomials

A(x) = A1 + A2x + · · · + AKxK−1, (2)

B(x) = B1 + B2xK + · · · + Bix
(i−1)K + · · · + BLx(L−1)K . (3)

The master sends A(xi) and B(xi) to worker i, i ∈ [1 : N], for
some distinct xi ∈ R. Thus, every worker receives one coded
partition of A and one partition of B, i.e., mA,i = mB,i = 1 and
MA,i = MA = 1/K, MB,i = MB = 1/L, ∀i ∈ [1 : N]. Worker i
computes A(xi)B(xi) and returns the result. No other compu-
tations are done at the workers, and thus ηi = mA,imB,i = 1.
Once the master receives any Rth = KL results, it can
interpolate the polynomial

A(x)B(x) =
K∑

i=1

L∑

j=1

AiBjx
i−1+K(j−1) (4)

of degree KL − 1. Observe that the coefficients of the inter-
polated polynomial correspond to the KL sub-products AiBj,
∀i ∈ [1 : K], ∀j ∈ [1 : L] of AB. Finally, notice that

Cmax,i = Cpart = 1

KL
= MAMB. (5)

Observe that with N > Rth, this scheme can tolerate up to
N − Rth stragglers. It helps to reduce the average computa-
tion time thanks to the parallelization afforded by redundant
workers. However, all the work done by the N − Rth slowest

workers are ignored. In the worst case, where the N − Rth + 1
slowest workers finish simultaneously, we have

Cwasted = (N − Rth)Cpart = (N − Rth)
1

KL
= NMAMB − 1. (6)

We observe from (6) that without changing the number of
workers N or the storage capacities of workers MA, MB, it is
not possible to improve Cwasted, and thus reduce the amount
of work lost at workers. Next, we provide an extension of
UPC such that Cwasted can be improved by increasing K and
L, exploiting the partial work done at the workers.

Univariate Polynomial Codes With Partial Computations
(UPC-PC): To exploit the partial work done at slower work-
ers, we present an extension of UPC, which is based on the
multi-message approach and also allow heterogeneous stor-
age capacities at workers. The main idea is to divide the
task assigned to a worker into smaller sub-tasks, i.e., larger
K and L, and allowing the workers to store multiple parti-
tions. Specifically, we allow worker i to store mi = mA,i =
mB,i coded partitions of A and B, i.e., MA,i = mi/K and
MB,i = mi/L. For worker i, the master evaluates A(x) and
B(x) at mi different points {xi,1, . . . , xi,mi} such that xi,k �= xj,l
if (i, k) �= (j, l),∀i, j ∈ [1 : N] and ∀k, l ∈ [1 : mi]. Worker i
computes A(xi,j)B(xi,j) consecutively for j ∈ [1 : mi] and sends
each result as soon as completed. Observe that multiplications
are only allowed between A(x) and B(x) evaluated at the same
xi,k values, and thus ηi = mi, ∀i ∈ [1 : N]. The master is able to
interpolate A(x)B(x) as soon as it receives Rth = KL responses
from the workers. Thus

Cpart = 1

KL
= MA,iMB,i

m2
i

, (7)

Cmax,i = miCpart = MA,iMB,i

mi
. (8)

The total fraction of wasted work in the worst case, in which
all the workers were up to finish its ongoing partial multi-
plication once the Rth-th result is received by the master, is
given by

Cwasted = (N − 1)Cpart = (N − 1)
1

KL
=

N−1∑

i=1

MA,iMB,i

m2
i

. (9)

As opposed to UPC, according to (9), UPC-PC can improve
Cwasted by increasing K and L. Stragglers might be unable
to complete the full task assigned to them, but they might
complete a part of it. Clearly, the smaller are the sub-tasks
executed at workers, the smaller is the work that can be lost
at a straggler. On the other hand, UPC-PC makes quite an
inefficient use of the storage capacity at workers. Observe that
even if a worker has enough storage to fully store A and B, i.e.,
MA,i ≥ 1 and MB,i ≥ 1, it, alone, can only provide min{K, L}
partial computations. Indeed, for a fixed storage capacity at
the workers, i.e., MA,i and MB,i are kept constant, the max-
imum fraction of work done at a worker, Cmax,i, decreases
while K and L increases to improve Cwasted, which results in
less efficient use of the storage capacities of the workers. The
bivariate schemes presented in the next section address this
problem.

IV. BIVARIATE POLYNOMIAL CODING

For bivariate polynomial coding schemes, we encode the
matrix partitions of A and B by using the following encoding
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polynomials

A(x) = A1 + A2x + · · · + AKxK−1, (10)

B(y) = B1 + B2y + · · · + BLyL−1. (11)

Depending on the coding scheme, coded matrix partitions Ãi,k
and B̃i,l are either direct evaluations of the encoding poly-
nomials A(x) and B(y), respectively, or the evaluations of
their derivatives. Hence, the workers obtain evaluations of the
bivariate polynomial

A(x)B(y) =
K∑

i=1

L∑

j=1

AiBjx
i−1yj−1 (12)

or of its derivatives, by multiplying the coded matrix partitions
Ãi,k and B̃i,l’s. Finally, the master interpolates the bivariate
polynomial A(x)B(y) by making use of these products.

In addition to allowing heterogeneous storage capacities
across workers, bivariate coding schemes allow different num-
bers of stored coded partitions of A and B for each worker,
i.e., mA,i �= mB,i in general. The maximum number of com-
putations a worker can generate is ηi = mA,imB,i, resulting in
Cmax,i = mA,imB,iCpart = MA,iMB,i.

Observe that, unlike univariate polynomial coding schemes,
for a given storage capacity MA,i and MB,i, the maximum
amount of work done at worker i, Cmax,i, does not decrease
with mA,i and mB,i. In univariate schemes, the reason behind
storage inefficiency is that the workers can use each evalua-
tion of A(x) and B(x) only for one partial computation. For
example, A(xi,k)B(xi,l), for k �= l, cannot be used to inter-
polate A(x)B(x) in a univariate scheme. Bivariate polynomial
coding eliminates this limitation and allows the workers to
provide additional useful computations at no additional stor-
age cost. Moreover, like UPC-PC, bivariate polynomial codes
can exploit the computational power of the stragglers.

Since A(x)B(y) has KL coefficients, we need KL partial
computations to interpolate it. However, in some cases, the
set of first KL computations may not be enough to guarantee
decodability and more computations may be required. Thus,
the number of computations needed to guarantee decodability
satisfies Rth ≥ KL. Moreover, at the instant when the Rth-th
computation is completed by a worker, all the ongoing com-
putations become unnecessary. Therefore, in this setting, we
have two sources of wasted computations: Rth − KL redun-
dant computations that have been received by the master but
not used for the actual interpolation, and the ongoing compu-
tations at all the workers except the worker providing Rth-th
computation. We consider the worst-case scenario and assume
all these ongoing computations at the remaining N−1 workers
are close to end. Thus, we count them as wasted computations.

As a result, the maximum wasted fraction of computations
is given by

Cwasted = (N − 1)Cpart + (Rth − KL)Cpart

=
N−1∑

i=1

MA,iMB,i

mA,imB,i
+ Rth

KL
− 1. (13)

Before presenting the bivariate schemes, we introduce some
basic concepts and definitions from polynomial interpolation
theory.

Definition 1: The interpolation of a bivariate polynomial
of the form A(x)B(y) can be formulated as a system of
linear equations. The unknowns of these equations are the
coefficients of A(x)B(y). We define the interpolation matrix
as the coefficient matrix of this linear system, denoted by M.

Recall that the interpolation matrices we consider result
from evaluations of A(x)B(y) or their derivatives at different
points. The rules the coding schemes impose on the computa-
tions, e.g., computation orders, types of computations assigned
to the workers, etc., may result in det(M) to become an iden-
tically zero polynomial no matter which points are chosen.
This is an undesirable situation, and we should show that this
does not happen for a proposed scheme. Next, we define two
notions in which such undesirable structures are not imposed
on the interpolation matrix.

Definition 2 [18, Definition 3.1.3]: An interpolation scheme
is called regular if det(M) �= 0 for every set of distinct and
non-zero evaluation points. On the other hand, if det(M) �= 0
for almost all choices of the evaluation points, then the inter-
polation scheme is called almost regular. Almost regularity
implies that det(M) is not the zero polynomial in general
and the Lebesgue measure of the evaluation points making
{det(M) = 0} is zero in R

2.
To understand the practical meaning of almost regularity,

let us assume that we sample our evaluation points uniform
randomly from the interval [l, u], where l, u ∈ R and l < u.
Since the Lebesgue measure of the evaluation points making
det(M) = 0 is zero, the probability of sampling such evalua-
tion points is exactly zero. Note that this is due to using an
uncountable set to sample our evaluation points and there are
infinitely many possible choices of evaluation points. Even if
we have countably many bad choices of evaluation points, the
invertibility of M is guaranteed almost surely.

Univariate polynomial interpolation is regular if the evalu-
ation points are distinct and non-zero since the corresponding
interpolation matrix is a Vandermonde matrix, which is known
to be invertible. However, for bivariate interpolation, there are
very few cases for which sufficient conditions for regularity
are known. Next, we consider one such case.

A. Bivariate Polynomial Interpolation on Rectangular Grids

It is well known that interpolation of A(x)B(y) such that
A(x) and B(y) have degrees K − 1 and L − 1, respectively,
is regular for any rectangular grid of points {x1, x2, . . . , xK}×
{y1, y2, . . . , yL} provided all xi’s and yi’s are distinct. The inter-
polation scheme we propose next exploits this fact. It was
originally proposed in [15] using product codes. Here, we
present it using bivariate polynomial codes, which is equiv-
alent to the product-code form in terms of all the performance
metrics considered in this paper. We further generalize it to
allow mA �= mB and nA �= nB, where N = nAnB.

Bivariate Product Coding (B-PROC): Assume that all the
workers can store mA partitions of A and mB partitions
of B, and N can be factored as N = nAnB such that
K ≤ mAnA and L ≤ mBnB. The master generates nA dis-
joint sets Xi = {xi,1, xi,2, . . . , xi,mA}, i ∈ [1 : nA] and nB
disjoint sets Yj = {yj,1, yj,2, . . . , yj,mB}, j ∈ [1 : nB], with
distinct elements. Then, it enumerates the workers as (i, j),
i ∈ [1 : nA], j ∈ [1 : nB] and sends A(xi,k), k ∈ [1 : mA] and
B(yj,l), l ∈ [1 : mB], to worker (i, j). Worker (i, j) can compute
any product A(xi,k)B(yj,l). Altogether, the set of evaluation
points at workers form a rectangular grid of size mAnA×mBnB.
Observe that, nA workers have the evaluation B(ŷ) for any
ŷ ∈ Yj, and each of them can compute mA distinct evalua-
tions of the univariate polynomial A(x)B(ŷ), of degree K − 1
with respect to x. Once the first K of these evaluations are
received at the master, A(x)B(ŷ) can be interpolated. Similarly,
for a given x̂ ∈ Xi, A(x̂)B(y) can be interpolated from any L
evaluations as it is a univariate polynomial in y with degree
L − 1. As a result, once we have the evaluations of A(x)B(y)
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Fig. 2. The case in Example 1.

on any rectangular grid of size K × L, either directly received
from the workers or via univariate interpolation, the bivariate
interpolation problem can be solved.

Observe, however, that the computations that were already
interpolated from previous results are redundant. To minimize
such computations, in [15], for the particular case of mA = mB,
nA = nB, different heuristics to schedule computations at the
workers were discussed.

Example 1: Let us assume that both matrices A and B
are divided into K = L = 10 partitions, and there are
N = 15 workers, while every worker can store MA =
3/10 of A and MB = 5/10 of B. We take nA = 5 and
nB = 3. Worker (i, j) stores {A(xi,1), A(xi,2), A(xi,3)} and
{B(yj,1), B(yj,2), B(yj,3), B(yj,4), B(yj,5)}. Let us assume that
the order of computations is random within a worker. Fig. 2
shows an instance of the received responses from the workers.
Each worker is represented by a 3 × 5 rectangle and each
filled circle represents a received computation by the master.
To clarify how a worker’s finished computations look like,
worker (4, 2) is emphasized in the figure. All the elements in
the columns and the rows coloured by green can be interpo-
lated, i.e., decoded, by using the received responses on the
same column or the row. Observe that there are columns/rows
coloured by green even if they have less than 10 computa-
tions, e.g., the column of x4,1. Such rows and columns can
be decoded after decoding rows and columns with at least 10
computations, by utilizing all the elements in these columns
and rows after decoding. Since there must be at least 10 green
columns and 10 green rows in order to decode A(x)B(y), in
our example, the received responses are not sufficient, although
there are 110 > KL = 100 responses received by the master.

The total fraction of the work wasted in the worst case
depends on the heuristics employed. If we consider uniform
random computation order at the workers, which is reported
to perform well in [15], then the computations can be received
at any order by the master. In the worst case, there may be
K − 1 fully computed columns, that is, in every column there
are exactly nBmB computations, and one column with exactly
L computations. Thus, in this case, nBmB − L computations
in each of the K − 1 fully computed columns are wasted. On

Fig. 3. Worst case scenario.

the other hand, there may be L − 1 fully computed rows and
one row with exactly K computations. In this case, nAmA − K
computations in each of the L − 1 fully computed rows are
wasted. Thus, in total, we have (nBmB−L)(K−1)+(nAmA−K)

(L −1) wasted computations. Therefore, the worst-case Rth of
B-PROC is

RB−PROC
th = KL + (nBmB − L)(K − 1) + (nAmA − K)(L − 1). (14)

Note that this expression is a worst-case value and depending
on the received responses, the actual number of computa-
tions that guarantee decodability may be much lower. If we
plug (14) into (13), the fraction of wasted computations for
B-PROC in the worst case becomes

Cwasted =
N−1∑

i=1

MAMB

mAmB
+ [(nBmB − L)(K − 1)

+ (nAmA − K)(L − 1)]
1

KL

=
N−1∑

i=1

MAMB

mAmB
+ (nBMB − 1)

(
1 − MA

mA

)

+ (nAMA − 1)

(
1 − MB

mB

)
. (15)

The expression is highly dependent on how nA and nB are allo-
cated. Increasing the memory, i.e., MA and MB, while K and
L remain constant, or increasing K and L while the memory
remains constant both increase Cwasted. However, it is worth
noting that Cwasted we calculated here is for the worst-case
scenario, and the situation may not be that bad most of the
time. For the setting in Example 1, we visualize the worst-case
situation in Fig. 3.

B-PROC requires additional constraints on the system, i.e.,
N = nAnB, K ≤ nAmA, L ≤ nBmB and homogeneous stor-
age capacities at workers, and yet it is not possible to ensure
that the first KL results arriving at the master form a reg-
ular interpolation problem. To address these issues, in the
next subsection, we propose novel bivariate polynomial codes.
However, showing the regularity of these schemes is a hard
problem, if not impossible. Therefore, instead, we use the
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notion of almost regularity, which is a relaxation of regularity
and propose almost regular bivariate interpolation schemes.

B. Almost Regular Bivariate Interpolation Schemes

For the almost regular bivariate interpolation schemes we
propose, the polynomial A(x)B(y) is interpolated from the
evaluations of it and its derivatives. Such an interpolation is
known as Hermite interpolation in the literature [19, Ch. 3.6].

1) Encoding: The almost regular interpolation schemes we
describe in the sequel have a common encoding procedure.
Consider the polynomials in (10) and (11). To each worker i ∈
[1 : N] the master assigns a distinct evaluation point (xi, yi) ∈
R

2, and sends the evaluations of A(x) and B(y), and their
derivatives up to order mA,i − 1 and mB,i − 1, respectively, at
(xi, yi). Thus, the values generated and sent to the worker i by

the master are Ai � {A(xi),
dA(xi)

dx , . . . ,
d(mA,i−1)A(xi)

dx(mA,i−1) } and Bi �
{B(yi),

dB(yi)
dy , . . . ,

d(mB,i−1)B(yi)

dy(mB,i−1) }. For brevity, in the remaining

of the paper, we use ∂kA(xi) and ∂lB(yi) to denote dk

dxk A(xi)and
dl

dyl B(yi), respectively.
2) Computations at Workers: For all the coding schemes,

after receiving Ai and Bi from the master, each worker i starts
computing, one by one, all the cross products between ele-
ments in Ai and those in Bi, and sends the result of each
computation to the master as soon as it is completed. We
require each worker to follow a specific computation order for
these multiplications according to the priority score of each
computation, which we will define shortly for each scheme.
We note that a lower priority score gives more priority to
a computation. Specifically, for any worker i, each computa-
tion ∂kA(xi)∂lB(yi) for k ∈ [0:K − 1] and l ∈ [0 : L − 1] is
assigned a priority score denoted as S(k, l). Worker i com-
putes ∂kA(xi)∂lB(yi) once all the computations ∂k̃A(xi)∂l̃B(yi),
k̃ ∈ [0 : K − 1] and l̃ ∈ [0 : L − 1] such that S(k̃, l̃) < S(k, l)
are already computed. Notice that priority scores S(k, l) are
defined for computations that might not be available at worker
i, i.e., K > k ≥ mA,i or L > l ≥ mB,i. Whenever such a com-
putation has the lowest priority score among all the remaining
computations at worker i, the worker must discard all the
remaining computations and stop.

Definition 3 (Derivative Order Space): The derivative order
space of a bivariate polynomial A(x)B(y) is defined as the 2-
dimensional space of all its possible derivative orders. When
A(x) and B(y) have degrees K − 1 and L − 1, respectively, the
derivative order space becomes {(k, l) : 0 ≤ k < K, 0 ≤ l < L},
where the tuple (k, l) represents the derivative ∂kA(x)∂lB(y).

Bivariate Polynomial Coding With Vertical Computation
Order (BPC-VO): In this scheme, workers follow the verti-
cal computation order, illustrated in Fig. 4a for K = L = 6.
In the vertical computation order, a worker first completes a
column k in the derivative order space, i.e., all the computa-
tions in {∂kA(xi)B(yi), ∂kA(xi)∂1B(yi), . . . , ∂kA(xi)∂L−1B(yi)}
before moving on to the computations from column k + 1.
Specifically, for any worker i, computation ∂kA(xi)∂lB(yi) for
k ∈ [0 : K − 1] and l ∈ [0 : L − 1], has a priority score
of SV (k, l) � (K − 1)L(� l

L	 − 1) + L(k − 1) + l. Because
only the computations ∂kA(xi)∂lB(yi) k ∈ [0 : mA,i − 1], and
l ∈ [0 : mB,i − 1] can be computed by worker i, in order to
satisfy the vertical computation order without discarding any
computations, worker i can store either:

1) a single coded partition of A, and any number of coded
partitions of B not more than L, i.e., mA,i = 1 and 1 ≤
mB,i ≤ L, or

Fig. 4. Computation orders at the workers proposed in this work.

2) coded partitions of B equivalent to the full matrix B in
size, and not more than K coded partitions of A, i.e.,
1 ≤ mA,i ≤ K and mB,i = L.

Bivariate Polynomial Coding With Horizontal Computation
Order (BPC-HO): In this scheme, workers follow the horizon-
tal computation order, illustrated in Fig. 4b for K = L = 6.
In the horizontal computation order, a worker first completes
a row l in the derivative order space, i.e., all the computations
in {A(xi)∂lB(yi), ∂1A(xi)∂lB(yi), . . . , ∂K−1A(xi)∂lB(yi)} before
moving on to the computations from row l + 1. Specifically,
for any worker i, computation ∂kA(xi)∂lB(yi) has a priority
score of SH(k, l) � K(L − 1)(� k

K 	 − 1) + K(l − 1) + k. As
for the vertical computation order, because only computations
∂kA(xi)∂lB(yi) k ∈ [0 : mA,i − 1], and l ∈ [0 : mB,i − 1] can be
computed by worker i, in order to satisfy the horizontal com-
putation order without discarding any computations, worker i
can store either:

1) a single coded partition of B, and any number of coded
partitions of A not more than K, i.e., 1 ≤ mA,i ≤ K and
mB,i = 1, or

2) coded partitions of A equivalent to the full matrix A, and
any number of coded partitions of B not more than L,
i.e., mA,i = K and 1 ≤ mB,i ≤ L.

Bivariate Polynomial Coding With N-zig-zag Computation
Order (BPC-NZO): For this scheme, we relax the vertical com-
putation order by dividing the derivative order space into L/μB
equal horizontal blocks, where μB is a design parameter such
that μB | L. For computation ∂kA(xi)∂lB(yi), we assign an N-
zig-zag order priority score of SN (k, l) = (K − 1)μB(� l

μB
	 −

1) + μB(k − 1) + l. In Fig. 4c, we illustrate the N-zig-zag
order for K = L = 6 and μB = 3. For this computation
order, we simply apply vertical computation order inside each
horizontal block in the derivative order space starting from
the lowermost block. Only when all the computations in a
block are completed, the computations from the next block
can start. Although they are more relaxed than the vertical
computation order, in order to satisfy the N-zig-zag order
without discarding any computations at worker i, one of the
following conditions must be imposed on mA,i and mB,i:

1) mB,i is a positive integer multiple of μB, and mA,i = K,
or
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2) mB,i = μB and 1 ≤ mA,i ≤ K, or,
3) mA,i = 1 and 1 ≤ mB,i ≤ μB
Observe that by setting μB = L, the N-zig-zag order reduces

to the vertical computation order.
Bivariate Polynomial Coding With Z-zig-zag Computation

Order (BPC-ZZO): For this scheme, we relax the horizon-
tal computation order by dividing the derivative order space
into K/μA equal vertical blocks, where μA is a design param-
eter such that μA | L. For the computation ∂kA(xi)∂lB(yi),
we define the Z-zig-zag order priority score as SZ (k, l) =
(L − 1)μA(� k

μA
	 − 1) + μA(l − 1) + k. In Fig. 4d, we visu-

alize the Z-zig-zag computation order when K = L = 6
and μA = 3. For this computation order, we apply horizon-
tal computation order inside each vertical block starting from
the leftmost block. Again, only when all the computations
in a block are completed, the computations from the next
block can start. In order to satisfy the Z-zig-zag computa-
tion order without discarding any computations at worker i,
we need to impose one of the following constraints on mA,i
and mB,i:

1) mA,i is a positive integer multiple of μA, and mB,i = L,
or

2) mA,i = μA and 1 ≤ mB,i ≤ L, or
3) mB,i = 1 and 1 ≤ mA,i ≤ μA

Observe that setting μA = K, we recover the horizontal
computation order conditions.

3) Decoding Procedure of Almost Regular Interpolation
Schemes: For all of the computation orders defined in this
section, the master receives responses from the workers and
decodes AB by solving a bivariate polynomial interpolation
problem. That is, A(x)B(y) is interpolated from the evaluations
of A(x)B(y) and its derivatives. Since the degree of A(x)B(y)
is KL, to solve the interpolation problem, the master needs
at least KL computations returned from the workers. In this
case, assuming, without loss of generality, the responses are
received from all N workers, we have an interpolation matrix
as in (16), at the bottom of the page.

In this example, the master received 3 responses from
worker 1, and 2 responses from worker N. Since we see the
derivatives are taken with respect to x, we can conclude that
this interpolation matrix belongs to BPC-HO or BPC-ZZO.

The next theorem and the corollary characterize the number
of computations needed to decode A(x)B(y) in the worst-case
scenario by considering the invertibility of the interpolation
matrix.

Theorem 1: a) For BPC-NZO, the worst-case recovery
threshold is RNZO

th � KL + max{0, (μB − 2)( L
μB

− 1)}.
b) For BPC-ZZO, the worst-case recovery threshold is

RZZO
th � KL + max{0, (μA − 2)( K

μA
− 1)}.

Thus, if the number of computations received by the master
is at least RNZO

th and RZZO
th for BPC-NZO and BPC-ZZO,

respectively, then det(M) �= 0 for almost all choices of the
evaluation points.

The proof of Theorem 1 is given in Section VI.

Corollary 1: BPC-VO and BPC-HO can be obtained by
setting μB = L and μA = K in BPC-NZO and BPC-ZZO,
respectively. Therefore, the recovery thresholds of BPC-VO
and BPC-HO are RVO

th = RHO
th � KL, meaning any KL com-

putations received by the master results in det(M) �= 0 for
almost all choices of the evaluation points.

According to Corollary 1, for BPC-VO and BPC-HO, every
partial computation sent by the workers is useful at the master,
i.e., Rth = KL. Therefore, for these schemes, the computations
are one-to-any replaceable. Thus, according to (13), we have

Cwasted, BPC-VO = Cwasted, BPC-HO =
N−1∑

i=1

MA,iMB,i

mA,imB,i
. (17)

This is the main advantage of these schemes over B-PROC.
On the other hand, while in the BPC-HO and BPC-VO, ηi
is limited by the constraints imposed on mA,i and mB,i, in
B-PROC, all the available storage can be fully exploited.
Therefore, B-PROC has a better storage efficiency Cmax,i com-
pared to BPC-VO and BPC-HO. The main motivation of
introducing BPC-NZO and BPC-ZZO is to relax these con-
straints. According to Theorem 1, this can be done at the cost
of potentially introducing redundant computations; however,
the number of redundant computations needed is much less
than those needed for B-PROC. Specifically, from (13), we
have

Cwasted, BPC-NZO =
N−1∑

i=1

MAMB

mAmB
+ (μB − 2)

(
L

μB
− 1

)
1

KL
,

Cwasted, BPC-ZZO =
N−1∑

i=1

MAMB

mAmB
+ (μA − 2)

(
K

μA
− 1

)
1

KL
.

(18)

The following example illustrates the storage efficiency of
bivariate polynomial codes.

Example 2: Assume K = L = 8, i.e., the size of partitions
of A and B are equal, and each worker can store 8 coded
matrix partitions in total, i.e., mA,i + mB,i = 8. Univariate
schemes can only carry out ηi = mA,i = mB,i = 4 computa-
tions. Instead, B-PROC can set mA,i = mB,i = 4, resulting
in ηi = 16 computations. On the other hand, in BPC-VO
and BPC-HO, the same worker can generate at most ηi = 7
computations by setting mA,i = 1, mB,i = 7 for BPC-VO,
or mA,i = 7, mB,i = 1 for BPC-HO. It is not possible to
satisfy condition 2 of BPC-VO and BPC-HO under this stor-
age capacity. Finally, for BPC-NZO or BPC-ZZO, by setting
μA = μB = 4 and mA,i = mB,i = 4, we can also reach ηi = 16.
Note that BPC-NZO and BPC-ZZO may not always obtain the
B-PROC storage efficiency, but they can usually perform very
close.

Remark 1: Note that RNZO
th and RZZO

th provided in Theorem 1
are worst-case values. Depending on the number of compu-
tations each worker sends to the master, smaller values, even

M =

⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

1 x1 x2
1 x3

1 · · · xK−1
1 · · · xK−1

1 yL−1
1

0 1 2x1 3x2
1 · · · (K − 1)xK−2

1 · · · (K − 1)xK−2
1 yL−1

1
0 0 2 6x1 · · · (K − 1)(K − 2)xK−3

1 · · · (K − 1)(K − 2)xK−3
1 yL−1

1
...

...
...

...
. . .

...
. . .

...

1 xN x2
N x3

N · · · xK−1
N · · · xK−1

N yL−1
N

0 1 2xN 3x2
N · · · (K − 1)xK−2

N · · · (K − 1)xK−2
N yL−1

N

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

(16)
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KL computations may be enough. In Section VI, Lemma 3
presents certain conditions under which the computations
received from the workers are useful. If the number of compu-
tations provided by all workers satisfies these conditions, then
all computations are useful and KL computations are enough.
Otherwise, we need to discard some computations and since
we need to compensate for these discarded computations, the
recovery threshold may increase up to the values presented
in Theorem 1. In Section VI, the discussion after Lemma 3
explains what kind of computations we discard to guarantee
almost regular decodability.

Remark 2: When the conditions of Theorem 1 are satisfied,
the bivariate polynomial interpolation problem has a unique
solution. The interpolation problem can be solved simply via
inverting the interpolation matrix and multiplying it with the
vector of responses collected from the workers. This has a
complexity of O(rs(KL)2). However, such an interpolation
strategy may result in large numerical errors; and hence, more
sophisticated methods, such as Newton interpolation, may be
needed in practice [20], [21]. This aspect is worth investiga-
tion, but lies beyond the scope of this work. We leave it as a
future research direction.

Selecting Between Computation Orders: When the partitions
of B are smaller than those of A, i.e., c/L < r/K, under a fixed
storage capacity, reducing mA,i by 1 will increase mB,i at least
by 1. Since, in this case, the constraints of vertical-type com-
putation orders BPC-VO and BPC-NZO can be satisfied more
easily than those of BPC-HO and BPC-ZZO, the schemes
having a vertical-type computation order should be chosen.
Similarly, when r/K < c/L, we should prefer horizontal
ordering schemes BPC-HO or BPC-ZZO. Choosing between
BPC-HO and BPC-ZZO when r/K < c/L, or between BPC-
VO and BPC-NNO when c/L < r/K, depends on the storage
capacity per worker and is discussed further in Section V.

Alternative Formulation of Almost Regular Interpolation
Schemes: The reason why we formulate almost regular inter-
polation schemes in terms of Hermite interpolation throughout
the paper is to shorten the proof of Theorem 1. Alternatively,
instead of interpolating A(x)B(y) from the evaluations of its
derivatives, i.e., Hermite interpolation, almost regular interpo-
lation schemes can also be formulated as the interpolation of
A(x)B(y) from its evaluations, as done in B-PROC. Such an
approach is equivalent to the Hermite interpolation-based for-
mulation, under the almost regularity condition. We include
a more technical discussion about this in the supplementary
material. Before reading it, we advise the reader to go through
Section VI, since the content in supplementary material is
based on the definitions and techniques therein.

V. NUMERICAL RESULTS

In this section, we compare the schemes presented
throughout the paper in terms of the average computation time.
We only focus on the computation time since the bivariate
polynomials to be interpolated in B-PROC, BPC-VO, BPC-
HO, BPC-NZO and BPC-ZZO schemes have the same number
of coefficients, and thus, the variations in their encoding and
decoding times are considered negligible. We also assume
that the communication time is negligible. We model the
computation speed of the workers by the shifted exponential
model [3], [22], which is commonly used in the literature to
analyze coded computation schemes. In this model, the proba-
bility that a worker finishes at least p computations by time t is
F(p, t) = 1 − e−λ( t

p −ν), if t ≥ pν, and 0, otherwise. Thus, the
probability of completing exactly p computations by time t is

Fig. 5. Average computation times of univariate and bivariate polynomial
codes as a function of available storage when partitions of A and B have equal
size.

given by P(p, t) = F(p, t) − F(p + 1, t) assuming F(0, t) = 1,
and F(pmax + 1, t) = 0, where pmax is the maximum number
of computations a worker can complete. In F(p, t), ν is the
minimum duration of one computation. The scale parameter
λ controls the variance of computation times. The smaller is
λ the more variance, and thus more heterogeneous computa-
tion speeds among the workers. To cover more heterogeneous
cases, we choose ν = 0.01 and λ = 0.1.

We run Monte Carlo simulations to compute the expected
computation time for each scheme under different memory
availability. We consider two scenarios in which the sizes of
the partitions of A and B are equal, i.e., c

L = r
K , and the size

of the partitions of B is twice larger than those of A, i.e.,
c
L = 2r

K . In both cases, we assume that the workers have the
same storage capacity, as required by B-PROC. Thus, MA,i =
MA and MB,i = MB, ∀i ∈ [1 : N]. We set K = L = 10
and assume N = 15. In both scenarios, we set μB = 5 and
μA = 5 for BPC-NZO and BPC-ZZO, respectively. For each
memory value, we run 104 experiments. The results of the
first scenario and the second scenario are given in Fig. 5 and
Fig. 6, respectively. For each scheme, the minimum memory
required to complete KL = 100 computations with N = 15
workers is different. Thus, we plot each scheme starting from
a different minimum memory value.

Let us first consider the scenario in which the partitions
of A and B have equal size. In this case, since we also have
K = L and μA = μB = 5, there is no difference between
BPC-HO and BPC-VO, and also no difference between BPC-
NZO and BPC-ZZO. In Fig. 5, we observe that BPC-NZO
and BPC-ZZO result in a much lower expected computation
time than the other schemes for low storage capacities. Even
though we allow partial computations, the univariate poly-
nomial coding, which is UPC-PC, performs far worse than
all the others due to inefficient use of the memory resulting
in a much less fraction of work done per worker compared
to other schemes. In B-PROC, despite the optimality in the
memory allocation between mA,i and mB,i, we see that the
higher number of useless computations aggravates the average
computation time. For the same reason, increasing the stor-
age capacity does not improve the average computation time
beyond a certain point. While simulating B-PROC, we use a
random computation order at the workers, which is reported
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HASIRCIOĞLU et al.: BIVARIATE POLYNOMIAL CODING FOR EFFICIENT DISTRIBUTED MATRIX MULTIPLICATION 823

Fig. 6. Average computation times of univariate and bivariate polynomial
codes as a function of storage capacity, when partitions of B are twice larger
than partitions of A.

to perform well in [15] and stop the computation as soon as
the master is able to decode. On the other hand, for BPC-NZO
and BPC-ZZO, we consider the worst-case scenario, in which
the master starts decoding only after (μB − 2)( L

μB
− 1) com-

putations for BPC-NZO or (μA −2)( K
μA

−1) computations for
BPC-ZZO are collected. Thus, we can expect the performance
of BPC-NZO and BPC-ZZO to be even better than what we
observe in Fig. 5. We also observe that BPC-VO and BPC-
HO performs significantly better than B-PROC and UPC-PC
for the intermediate and large memory values. For this storage
regime, we also observe that BPC-HO and BPC-VO perform
slightly better than BPC-ZZO and BPC-NZO due to the first
constraint of these schemes. For instance, in BPC-NZO, when
mA,i = K, we need mB,i to be a multiple of μB. Therefore,
increasing storage capacity while keeping mA,i = K improves
the expected computation time at some specific memory val-
ues. This is the reason for the improvement we observe in the
expected computation time of the BPC-NZO in Fig. 5 when
the storage is 20. On the other hand, in the low storage regime,
there is a significant performance degradation of BPC-VO and
BPC-HO due to the restrictive constraints of these schemes
at small storage values. Since in BPC-NZO and BPC-ZZO,
the constraints of BPC-VO and BPC-HO are relaxed espe-
cially for small storage values, we observe that BPC-NZO and
BPC-ZZO are superior in low storage regimes. To evaluate the
performance of our schemes, we also plot a lower bound on the
average computation time of any bivariate polynomial-based
coding scheme, assuming there are no redundant computations
and the memory allocation between mA,i and mB,i is optimal.
We observe that the average computation time of the proposed
bivariate schemes is quite close to this lower bound especially
for the intermediate and high storage regimes. In a low stor-
age regime, we observe that BPC-NZO and BPC-ZZO perform
close to the lower bound although for very low values of stor-
age, the gap between BPC-NZO/ZZO and the lower bound
increases. This is due to the third constraint of these schemes
which forbids optimal memory allocation between mA,i and
mB,i. This suggests that there might be still room for improve-
ment in the trade-off between the expected computation time
and the storage capacities of the workers.

On the other hand, when we consider the scenario in which
the partitions of B is twice larger than those of A, in Fig. 6,
we observe that neither BPC-NZO and BPC-ZZO nor BPC-
VO and BPC-HO are equivalent. Recall the discussion at the
end of Section IV-B discussing how we select between com-
putation orders. Since the partitions of B is larger in our
case, decreasing mB,i by one may increase mA,i more than
one. Therefore, satisfying the constraints of horizontal-type
schemes, i.e., BPC-ZZO and BPC-HO, is easier in this case.
Therefore, we expect they perform better than the schemes
with vertical-type order. We verify this in Fig. 6, in which the
performances of BPC-ZZO and BPC-HO are superior espe-
cially in the low storage regime. We also observe that for low
and intermediate values of the storage, the performance of
BPC-VO degrades close to that of UPC-PC. That is because
the computations are done column-by-column in BPC-VO,
see Fig. 4a, and to assign one more computation twice more
storage availability is needed compared to BPC-HO and BPC-
ZZO. BPC-NZO suffers from the same problem, but since in
the zig-zag order, the constraints are relaxed, i.e., the com-
putation grid is divided into blocks, its performance stays
reasonable. We observe that it performs similarly to the BPC-
HO in the intermediate and large storage values. Finally,
similar to Fig. 5, we observe that for the large storage regime,
almost regular schemes perform close to each other and much
better than B-PROC and UPC-PC.

VI. PROOF OF THEOREM 1

Without loss of generality, we assume [1:n], 1 ≤ n ≤ N is
the set of workers which provide at least one computation by
the time the master collects sufficient responses to decode AB.
Consider the interpolation matrix M as defined in Definition 1.
To prove the invertibility of an interpolation matrix M, we
use Taylor series expansion of det(M). Note that det(M) is a
polynomial in the evaluation points zi � (xi, yi), i ∈ [1 : n]. We
can write the Taylor series expansion of det(M) around (xi, yi)
by taking the evaluation point (xj, yj) as the variable, as:

det(M) =
∑

(α1,α2)∈N2

1

α1!α2!

(
xj − xi

)α1
(
yj − yi

)α2 Dα1,α2

(
Z̃
)
,

(19)

where Z̃ � {(xk, yk), k ∈ [1 : n]} \ {(xj, yj)}, and

Dα1,α2

(
Z̃
)
� ∂α1+α2

∂xα1
j ∂yα2

j

det(M)

∣
∣∣∣
xj=xi,yj=yi

. (20)

We call (xi, yi) the pivot node and (xj, yj) the variable
node in this expansion. If the monomials in the set {xα1 yα2 |
(α1, α2) ∈ N

2} cannot be written as a linear combination of the
other monomials in the set, then, they are said to be linearly
independent. In this sense, the monomials (xj −xi)

α1(yj −yi)
α2

in (19) are linearly independent for different (α1, α2) pairs,
as long as, there is no dependence between xi, xj and yi, yj.
Consequently, det(M) = 0 for all values of (xj, yj) ∈ R

2, if
and only if Dα1,α2(Z̃) = 0,∀(α1, α2) ∈ N

2. That is, to show
that M is non-singular, it suffices to show that there exists an
(α1, α2) pair such that Dα1,α2(Z̃) is nonzero.

Let us choose some (α1, α2) pair, and analyse Dα1,α2(Z̃).
Notice that, Dα1,α2(Z̃) is a polynomial in the evaluation points,
now, in Z̃. Specifically, it does not depend on xj and yj since
the derivatives were taken with respect to these variables, and
then evaluated at xj = xi, yj = yi. We call this procedure the
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coalescence of the evaluation points (xi, yi) and (xj, yj) into
(xi, yi). Next, to show Dα1,α2(Z̃) �= 0, we do a new coales-
cence, i.e., we write the Taylor series expansion of Dα1,α2(Z̃)
on a new variable point, choose a new (α1, α2) pair, and coa-
lescence them into (xi, yi). Our proof technique is based on
such recursive Taylor series expansions until all evaluation
points are coalesced into one. We will present a technique to
choose (α1, α2) pairs at each step, which guarantees to obtain
a non-zero polynomial at the final coalescence step.

In the following, we first present some preliminaries which
we will need while presenting our technique for choosing
(α1, α2) at each step.

A. Preliminaries

In order to choose an (α1, α2) pair at each step, we will
need to analyze Dα1,α2(Z̃). Since Dα1,α2(Z̃) is derived from
the Taylor series expansion of a determinant, in some cases,
we can write it, again, in terms of the determinants of other
matrices, which turns out to be more insightful than using
its polynomial form. Before showing this, we introduce the
notions of derivative set and shift, which will be useful in
the rest of the proof.

Definition 4: Associated to every evaluation point zi �
(xi, yi), i ∈ [1 : n], there may be one or more rows in M
each corresponding to a different derivative order of A(x)B(y)
evaluated at zi. We define the derivative set, Uzi,M , of node
zi as the multiset2 of derivative orders associated to zi in M,
i.e., we say (dx, dy) ∈ Uzi,M , if M has a row corresponding the
evaluation ∂dx A(xi)∂dyB(yi) or equivalently the master received
the evaluation ∂dx A(xi)∂dyB(yi) from worker i.

Definition 5: Let M ∈ R
KL×KL be an interpolation matrix

such that at least one of its rows depends on (xj, yj), and let
ri denote the ith row in M. We define a simple shift3 as

∂i,xjM �
[

rT
1 , . . . ,

∂

∂xj
rT

i , . . . , rT
KL

]T

and

∂i,yjM �
[

rT
1 , . . . ,

∂

∂yj
rT

i , . . . , rT
KL

]T

.

Assume that the ith row of M corresponds to
∂di,x A(xj)∂di,yB(yj). Then, the derivative sets of node zi
associated to matrices ∂i,xj M and ∂i,yjM are shifted ver-
sions of the ones associated to M, in the sense that,
Uzj,∂i,xj M

= {(di,x + 1, di,y)} ∪ Uzj,M \ {(di,x, di,y)} and
Uzj,∂i,yj M

= {(di,x, di,y + 1)} ∪ Uzj,M \ {(di,x, di,y)}. Note that if
the multiplicity of any element in a derivative set is greater
than one, then the corresponding interpolation matrix has
at least two identical rows making the matrix singular. ∂i,xj
is called a regular simple shift, if all elements in Uzj,∂i,xj M

have a multiplicity of one. Similarly, ∂i,yj is a regular simple
shift if all elements in Uzj,∂i,yj M

have a multiplicity of one.
Finally, for the composition of simple shifts, we introduce
the notation ∇xj,yj

k,l M, where the ith entries in k and l are the

2Here, we use multiset instead of set as we allow multiple instances for
each of its elements. The number of instances of a given element is called
the multiplicity of that element in the multiset.

3The term shift to refer to derivatives of interpolation matrices highlight
the fact that derivatives applied to interpolation matrices correspond to shifts
in their derivative sets when depicted in the derivative order space, as shown
in Fig. 7.

Fig. 7. Example sets of N-zig-zag ordered (a,b), Z-zig-zag ordered (c,d) and
neither N-zig-zag ordered nor Z-zig-zag ordered (e).

total order of the derivatives taken on the ith row of M with
respect to xj and yj, respectively. Thanks to the commutative
property of the derivative, given a pair (k, l) one can compute
∇xj,yj

k,l M by taking derivatives from any row, at any order,
until completing the derivative orders specified in (k, l). We
refer to each of these possible choices as a derivative path,
and define those paths that only involve regular simple shifts,
i.e., after each derivative there are not two equal rows, as
regular derivative paths. The number of regular derivative
paths is denoted by Ck,l(M).

The following lemma provides an expression for the deriva-
tives of the determinant of an interpolation matrix in terms of a
weighted sum of determinants of other interpolation matrices.

Lemma 1: Let k ∈ [0 : K − 1]KL, l ∈ [0:L − 1]KL and
α1 = ∑KL

i=1 k(i) and α2 = ∑KL
i=1 l(i). Then, we have

∂α1+α2

∂xα1
j ∂yα2

j

det(M)

∣
∣∣∣
xj=xi,yj=yi

=
∑

(k,l)∈RM(α1,α2)

Ck,l(M) det
(
∇xj,yj

k,l M
)∣∣
∣∣
xj=xi,yj=yi

(21)

where RM(α1, α2) is the set of (k, l) pairs satisfying
Ck,l(M) �= 0, i.e., there is at least one derivative path for which
∇xj,yj

k,l can be applied by using only regular simple shifts.
We defer the Proof of Lemma 1 to Appendix A.

B. Choosing an (α1, α2) pair in a coalescence

Recall that our objective is to find an (α1, α2) pair for each
step in the successive coalescence procedure. Lemma 1 is
an important step in this direction as it allows us to express
Dα1,α2(Z̃) in terms of a sum of determinants of interpolation
matrices. However, it still does not provide us a clear clue
on how to choose (α1, α2), so that Dα1,α2(Z̃) �= 0. Next, we
define a structure over the derivative sets of the interpolation
matrices, similar to the ones defined for the computation orders
in Section IV-B, which will eventually help us to define the
quasi-unique shift pairs (α1, α2), which satisfy the conditions
needed for completing a coalescence procedure successfully.

Definition 6: A derivative set Uz,M is said to be N-zig-zag
ordered with parameter μB if (i, j) ∈ Uz,M implies that all
the derivatives with order (k, l) such that SN (1, 1) ≥ SN (k +
1, l+1) ≥ SN (i+1, j+1) are also in Uz,M , where SN (k, l) =
(K − 1)μB(� l

μB
	 − 1) + μB(k − 1) + l as in Section IV-B.
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Fig. 8. Depictions of derivative sets in Example 4.

Similarly, Uz,M is Z-zig-zag ordered with parameter μA if
(i, j) ∈ Uz,M implies that all (k, l) such that SZ (1, 1) ≥ SZ (k+
1, l + 1) ≥ SZ (i + 1, j + 1) are in Uz,M , where SZ (k, l) =
(L − 1)μA(� k

μA
	 − 1) + μA(l − 1) + k as in Section IV-B.

Example 3: Consider the derivative sets with K = L = 4.
The derivative sets illustrated in Fig. 7a and Fig. 7b are N-zig-
zag ordered for μB = 2, and the sets in Fig. 7c and Fig. 7d
are Z-zig-zag ordered for μA = 2. The set in Fig. 7e is neither
N-zig-zag nor Z-zig-zag ordered.

Hereafter, for brevity, we stick to the N-zig-zag order. This
will allow us to prove the part a of Theorem 1. The proof of
part b follows similarly using the Z-zig-zag order instead, and
thus we omit it here.

Definition 7: Consider (xj, yj) is the variable node and
(xi, yi) is the pivot node. Suppose that Uzj,M obeys the N-
zig-zag order, and define M∗ � ∇xj,yj

k∗,l∗M|xj=xi,yj=yi . If there is
only one (k∗, l∗) ∈ RM(α1, α2) such that Uzj,M∗ obeys the
N-zig-zag order, then (α1, α2) is called quasi-unique.

Example 4: Let (α1, α2) = (2, 2) and K = 3, L = 6,
μB = 3. We assume the derivative sets of the pivot and
variable nodes are as depicted in the derivative order space
in Fig. 8a and Fig. 8b, respectively. We observe that the
interpolation matrix has two rows that depend on the variable
node and four rows that depend on the pivot node. Without
loss of generality, we assume rows 1 and 2 depend on
the variable node. In this example, we stick to the defini-
tion in (20), i.e., we take derivatives of the interpolation
matrix first with respect to the y component of the variable
node and then the x component. Therefore, RM(2, 2) =
{([1, 1, 0KL−2], [1, 1, 0KL−2]), ([2, 0, 0KL−2], [0, 2, 0KL−2])},
where 0KL−2 is the all-zero vector with dimension KL − 2.
Note that there is no other (k, l) pair such that ∇xj,yj

k,l can be
applied by using only regular simple shifts. When we apply
∇xj,yj

k,l with (k, l) = ([1, 1, 0KL−2], [1, 1, 0KL−2]), we obtain a
derivative set as depicted in Fig. 8c, and obtain the one in
Fig. 8d with (k, l) = ([2, 0, 0KL−2], [0, 2, 0KL−2]). Note that
the derivative set in Fig. 8c obeys the N-zig-zag order while
the one in Fig. 8d does not. Since there is only one (k, l) pair
resulting in an N-zig-zag ordered derivative set, (α1, α2) is
quasi-unique.

Next we describe, in detail, the first two iterations of the
recursive coalescence procedure, and then generalize the result
to any iteration. Without loss of generality, we choose (xn, yn)
as the pivot node for all the coalescences in the recursion,
and coalesce it with the variable node zi in the ith coalescence
from i = 1 to n − 1. Let us define the set of remaining nodes
before applying the jth coalescence as Zj � {(xi, yi) | i ∈
[j : n]}. For the first coalescence, let M1 = M, and suppose
we find a quasi-unique shift for order (α∗

1 , α∗
2). We denote by

M2 � Ck∗,l∗(M1)∇x1,y1
k∗,l∗ M1|x1=xn,y1=yn the unique matrix such

that Uzn,M2 satisfies the N-zig-zag order, and define the set of

matrices containing the rest of the interpolation matrices as

�2 �
{

Ck,l(M1)∇x1,y1
k,l M1

∣∣
x1=xn,y1=yn

|(k, l) ∈ RM1

(
α∗

1 , α∗
2

) \ (
k∗, l∗

)}
. (22)

Then, from (21), we can write

D2(Z2) = ∂α∗
1+α∗

2

∂x
α∗

1
1 ∂y

α∗
2

1

det(M1)

∣∣∣∣
x1=xn,y1=yn

= det(M2) +
∑

M̄∈�2

det
(
M̄

)
. (23)

For the second coalescence, taking (xn, yn) as the pivot node
and (x2, y2) as the variable node, we write the Taylor series
expansion of D2(Z2) as

D2(Z2) =
∑

(α1,α2)∈N2

1

α1!α2!
(x2 − xn)

α1(y2 − yn)
α2 Dα1,α2(Z3)

(24)

where

Dα1,α2(Z3) = ∂α1+α2

∂xα1
2 ∂yα2

2

det(M2)

∣∣∣∣
x2=xn,y2=yn

+
∑

M̄∈�2

∂α1+α2

∂xα1
2 ∂yα2

2

det
(
M̄

)
∣∣∣∣
x2=xn,y2=yn

. (25)

Next, we apply (21) to (25). This time, we find a quasi-unique
shift (α∗

1 , α∗
2) by only considering matrix M2. Note that, the

(α∗
1 , α∗

2) pair is different for each recursion but for a clearer
notation, we omit the recursion index. Since the choice of
(α∗

1 , α∗
2) only considers M2, it does not imply the existence of

quasi-unique shifts for all the other matrices in �2. We denote
by M3 � Ck∗,l∗(M2)∇x1,y1

k∗,l∗ M2|x2=xn,y2=yn the unique matrix
satisfying that Uzn,M3 follows the N-zig-zag order, and define
the set of matrices containing the rest of weighted interpolation
matrices, originated from M2 or from M̄ ∈ �2, as

�3 �
{

Ck,l(M2)∇x2,y2
k,l M2

∣∣
x2=xn,y2=yn

|(k, l) ∈ RM2

(
α∗

1 , α∗
2

) \ (
k∗, l∗

)}

∪
{

Ck,l
(
M̄

)∇x2,y2
k,l M̄

∣∣
x2=xn,y2=yn

|(k, l) ∈ RM2

(
α∗

1 , α∗
2

)
, M̄ ∈ �2

}
. (26)

Then, we can write

D3(Z3) = Dα∗
1 ,α∗

2
(Z3) = det(M3) +

∑

M̄∈�3

det
(
M̄

)
. (27)

We follow the same procedure until all nodes are coa-
lesced with the pivot node and we reach Dn(Zn). In general,
the expressions in this procedure are defined recursively as
follows.

Mi+1 � Ck∗,l∗(Mi)∇xi,yi
k∗,l∗Mi

∣∣
xi=xn,yi=yn

, i ∈ [1 : n − 1] (28)

Di(Zi) � Dα∗
1 ,α∗

2
(Zi) = det(Mi) +

∑

M̄∈�i

det
(
M̄

)
. (29)

Di(Zi) =
∑

(α1,α2)∈N2

1

α1!α2!
(xi − xn)

α1(yi − yn)
α2 Dα1,α2(Zi+1).

(30)
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�i+1 �
{

Ck,l(Mi)∇xi,yi
k,l Mi

∣∣
xi=xn,yi=yn

|(k, l) ∈ RMi

(
α∗

1 , α∗
2

) \ (
k∗, l∗

)}

∪
{

Ck,l
(
M̄

)∇xi,yi
k,l M̄

∣∣
xi=xn,yi=yn

|(k, l) ∈ RMi

(
α∗

1 , α∗
2

)
, M̄ ∈ �i

}
. (31)

Lemma 2: Consider the recursive Taylor series expansion
procedure on a fixed pivot, (xn, yn). If, for every step i ∈
[1 : n], we can find a quasi-unique shift (α∗

1 , α∗
2) for Mi in (28),

then

Dn(Zn) = det(Mn), (32)

where Mn depends only on Zn = {(xn, yn)}. Therefore,
the associated interpolation matrix Mn, and hence, M1 are
invertible for almost all choices of evaluation points.

The proof of Lemma 2 is given in Appendix B.
In the next lemma, we present a set of situations for which a

quasi-unique shift exits in a coalescence step between a pivot
node and a variable node. These are not the only situations
for which quasi-unique shifts exit but are sufficient to derive
the recovery threshold presented in Theorem 1, as we show
in the next subsection.

Lemma 3: Assume that in the ith coalescence step we have
the variable node zi = (xi, yi) and the pivot node zn = (xn, yn).
Define rf � |Uzi,Mi |( mod μB) and le � μB − |Uzn,Mi |
(modμB). That is, when depicted in the derivative order
space, rf is the number of elements in the rightmost partially-
occupied column of the derivative set of the variable node, and
le is the number of empty places in the rightmost partially-
occupied column of the derivative set of the pivot node. Then,
if |Uzi,Mi |+|Uzn,Mi | > μBK and one of the following conditions
is satisfied:

1) rf = 0,
2) rf = le,
3) le = 0,

or
4) |Uzi,Mi | + |Uzn,Mi | ≤ μBK,

then there exists a quasi-unique shift for the coalescence of
these nodes.

The proof of Lemma 3 is given in Appendix C.

C. Derivation of the Recovery Threshold Expression

The existence of a quasi-unique shift depends on the joint
structure of the derivative sets of the pivot and the vari-
able nodes. If the derivative sets of the pivot node and the
variable node satisfy the conditions in Lemma 3, then, in a
coalescence step, i.e., recursive Taylor series expansion, it is
possible to find a quasi-unique shift for this recursive step
and we can proceed to the next recursion. Otherwise, by sim-
ply ignoring specific computations provided by the worker
whose evaluation point corresponds to the variable node under
consideration, we can have the structure of the remaining
computations satisfy the conditions in Lemma 3. This adds
an overhead of ignored computations to the recovery thresh-
old expression. In the following lemma, we provide an upper
bound on the total number of computations we may need to
ignore throughout the whole recursion process by analysing
the worst-case scenario.

Lemma 4: Assume that the conditions of Lemma 3 hold in
none of the coalescences in the recursive Taylor series expan-
sion process. Then, in the worst case, by ignoring at most
(μB − 2)( L

μB
− 1) computations throughout all the recursion

steps suffices to guarantee decodability for almost all choices
of evaluation points.

Proof: Assume that none of the conditions of Lemma 3 hold.
If rf > le, we can satisfy condition 2, i.e., rf = le, in Lemma 3
by ignoring rf − le computations received from the worker
whose evaluation point is the variable node. Thus, in the worst
case, we ignore max(rf − le) = (μB − 1) − 1 = μB − 2 com-
putations. Note that the minimum value of le is 1. Otherwise,
condition 3 in Lemma 3 would be satisfied. Moreover, the
maximum value of rf is μB − 1. Otherwise, condition 1 in
Lemma 3 would be satisfied. On the other hand, if rf < le,
we can ignore rf computations and satisfy the condition 1
in Lemma 3. Since rf < le < μB, in the worst case, we
need to ignore max(rf ) = μB − 2 computations. Thus, in
either case, the maximum number of computations we ignore
is μB − 2. Observe that generating a new block in the deriva-
tive order space as a result of a coalescence and not satisfying
any of the conditions in Lemma 3 are possible only if when
|Uzi,Mi | + |Uzn,Mi | > μBK. Given that there are L/μB blocks
in the whole derivative order space, the maximum number
of coalescences for which |Uzi,Mi | + |Uzn,Mi | > μBK is at
most (L/μB − 1). Thus, in the worst-case, the total number of
ignored computations is (μB − 2)( L

μB
− 1).

Since the polynomial we need to interpolate, A(x)B(y),
has KL coefficients, in the worst case the recovery threshold
becomes KL+(μB −2)( L

μB
−1). Since this number guarantees

the existence of a quasi-unique shift in every recursive Taylor
series expansion, by Lemma 2, we can conclude that our orig-
inal interpolation matrix is invertible for almost all choices of
the evaluation points. This completes the proof of Theorem 1.

VII. CONCLUSION

In this work, we studied the memory-efficient exploita-
tion of stragglers in distributed matrix multiplication where
workers are allowed to have heterogeneous computation and
storage capacities. We proposed bivariate polynomial cod-
ing schemes allowing efficient use of workers’ memories.
Bivariate polynomial coding poses the problem of invertibil-
ity of an interpolation matrix, which is highly non-trivial,
unlike univariate polynomial codes. We first proposed a cod-
ing scheme based on the fact that the interpolation matrix of
bivariate interpolation is always invertible if the evaluation
points form a rectangular grid. However, in this scheme, some
computations received by the master may not be useful since
the information they provide is already obtained from previous
responses. In order to tackle this problem, we showed that as
long as the workers follow a specific computation order, the
interpolation matrix is invertible for almost every choice of
the interpolation points. Based on this, we proposed BPC-VO
and BPC-HO solving the problem of redundant computations.
However, the constraints imposed by the computation orders
in BPC-VO and BPC-HO harm the average computation time
when the storage capacities of the workers are limited. To
overcome this, in BPC-NZO and BPC-ZZO, we relax these
constraints by allowing a few redundant computations, which
are still much less than those of B-PROC. The ability of the
proposed schemes to exploit the workers’ storage capacities
is close to the optimal. For different storage capacities, we
numerically showed that in terms of the average computation
time, the proposed schemes in the paper outperform existing
schemes in the literature.

The proof of the almost regularity of bivariate polynomial
coding schemes is itself a theoretically interesting one, and it
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may guide proofs of other multivariate interpolation schemes
for distributed matrix multiplication in more general situations.
Another interesting line of work is the application of bivariate
polynomial coding to private matrix multiplication.

APPENDIX A
PROOF OF LEMMA 1

Proof: Given an interpolation matrix M, we first prove

∂

∂xj
det(M) =

KL∑

i=1

det
(
∂i,xjM

)
, (33)

and

∂

∂yj
det(M) =

KL∑

i=1

det
(
∂i,yjM

)
. (34)

They follow directly from the chain rule. Let mi,j’s
denote the elements of M, and SKL the set of all permu-
tations of the columns of M. We use the fact det(M) =∑

π∈SKL
sgn(π)

∏KL
i=1 mi,π(i) [23, Definition 7.4], where π is

a permutation, and sgn(π) is its parity. Then,

∂

∂xj
det(M) =

∑

π∈SKL

sgn(π)
∂

∂xj

KL∏

i=1

mi,π(i)

=
∑

π∈SKL

sgn(π)

KL∑

i=1

(
∂

∂xj
mi,π(i)

) ∏

j∈[1:KL]\{i}
mj,π(j)

=
KL∑

i=1

∑

π∈Sn

sgn(π)

(
∂

∂xj
mi,π(i)

) ∏

j∈[1:KL]\{i}
mj,π(j)

=
KL∑

i=1

det
(
∂i,xjM

)
. (35)

The proof of (34) can be done similarly. Next, consider part of
a derivative path s � ∂il,yj · · · ∂i2,yj∂i1,yj of length l < α2 such
that it has two identical rows or at least one zero row, result-
ing in det(sM) = 0. Now let us consider the other sequences
having s as the suffix. Applying (34) m ≤ α2 − l times,

∂

∂ym
j

det(sM) =
KL∑

il+m=1

· · ·
KL∑

il+1=1

det
(
∂il+m,yj · · · ∂il+1,yj sM

)
. (36)

However, ∂
∂ym

j
det(sM) = 0 since det(sM) = 0. The same

applies to x directional derivatives. That is, while taking the
derivatives of det(M), i.e., applying ∇xj,yj

k,l , if we encounter
a sub-sequence s such that det(sM) = 0, then the sum
of determinants of all matrices having sM as suffix, i.e.,
∂il+m,yj · · · ∂il+1,yj sM, adds up to zero. Thus, only the sequences
in which all simple shifts are regular contribute to (21), while
applying ∇xj,yj

k,l . Given a (k, l) pair, if Ck,l denotes the num-
ber of sequences composed of only regular simple shifts, we
obtain (21).

APPENDIX B
PROOF OF LEMMA 2

We first present another lemma that will be useful in the
proof.

Lemma 5: No derivative set corresponding to the evaluation
points zi in �i+1,∀i ∈ [1:N − 1], defined in (31) obeys N-zig-
zag order.

Proof: From the definition of quasi-unique shift, it is clear
that no elements of the first set in (31) obeys N-zig-zag order.
To show the same for the second set, consider the elements of
the variable node at the coalescence step i. (α∗

1 , α∗
2) is chosen

such that there is only one (k∗, l∗) such that when the ele-
ments of the variable node are shifted according to (k∗, l∗),
and evaluated at (xn, yn), the resulting derivative set obeys the
N-zig-zag order. Assume now that no element in �i obeys
the N-zig-zag order. Take any M̄ ∈ �i and apply ∇xi,yi

k,l M̄ for
some (k, l). If (k, l) �= (k∗, l∗), then at least one of the ele-
ments of the variable node will be placed to a location whose
priority score is larger than those of all the locations to which
the elements of the variable node would be placed if (k∗, l∗)
were applied. This is because ∃j such that k(j) > k∗ or ∃j such
that l(j) > l∗(j). In ∇xi,yi

k,l M̄|xi=xn,yi=yn , if the derivative set of
(xn, yn) obeyed the N-zig-zag order, the variable node would
have to have more elements than it originally had since the
largest priority score whose corresponding location is occu-
pied is larger for ∇xi,yi

k,l M̄|xi=xn,yi=yn than ∇xi,yi
k∗,l∗Mi|xi=xn,yi=yn .

Therefore, it is not possible that the derivative set of the pivot
node for ∇xi,yi

k,l M̄|xi=xn,yi=yn obeys the N-zig-zag order when
(k, l) �= (k∗, l∗). On the other hand, if (k, l) = (k∗, l∗), since
we assume that no element of �i obeys the N-zig-zag order,
the derivative set of the pivot node for ∇xi,yi

k∗,l∗M̄|xi=xn,yi=yn does
not obey the N-zig-zag order. Since we know that no element
in �2 obeys the N-zig-zag order by definition, by induction,
we conclude that none of the elements in �i+1,∀i ∈ [2 : N]
obeys the N-zig-zag order.

The rows of Mn only depend on the pivot node (xn, yn),
and thus, the derivative set associated to (xn, yn) has KL
elements and satisfies the N-zig-zag order. Similarly, for all
matrices in �n, the derivative sets of the pivot node have
KL elements. However, as Lemma 5 suggests, in this case,
no elements of �n satisfies the N-zig-zag order. This implies
that all matrices in �n have at least one duplicate row, or a
zero row. Therefore,

∑
M̄∈�n

det(M̄)|xn−1=xn,yn−1=yn = 0. This
proves (32). The proof of det(Mn) �= 0 follows, directly, from
the fact that, for Mn, the derivative set of the pivot node obeys
the N-zig-zag order. This means that each row of Mn corre-
sponds to ∂kA(xn)∂lB(yn), ∀k ∈ [0 : K − 1], ∀l ∈ [0 : L − 1].
Therefore, Mn can be written as an upper triangular matrix, and
therefore, invertible, implying Dn(Zn) �= 0. Remember that
Di+1(Zi+1) �= 0 implies Di(Zi) �= 0 for all i ∈ [0 : n − 1] due
to the linear independence between (xi − xn)

α1(yi − yn)
α2 for

different (α1, α2) pairs. Thus, Dn(Zn) �= 0 implies D1(Z1) �= 0
recursively, and thus, M1 is invertible. This proves the claim
of the lemma.

APPENDIX C
PROOF OF LEMMA 3

First, note that the existence of a quasi-unique shift is only
related to the structure of the uppermost blocks of the pivot and
variable nodes’ derivative sets. Therefore, even if the derivative
sets of the pivot and variable nodes occupy more than one
block, in the derivative order space, it is sufficient to consider
only the uppermost blocks since the fully occupied blocks can
be handled only by additional y-directional derivatives. Thus,
we proceed as if there exist only the uppermost blocks of the
derivative sets of the pivot and variable nodes.
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Fig. 9. Visualization of the derivative sets of the pivot and variable nodes.

Our proof is based on determining some sufficient con-
ditions for the existence of a quasi-unique shift, which will
reduce to the conditions claimed in the lemma. We first state
our problem visually in the derivative order space in terms
of the derivative sets and the derivatives of the evaluations,
then we find the sufficient conditions on this visual problem
statement.

In this part of the proof, we take all the y-directional
derivatives before the x-directional ones. We depict the ele-
ments in the derivative set of the pivot node, zn = (xn, yn),
in the derivative order space by filled circles in Fig. 9a. Since
the sum of the elements in the derivative sets of the pivot
and variable nodes is larger than the size of one block, i.e.,
|Uzn,Mi | + |Uzi,Mi | > μBK, the coalescence generates a new
block. The unfilled circles in Fig. 9a represent the locations
of the elements of the variable node to be coalesced with the
pivot node after the coalescence. Their locations are deter-
mined such that, after the coalescence, the resulting derivative
set obeys the N-zig-zag order. Therefore, from the structure in
the figure, we write |Uzi,Mi | = le + (ce,b + ce,u)μB + re.

Since, after determining the locations to which the elements
of the variable node are placed, we no longer need the ele-
ments of the pivot node. Therefore, in Fig. 9b, we remove
the elements of the pivot node from the picture, and, instead,
we depict the elements of the variable node in their origi-
nal places such that they obey N-zig-zag order. Note that in
this proof, our goal is to find a quasi-unique shift (α∗

1 , α∗
2)

such that there is only one unique placement, characterized
by (k∗, l∗), of the elements of the variable node along with
the elements of the pivot node. Therefore, we need to track
the final location of each element of the variable node and
make sure that to the location each element is placed, it is
not possible to place another element from the variable node.
Therefore, we denote the elements of the variable node by
Greek letters and their subscripts. Note that the letters used
for this purpose should not be mixed with the other uses of
the Greek letters throughout the paper.

Given the depictions in Fig. 9b, the next step is to determine
y-directional shifts such that all elements of the variable node
are placed to the correct row in the derivative order space.
Since, according to Lemma 1, only regular simple shifts are
considered, while taking y-directional derivatives, the sequence
of the elements having the same x-directional derivative order
cannot change. Therefore, for example, αμB stays always
above the elements denoted by αi, i ∈ [1 : μB − 1]. Thanks

to this property, filling the locations determined to be filled in
the new block is straightforward. Shifting the block composed
of the variable node’s elements with the same shape as the
locations to be filled towards y-direction uniquely determines
the elements to be moved to the new block. The remaining
y-directional shifts will be of the remaining elements of the
variable node in the lower block. In Fig. 9c, we depict the
shifted elements to the upper new block and the remaining
elements together. To have y-directional shifts which generate
quasi-unique shifts, whenever we fill a row in the locations
determined to be filled in the lower block, the elements to be
placed there must be uniquely determined. For example, while
filling the top le rows, for each row, there must be exactly
ce,b +1 columns among the elements of the variable node that
are available to provide their top-most element. After filling
top le rows, in the remaining rows, there must be exactly ce,b
columns of the elements of the variable node that can provide
their top-most element. Therefore, to guarantee this, a suffi-
cient condition is that the shape of the remaining elements of
the variable node and the shape of the remaining empty loca-
tions match. That is, c̃f = ce,b and the remaining elements
of the variable node have only one partially-occupied column
with le elements. There might be several structures satisfying
this condition. One of them is when rf = 0 since this implies
le + (ce,b +ce,u)μB + re ≡ 0 mod μB. Therefore, l̃f = le. This
proves condition 1 of the lemma. Another structure satisfying
the sufficient condition is that rf = le. When this is the case,
le +(ce,b +ce,u)μB +re = rf +(ce,b +ce,u)μB +re = rf +cf μB,
implying l̃f = 0. This proves condition 2 of the lemma.
For completeness, note that after the elements are aligned
with their final rows via y-directional derivatives, necessary
x-directional shifts can be easily applied such that the ele-
ments of the variable node are finally placed to their intended
locations. Again, due to Lemma 1, we consider only reg-
ular simple shifts and therefore, while taking x-directional
derivatives, the sequence of the elements having the same
y-directional derivative order cannot change.

In the remaining of the proof, we take all x-directional
derivatives before y-directional derivatives. In this case, Fig. 9a
and Fig. 9b are still valid. However, since we are taking
x-directional derivatives first, we first align all the elements
of the variable node that are to stay in the lower block with
their intended columns. We start with the rightmost column of
the lower block, which is column K. When |Uzn,Mi |+|Uzi,Mi | ≤
μBK, this column are not intended to be fully occupied, let
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us say only l̃e of them will be filled, but the empty loca-
tions start from the bottom and they are consecutive until
the end. Therefore, the rows of the elements of the vari-
able node that will provide elements to these locations are
uniquely determined, namely the rows [0 : l̃e − 1] of the
elements of the variable node from the bottom. Note that,
if |Uzn,Mi | + |Uzi,Mi | > μBK, then l̃e = μB, which does not
break our argument. After the rightmost elements from the
rows [0 : l̃e − 1] of the elements of the variable node are
shifted to the Kth column via x-directional shifts, next, we fill
the columns starting from column K−1 to column K−ce,b−1.
Note that since each of these columns are intended to be fully
occupied, they are directly filled with the rightmost elements
of each row via x-directional shifts. Finally, we fill the column
K − ce,b, which has le locations intended to be occupied after
the coalescence. If |Uzn,Mi | + |Uzi,Mi | ≤ μBK, then the upper
block is not generated and the number of remaining elements
of the variable node is equal to le, each on different rows.
Thanks to the property that the sequence of the elements hav-
ing the same y-directional derivative orders cannot change by
x-directional shifts, the elements to be placed to the le empty
locations are uniquely determined. This proves condition 4 of
the lemma. On the other hand, when |Uzn,Mi |+|Uzi,Mi | > μBK,
a new block is generated, so there will be always more than
le remaining elements of the variable node. Therefore, to have
a unique shift, in this case, we need le = 0, which proves
condition 3 of the lemma.
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