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Abstract

Documentation that accompanies the file UMATPlasticity.f, a user material
(UMAT) subroutine for implementing conventional von Mises plasticity with
power law isotropic hardening. If using this code for research or industrial
purposes, please cite:
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1. Introduction

The goal of this document is to provide an introduction to the use and
implementation of user material (UMAT) subroutines in Abaqus. Also, it
should help the reader become familiar with the concepts of implicit inte-
gration of non-linear material models and the implementation of plasticity
theories into finite element codes. While conventional von Mises plasticity
is available in ABAQUS as in-built capability, this example aims at: (i)
enabling to directly define (without tabular data) power law isotropic hard-
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ening, and (ii) set the basis for the implementation of more advanced models.

The remainder of this document is organised as follows. Section 2 includes
a description of the constitutive model. The details of the implicit numerical
implementation are provided in Section 3. The usage of the user material
subroutine (UMAT) and a representative numerical example are discussed in
4. Finally, concluding remarks are given in Section 5.

2. von Mises plasticity theory

Let us briefly describe the main features of conventional von Mises plastic-
ity (Dunne and Petrinic, 2005). Small strains will be assumed for simplicity
although the formulation can deal with both small and large deformations.

Strain decomposition. The total strains ε are additively decomposed into
the elastic εe and plastic εp strain tensors

ε = εe + εp (1)

Incompressibility condition. Plastic deformation takes place without volume
change, implying that the sum of the axial plastic strain rate components is
zero:

tr (ε̇p) = ε̇p11 + ε̇p22 + ε̇p33 = 0 (2)

Yield condition. A yield condition is needed to determine if we are in the
elastic or plastic regime. For a given material yield stress σy and effective
stress σe, plasticity will take place when the following yield function is equal
to zero.

f = σe − σy (3)

It remains to define the effective stress σe. In the context of von Mises plastic-
ity theory this is done taking into consideration that: (i) yield is independent
of the hydrostatic stress, (ii) yield in polycrystalline metals can be taken to
be isotropic, and (iii) the yield condition is the same for compression and
tension. In von Mises plasticity the effective stress is defined assuming that
yielding occurs when the distortion energy wd reaches a critical value. wd is
the deviatoric part of the elastic strain energy density:

wd =
1 + ν

2E
tr
(

(σ′)
2
)

(4)
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where σ′ is the deviatoric stress tensor, E is Young’s modulus and ν is
Poisson’s ratio. Using the principal stress:

wd =
1 + ν

6E

(
(σI − σII)2 + (σII − σIII)2 + (σIII − σI)2

)
(5)

In uniaxial tension, it reads:

wd =
1 + ν

6E
σ2
e (6)

Substituting in (3) and re-arranging we reach the yielding function:

f (σ) =
1√
2

[
(σI − σII)2 + (σII − σII)2 + (σIII − σI)2

]1/2
= σy (7)

Thus, one can define the effective stress as:

σe =

√
1

2

[
(σI − σII)2 + (σI − σIII)2 + (σII − σIII)2

]
=

√
3

2
σ′ : σ′ (8)

=

√
1

2

[
(σ11 − σ22)2 + (σ11 − σ33)2 + (σ22 − σ33)2 + 6σ2

12 + 6σ2
13 + 6σ2

23

]
Plastic flow rule. The normality condition tells us the “direction” of plastic
flow after yield. As sketched in Fig. 1, assuming von Mises plasticity (asso-
ciated flow), the increment in the plastic strain tensor is in a direction which
is normal to the yield surface.

Figure 1: The von Mises yield surface for conditions of plane stress, showing the increment
in plastic strain dεp, in a direction normal to the tangent to the surface. Source: Dunne
and Petrinic (2005).
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The flow rule is then given as a function of the yield function f and the
plastic multiplier λ:

ε̇p = λ̇
∂f

∂σ
(9)

where λ̇ gives the magnitude of the plastic strain rate and ∂f/∂σ gives the
direction of the plastic strain increment. In von Mises plasticity an effective
plastic strain is defined as:

εp =

√
2

3
εp : εp (10)

and accordingly the plastic flow law reads:

ε̇p =
3

2
ε̇p
σ′

σe
(11)

Hardening rules. We will focus on isotropic hardening and a power law hard-
ening rule. Specifically, the widely used form: (see, e.g., Mart́ınez-Pañeda
and Niordson, 2016; Mart́ınez-Pañeda et al., 2016)

σf = σy

(
1 +

Eεp
σy

)N

(12)

where σf is the flow stress (or current yield stress) and N (0 ≤ N ≤ 1) is
the strain hardening exponent.

3. Numerical implementation

We proceed to describe the numerical implementation aiming at corre-
lating the equations with the steps followed in the user material subroutine.
The first step involves determining the elastic trial stress. Thus, the elas-
tic stiffness matrix is built first from the shear modulus µ and Lame’s first
parameter λ:

C =


2µ+ λ λ λ 0 0 0
λ 2µ+ λ λ 0 0 0
λ λ 2µ+ λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 (13)
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One then proceeds to determine the elastic trial stress from the total
strain increment:

σtr = σt +C∆ε (14)

where σt is the Cauchy stress tensor in the previous increment. The second
step is to determine the trial yield function; i.e., computing the trial effective
stress:

σtr
e =

√
1

2

[
(σtr

11 − σtr
22)

2 + (σtr
11 − σtr

33)
2 + (σtr

22 − σtr
33)

2 + 6 (σtr
12)

2 + 6 (σtr
13)

2 + 6 (σtr
23)

2
]

(15)
The flow stress (current value of the yield stress) is determined from the
hardening law:

σf = σy

(
1 +

E (εp)t
σy

)N

(16)

And we determine if active yielding - is f > 0? Where f = σtr
e − σf . If

yes, the third step is to determine the flow direction (σ′)tr /σtr
e and calculate

the effective plastic strain increment using the Newton method. A current
tangent modulus can be defined based on the power law hardening rule,
which in this case reads:

Et = EN

(
1 +

E (εp)t
σy

)(N−1)

(17)

To determine the incremental equivalent plastic strain one must solve the
following equation:

σtr
e − 3µ∆εp = σf (εp) (18)

Newton’s method is used to minimise the residual r and find a solution
for ∆εp following an iterative procedure. Thus, for an iteration (i):

r(i) = σtr
e − 3µ∆εp − σf (19)

∆εp = ∆ε(i)p +
r

(3µ+ Et)
(20)

σf = σy

(
1 +

E (εp + ∆εp)

σy

)N

(21)

Et = EN

(
1 +

E (εp + ∆εp)

σy

)(N−1)

(22)
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and the backward Euler iteration scheme concludes when r ≈ 0. Once the
value of ∆εp has been determined, one can use the normality condition to
determine the stress, elastic strain and plastic strain tensors:

σ =
(σ′)tr

σtr
e

σf + δσtr
h (23)

εp = εpt +
3

2
∆εp

(σ′)tr

σtr
e

(24)

εe = ε− εp (25)

where σh is the hydrostatic stress and δ is the Kronecker delta.

The final step involves the computation of the consistent material Jaco-
bian Cep = ∂∆σ/∂∆ε:

σ̇ =

(
K − 2

3
µ
σf
σtr
e

)
δ tr (ε̇)+

(
2µ

σf
σtr
e

+

(
Et

1 + Et/(3µ)
− 3µ

σf
σtr
e

)
(σ′)tr

σtr
e

(σ′)tr

σtr
e

)
ε̇

(26)
where K is the bulk modulus. One should note that if a large strain version is
used, an additional initial step should be introduced, which involves rotating
the stress, elastic strains and plastic strain tensors according to the Hughes
and Winget (1980) algorithm.

4. Usage of the UMAT subroutine

The UMAT subroutine file, UMATPlasticity.f, is suitable for both plane
strain and 3D analyses without any modifications. As with all UMAT sub-
routines, the process of creating the model in ABAQUS/CAE is identical to
standard models using ABAQUS’s in-built except for the material definition.
Namely, one has to select “General: Depvar” and “General: User Material”
in the “Edit Material” window. In the user material definition one should
include 4 mechanical constants (properties), these are described in Table 1.
Also, state variables need to be defined for visualisation and storing history
dependent variables. For 2D models, a total of 9 solution dependent state
(SDV) variables are defined while 13 are required for 3D analyses; these are
respectively given in Tables 2 and 3.
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PROPS Variable
1 E - Young’s modulus

2 ν - Poisson’s ratio

3 σY - Yield stress

4 N - Strain hardening exponent

Table 1: List of user defined material properties (mechanical constants).

SDVs Variable
1 εe11 - xx component of the elastic strain tensor

2 εe22 - yy component of the elastic strain tensor

3 εe33 - zz component of the elastic strain tensor

4 εe12 - xy component of the elastic strain tensor

5 εp11 - xx component of the plastic strain tensor

6 εp22 - yy component of the plastic strain tensor

7 εp33 - zz component of the plastic strain tensor

8 εp12 - xy component of the plastic strain tensor

9 εp - equivalent plastic strain

Table 2: List of solution dependent state variables for plane strain models.

Hence, for the case of a 2D model and a material with Young’s modulus
E = 200000 MPa, Poisson’s ratio ν = 0.3, initial yield stress σy = 600 MPa,
and strain hardening exponent N = 0.2, the input file reads:

*Material, name=Material-1

9,

1, EE11, EE11

2, EE22, EE22

3, EE33, EE33

4, EE12, EE12

5, EP11, EP11

6, EP22, EP22

7, EP33, EP33

8, EP12, EP12

9, PEEQ, PEEQ

*User Material, constants=4

200000., 0.3, 600., 0.2
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SDVs Variable
1 εe11 - xx component of the elastic strain tensor

2 εe22 - yy component of the elastic strain tensor

3 εe33 - zz component of the elastic strain tensor

4 εe12 - xy component of the elastic strain tensor

5 εe13 - xz component of the elastic strain tensor

6 εe23 - yz component of the elastic strain tensor

7 εp11 - xx component of the plastic strain tensor

8 εp22 - yy component of the plastic strain tensor

9 εp33 - zz component of the plastic strain tensor

10 εp12 - xy component of the plastic strain tensor

11 εp13 - xz component of the plastic strain tensor

12 εp23 - yz component of the plastic strain tensor

13 εp - equivalent plastic strain

Table 3: List of solution dependent state variables for plane strain models.

Including the name of the state variables in the input file facilitates visual-
isation. To run the user subroutine one should type in the Abaqus command
window:

abaqus job=Job-1 user=UMATPlasticity.f

where Job-1 is the name of the input file (Job-1.inp). Some Windows users
running old versions of Abaqus or Fortran compilers might have to change
the extension of the user subroutine to .for (UMATPlasticity.for).

A representative input file is provided as an example. The input file mod-
els a fracture experiment in a so-called Compact Tension specimen, modelling
both the sample and the pins and their interactions (contact). The geometry,
mesh and representative results are given in Fig. 2.

8



Figure 2: Representative example: Compact Tension specimen, (a) mesh, and (b) von
Mises effective stress contours (in MPa).

5. Concluding remarks

The present document accompanies the subroutine UMATPlasticity.f,
which is provided as supplementary data for the paper (Mart́ınez-Pañeda
et al., 2019b). The reader is referred to www.empaneda.com/codes for other
examples of user subroutines in ABAQUS. Namely: (1) user element (UEL)
subroutines for implementing phase field fracture (Mart́ınez-Pañeda et al.,
2018) and fatigue (Kristensen and Mart́ınez-Pañeda, 2020), (2) USDFLD
subroutine for implementing functionally graded materials (Mart́ınez-Pañeda
and Gallego, 2015; Mart́ınez-Pañeda, 2019), (3) user element (UEL) subrou-
tines for implementing cohesive zone elements (del Busto et al., 2017), (4)
user material subroutines for implementing CMSG plasticity theory (Mart́ınez-
Pañeda and Betegón, 2015), and (5) user element (UEL) subroutines for im-
plementing higher order strain gradient plasticity (Mart́ınez-Pañeda et al.,
2019a).
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