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Abstract

Subsea pipelines are increasingly being used both around offshore drilling

facilities and for long distance oil and gas transport. Accidents can have

devastating environmental and economic impact, amplifying the need for

accurate, reliable detection and characterisation of pipeline defects. Inspec-

tion of these pipelines for corrosion and other defects is crucial for safe

operation. Radiography holds a significant advantage over many other in-

spection methods in that it does not require surface preparation or insulation

removal.

Subsea pipeline radiography is a relatively new technique, and underwa-

ter conditions are not covered by radiographic standards. Water can have

a significant impact on a radiographic image and access is very difficult,

meaning standardised above-water methods may not be applicable. This

is particularly the case for defect characterisation; standard methods often

call for calibration objects to be included in the setup, which can be a very

complex operation in subsea conditions. There is also a lack of experimental

data for research, due to the difficulty and high costs associated with sub-

sea radiography. Simulation is one of the key ways of assessing inspection

problems, however radiographic simulation models have not been validated

for subsea inspections.

This thesis addresses the two problems of accurate subsea simulation and

alternative defect characterisation methods. Firstly the accuracy of a ra-

diographic simulation model applied to subsea pipeline inspections is inves-

tigated. Experimental measurements of a sample in a water tank are used

to adjust the simulation, with the aim of matching image quality parame-

ters - such as signal-to-noise ratio and contrast. The simulation has been

partially matched to experiment, with some differences found in contrast-

to-noise ratio. Possible causes of the differences are analysed, with the most

likely cause found to be detector backscatter and additional scatter from

out-of-setup objects within the experimental exposure bay.
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The simulation model is then used to provide data for development and

testing of a defect characterisation method. The method relies on knowl-

edge of the setup geometry and use of multiple images, and does not require

calibration objects to be included in the setup. It is specifically aimed at

use in situations where access is difficult such as in subsea pipeline inspec-

tions. The method is tested on simulated and experimental flat bottomed

hole defects and simulated corrosion patch defects. Results demonstrate

a good, consistent ability to calculate lateral and axial defect dimensions.

Defect thickness calculations are more difficult and as such errors are more

significant. However, errors in thickness are due to overestimation, meaning

the calculation could be used to place a maximum limit on potential defect

size rather than as an actual estimate of the thickness.

8



Acknowledgements

Firstly I would like to thank my academic supervisors Mike Lowe and

Peter Huthwaite for their guidance and support throughout my project.

Thanks also to my industrial supervisors Tom Knox and Ian Bradley, as

well as Robin Jones, for their help and advice.

I would like to acknowledge the support of BP, the UK Research Centre in

Non-Destructive Testing (RCNDE), the Engineering and Physical Sciences

Research Council (EPSRC) and the Royal Commission for the Exhibition

of 1851. I also extend thanks to the Federal Institute of Materials Testing

(BAM), Berlin, for their collaboration and for hosting me during a research

placement. I am grateful to the NDT group at Imperial College London

for the friendly and open atmosphere, making it a great place to work for

the last four years. Thanks to Glenn Jones for his help and for being there

when I needed someone to talk radiography to!

Finally, thanks to my family for their continued understanding and sup-

port. In particular I am grateful to my mother, who never doubted that

I would get this far, and to my partner, who is always there to offer help

when I need it.

9



10



Contents

1 Introduction 19

1.1 Industrial Context . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Project Organisation . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Radiographic Theory 23

2.1 Photon Interactions in Matter . . . . . . . . . . . . . . . . . . 23

2.2 Radiographic Equipment . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Detectors . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Pipeline Corrosion Imaging . . . . . . . . . . . . . . . . . . . 34

2.4 Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Computed Tomography . . . . . . . . . . . . . . . . . . . . . 40

3 Radiographic Simulation Model 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Analytical Ray Tracing Model . . . . . . . . . . . . . . . . . . 47

3.3 Monte Carlo Scattering Method . . . . . . . . . . . . . . . . . 50

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.1 Comparison with CIVA . . . . . . . . . . . . . . . . . 60

3.4.2 Comparison with aRTist . . . . . . . . . . . . . . . . . 67

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Simulation Validation 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Experimental Method . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Simulation Method . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Simulation Tuning . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

11



4.6 Peripheral Scatter . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6.1 Simulation method . . . . . . . . . . . . . . . . . . . . 86

4.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Defect Characterisation 97

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . 100

5.2.2 Ray Tracing . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.3 Application of Constraints . . . . . . . . . . . . . . . . 107

5.3 Experimental and Simulation Studies . . . . . . . . . . . . . . 115

5.3.1 Data Acquisition Methods . . . . . . . . . . . . . . . . 115

5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6 Conclusion 134

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . 138

12



List of Figures

2.1 Mass attenuation of photons travelling through water, iron

and lead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Total attenuation and its components for photons travelling

through water. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Total attenuation and its components for photons travelling

through iron. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Decay scheme for Cobalt-60 . . . . . . . . . . . . . . . . . . . 28

2.5 Principle of an x-ray tube. . . . . . . . . . . . . . . . . . . . . 30

2.6 An example x-ray spectrum. . . . . . . . . . . . . . . . . . . . 31

2.7 Illustration of a subsea pipeline radiography system. . . . . . 35

2.8 Standardised methods of radiographic imaging of pipelines

for corrosion mapping. . . . . . . . . . . . . . . . . . . . . . . 36

2.9 Measurement of basic spatial resolution. . . . . . . . . . . . . 38

2.10 Diagram showing method of parallel CT. . . . . . . . . . . . . 41

3.1 Example showing the method of ray path calculation. . . . . 48

3.2 Flowchart showing the method of simulating the direct radi-

ation reaching the detector. . . . . . . . . . . . . . . . . . . . 49

3.3 Flowchart showing the method of simulating the scattered

radiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Flowchart showing the accept-reject method of sampling. . . 54

3.5 Coordinate system of the photon. . . . . . . . . . . . . . . . . 55

3.6 Total energy reaching the detector for a 50 mm iron block.

Calculated using the Monte Carlo method in PRIM. . . . . . 58

3.7 Comparison of direct radiation reaching the detector in aRTist

and PRIM for a 50 mm iron block. Calculated from the

Monte Carlo method in both cases. . . . . . . . . . . . . . . . 58

13



3.8 Comparison of scattered radiation reaching the detector in

aRTist and PRIM for a 50 mm iron block. Calculated from

the Monte Carlo method in both cases. . . . . . . . . . . . . . 59

3.9 Total energy reaching the detector for a 320 mm outer diam-

eter pipe. Calculated using the Monte Carlo method. . . . . . 60

3.10 Test case used for model validation. . . . . . . . . . . . . . . 61

3.11 Full analytical result calculated by PRIM for the case of a

water filled pipe containing a lead sphere. . . . . . . . . . . . 62

3.12 Cross-section through the analytical result for the case of a

water filled pipe containing a lead sphere, calculated with

both PRIM and CIVA. . . . . . . . . . . . . . . . . . . . . . . 62

3.13 Comparison of direct Monte Carlo result in PRIM and CIVA,

for the case of a water filled pipe containing a lead sphere. . . 63

3.14 Comparison of scattered Monte Carlo result in PRIM and

CIVA, for the case of a water filled pipe containing a lead

sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.15 Full analytical result calculated by PRIM for the case of an

insulated, water filled pipe, containing a lead cube. . . . . . . 64

3.16 Cross-section through the centre of the analytical result for

the case of an insulated, water filled pipe, containing a lead

cube. Calculated with both PRIM and CIVA. . . . . . . . . . 65

3.17 Cross-section through the analytical result, 10 mm along pipe

from the centre, for the case of an insulated, water filled pipe,

containing a lead cube. Calculated with both PRIM and CIVA. 65

3.18 Cross-section through the direct Monte Carlo result, 10 mm

along pipe from the centre, for the case of an insulated, water

filled pipe, containing a lead cube. Calculated with both

PRIM and CIVA. . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.19 Cross-section through the scattered Monte Carlo result, 10

mm along pipe from the centre, for the case of an insulated,

water filled pipe, containing a lead cube. Calculated with

both PRIM and CIVA. . . . . . . . . . . . . . . . . . . . . . . 66

3.20 X-ray spectrum used in test setup of an iron pipe with a

flat-bottomed hole defect. . . . . . . . . . . . . . . . . . . . . 67

3.21 Total energy reaching the detector in PRIM for a 320 mm

outer diameter pipe, with a flat bottomed hole defect. . . . . 68

14



3.22 Comparison of analytically calculated direct radiation reach-

ing the detector in aRTist and PRIM. The object was a 320

mm outer diameter pipe, with a flat bottomed hole defect. . . 68

3.23 Comparison of direct radiation reaching the detector in aRTist

and PRIM for a 320 mm outer diameter pipe, with a flat bot-

tomed hole defect. . . . . . . . . . . . . . . . . . . . . . . . . 69

3.24 Comparison of scattered radiation reaching the detector in

aRTist and PRIM for a 320 mm outer diameter pipe, with a

flat bottomed hole defect. . . . . . . . . . . . . . . . . . . . . 70

3.25 Total energy reaching the detector in PRIM for a water filled,

insulated pipe with a flat bottomed hole defect. . . . . . . . . 70

3.26 Comparison of direct radiation reaching the detector in aRTist

and PRIM for a water filled, insulated pipe with a flat bot-

tomed hole defect. . . . . . . . . . . . . . . . . . . . . . . . . 71

3.27 Comparison of scattered radiation reaching the detector in

aRTist and PRIM for a water filled, insulated pipe with a

flat bottomed hole defect. . . . . . . . . . . . . . . . . . . . . 71

4.1 Stepped pipe used as test object. . . . . . . . . . . . . . . . . 77

4.2 Setup for high energy radiography of the pipe. . . . . . . . . 77

4.3 Setup dimensions used for experimental image acquisition. . . 77

4.4 Setup with the pipe in a rectangular water tank. . . . . . . . 78

4.5 Radiographic setup modelled in aRTist. . . . . . . . . . . . . 78

4.6 Spectrum of the 7.5 MeV betatron as modelled in aRTist. . 79

4.7 Diagram illustrating long and short range unsharpness. . . . . 81

4.8 Diagram illustrating the edge profile of a pipe. . . . . . . . . 81

4.9 An example of an experimental tangential radiograph. . . . . 82

4.10 Profiles across the radiograph for experimental and simulated

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.11 Wall thickness measurements in tangential experimental and

simulated images. . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.12 Contrast-to-noise ratio for a series of simulated and experi-

mental images . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.13 Signal to noise ratio for the same set of images as in Fig 4.12. 85

4.14 Radiographic setup modelled in aRTist for peripheral scatter

study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

15



4.15 Radiographic setup modelled in aRTist including some nearby,

peripheral objects. . . . . . . . . . . . . . . . . . . . . . . . . 87

4.16 Profiles across the radiograph for experimental and simulated

tangential images with increased water tank lateral dimensions. 88

4.17 Contrast-to-noise ratio for images with different sized water

tanks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.18 Mean signal-to-noise ratio for images with different sized wa-

ter tanks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.19 Relative contrast for images with different sized water tanks. 90

4.20 Profiles across the radiograph for experimental and simulated

images with no water in the beam path. . . . . . . . . . . . . 91

4.21 Contrast-to-noise ratio for images with different peripheral

objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.22 Relative contrast for images with different peripheral objects. 92

4.23 Relative scatter ratios for the cases of monoenergetic 300 keV

and 2 MeV sources. . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 An example setup for radiography of a pipe containing a flat

bottomed hole defect. . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Lines are drawn from each defect pixel to its corresponding

source position. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 The background mean and standard deviation calculated from

a set of four simulated images. . . . . . . . . . . . . . . . . . 101

5.4 Original radiographic image, with the defect highlighted. . . . 102

5.5 Inorm, the image after subtraction of the background mean. . 103

5.6 An enlarged area of Inorm after thresholding, with defect pix-

els marked in red. . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.7 Log scale histogram of Inorm pixels. . . . . . . . . . . . . . . 104

5.8 Resulting Inorm, with defect pixels marked in red. . . . . . . . 105

5.9 A line is traced back from each defect pixel to its source. . . . 106

5.10 Defect thickness map calculated from the overlap volume pro-

duced by ray tracing. . . . . . . . . . . . . . . . . . . . . . . . 107

5.11 The potential defect must be in the region within the pipe wall.108

5.12 Thickness map of potential defect after applying the pipe wall

constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

16



5.13 Intensity (Inorm) of the pixels in the image with a centred

defect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.14 An example of distance processing. . . . . . . . . . . . . . . . 111

5.15 Defect thickness after distance processing. . . . . . . . . . . . 112

5.16 The effective attenuation coefficient for each pixel, calculated

using the distances through the defect illustrated in Fig 5.15. 112

5.17 Distance travelled through the defect for the image with the

defect centred, after the application of all constraints. . . . . 113

5.18 Thickness map of the defect after application of all constraints.114

5.19 Real thickness map of the defect. . . . . . . . . . . . . . . . . 115

5.20 An example of an experimental double wall radiograph. . . . 116

5.21 Calculated lateral and axial dimensions for a flat bottomed

hole defect using different sets of three images. . . . . . . . . 118

5.22 Calculated thickness for a flat bottomed hole using the same

sets of images as in Fig 5.21. . . . . . . . . . . . . . . . . . . 119

5.23 Calculated lateral and axial dimensions for a flat bottomed

hole defect using different sets of three images, examining the

error if the straight down, centred defect image is not included.120

5.24 Calculated thickness for a flat bottomed hole using the same

sets of images as in Fig 5.23. . . . . . . . . . . . . . . . . . . 121

5.25 Calculated lateral and axial dimensions for a flat bottomed

hole defect using different sets of images. . . . . . . . . . . . . 122

5.26 Error in axial size for flat bottomed holes with diameters of

12.5 mm, 25 mm and 50 mm. . . . . . . . . . . . . . . . . . . 123

5.27 Calculated thickness for flat bottomed holes with diameters

of 12.5 mm, 25 mm and 50 mm. . . . . . . . . . . . . . . . . . 123

5.28 Error in thickness for flat bottomed holes with 25 mm diam-

eter and thicknesses of 5.5 mm, 10.5 mm and 15.5 mm. . . . 124

5.29 Error in dimensions of 20% wall thickness flat bottomed hole

defects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.30 Error in dimensions of 50% wall thickness flat bottomed hole

defects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.31 Thickness map of the real corrosion defect. . . . . . . . . . . 127

5.32 Calculated thickness map of the real corrosion defect. . . . . 128

5.33 Error in calculated defect dimensions for real corrosion defects.129

17



5.34 Error in calculated defect dimensions for larger diameter real

corrosion defects. . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.35 Results for the same defects as shown in Fig 5.33 but for the

case that they are identified as outer wall defects by the model.130

18



1 Introduction

1.1 Industrial Context

Non-Destructive Evaluation (NDE) is the area of engineering concerned

with inspection of industrial components, determining their structural in-

tegrity without causing damage. There are many different inspection tech-

niques ranging from ultrasonics and radiography to eddy current methods

and dye penetrant testing [1]. NDE is invaluable throughout industry in

preventing failure of in-service components and improving quality control

during manufacturing.

Subsea pipelines are increasingly being used both around offshore drilling

facilities and for long distance oil and gas transport. Inspection of these

pipelines for potential corrosion and other damage is crucial for safe opera-

tion. Accidents can have devastating environmental and economic impact,

amplifying the need for accurate, reliable detection and characterisation of

pipeline defects. For many pipelines internal inspection techniques can be

used. Internal methods include ultrasonics, magnetic flux leakage and eddy

current inspection [2]. However in some cases internal inspection is not pos-

sible, for example due to lack of access, and external inspection methods

must be used.

External inspection of subsea pipelines presents unique challenges. Access

is difficult, particularly in deep water areas which require remotely operated

inspections and pressure resistant equipment. In addition, some subsea

pipelines have thick insulation or concrete coating, which means methods

requiring surface or near surface contact, eg ultrasonics and eddy current

testing, are not well suited as they would require insulation removal. Radio-

graphy holds a significant advantage over many other inspection methods

in that it does not require surface preparation or insulation removal. De-

velopment of modern digital detectors has further improved the prospect of

radiography, as digital images can be viewed almost in real time with no
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need to retrieve and scan computed radiography imaging plates or develop

film. This makes radiography one of the most suitable methods for subsea

pipeline inspection.

This thesis addresses the two problems of accurate subsea simulation and

alternative defect characterisation methods. Firstly the accuracy of a radio-

graphic simulation model applied to subsea pipeline inspections is investi-

gated. Subsea pipeline radiography is a relatively new technique. Standards

for radiographic imaging of pipeline corrosion [3, 4] do not currently cover

underwater conditions. As water is highly scattering it can have a significant

impact on radiographic image quality: thus it is vital to investigate inspec-

tion configurations with water. Subsea radiography is extremely costly, and

extensive experimental data for research is difficult to obtain. Simulations

are significantly more affordable and accessible than subsea experimental

data, and are able to model a wide range of underwater radiographic se-

tups. However, simulation models have not been validated as accurate for

underwater imaging, and before conclusions can be drawn from simulation

results they must be shown to be comparable to experimental results. Hence

a major aim of the project was to investigate the ability to accurately sim-

ulate underwater radiography.

The simulation model is then used to provide data for development and

testing of a defect characterisation method. Traditional methods of radio-

graphic defect sizing rely on using additional objects of known size placed in

the setup. For example, to estimate defect depth a step wedge must be in-

cluded in the exposure, placed on the pipe as close as possible to the region

of interest [4]. The step wedge is used in the resulting image to calibrate the

relation of intensity to material thickness, allowing for defect depth to be

calculated from its change in grey level. In a subsea environment, where the

inspection is being controlled with a remotely operated vehicle, inclusion of

objects such as a step wedge would add an additional layer of complexity

to an already difficult inspection. Factors such as the positioning of the

step wedge can impact the accuracy of the resulting defect characterisation,

which could affect the reliability of the method. Therefore it is advanta-

geous to develop methods of defect characterisation for double wall pipeline

radiography that do not require additional objects in the setup.
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1.2 Project Organisation

This project was run within the UK Research Centre for Non-Destructive

Evaluation (RCNDE) as a collaboration between Imperial College London

and BP. BP provided the industrial context, details of implementation and

relevant radiographic data for the project. I was primarily based at Imperial

College London for the project, but maintained regular contact with my

supervisors in BP, who contributed to steering the project and provided

feedback from an industrial viewpoint.

In 2014, the third year of the project, I was awarded an industrial fellow-

ship from the Royal Commission for the Exhibition of 1851 [5]. The 1851

industrial fellowship is a scheme to support doctorate level research with

strong industrial motivations and the potential for significant contribution

to UK industry. It provides additional funding for the project in the third

and fourth years. This funding significantly boosted the project by allow-

ing a three month research placement and collaboration with the Federal

Institute of Materials Testing (BAM) in Berlin [6]. BAM is an international

authority on radiography, responsible for many of the official standards of

practice. The collaboration extended the scope of the project by providing

an experimental element and the possibility of using a simulation model de-

veloped by BAM to investigate subsea pipeline imaging. The collaboration

resulted in two joint conference papers at the 2015 Quantitative Review of

Progress in Non-Destructive Evaluation (QNDE) conference [7, 8], and a

journal paper in NDT&E International[9].

1.3 Thesis Structure

The thesis begins in Chapter 2 with an introduction to radiographic the-

ory. Photon interactions in matter, radiographic equipment, standards of

pipeline corrosion imaging and methods of image analysis are described.

Chapter 3 moves on to detail the initial project work; development of a

radiographic simulation model. The aim of the model development was

to provide a simple, fast alternative to commercially available models, as

well as to act as a learning tool in radiographic simulation. The simulation

method is described, and results are given and validated through comparison

with two commercially available models.
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Chapter 4 describes my investigation of the accuracy of radiographic simu-

lation models for subsea imaging, in collaboration with BAM. Experimental

measurements of a sample in a water tank are used to adjust the simulation,

with the aim of matching image quality parameters - such as signal-to-noise

ratio and contrast. The simulation has been partially matched to experi-

ment, with some differences found in contrast-to-noise ratio. Possible causes

of the differences are analysed, with the most likely cause found to be detec-

tor backscatter and additional scatter from out-of-setup objects within the

experimental exposure bay. Chapter 4 was originally written as a journal

paper and has been published in NDT&E International [9]. In addition, I

have presented the work at the QNDE 2015, BINDT 2015 and WCNDT

2016 conferences, and published a conference proceedings paper [7].

Chapter 5 describes the development and testing of the pipeline defect

characterisation method. The method relies on knowledge of the setup ge-

ometry and use of multiple images, and does not require calibration objects

to be included in the setup. It is specifically aimed at use in situations

where access is difficult such as in subsea pipeline inspections. The method

is tested on simulated and experimental flat bottomed hole defects and sim-

ulated corrosion patch defects. Results demonstrate a good, consistent abil-

ity to calculate lateral and axial defect dimensions. Calculations of defect

thickness are more difficult and as such errors are more significant. How-

ever, errors in thickness are due to overestimation, meaning the calculation

could be used to place a maximum limit on potential defect size rather than

as an actual estimate of the thickness. In this chapter, ‘defect thickness’ is

used to refer to the maximum wall loss caused by the defect. Again this

chapter was originally written as a journal paper and has been published in

NDT&E International [10]. I have also presented this set of work at QNDE

2016.

Finally Chapter 6 presents the conclusions of the work. In addition pos-

sible applications are discussed, along with future work required to further

the project achievements.
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2 Radiographic Theory

2.1 Photon Interactions in Matter

Radiographic images are formed through the propagation of high energy

radiation (x-rays or gamma rays) through an object to the detector. When

photons travel through a material they have a probability of interacting

with atoms in the material; they may be absorbed by the photoelectric

effect, scattered through Compton or Rayleigh scattering or undergo pair

production [1, 11]. Those photons remaining will reach the detector and

have a chance of detection to form the image.

The probability of a photon interacting in a material is dependent on the

photon’s energy but also highly dependent on the density and atomic struc-

ture of the material. The attenuation coefficient of a material is directly

proportional to the probability of photon interaction; Figure 2.1 shows the

mass attenuation of water, iron and lead for a range of photon energies.

Mass attenuation is attenuation normalised by the material density; it al-

lows multiple materials to be compared without the disparity in magnitudes

caused by density. It is this disparity that forms the image. Photons will be

less attenuated if travelling through a low density, rather than high density,

material. Consequently, more radiation will be detected from low density

regions of an object.

The intensity of direct, unscattered radiation reaching the detector, I,

can be calculated from the material attenuation using the Beer-Lambert

Law:

I(E) = I0(E)e−μ(E)x (2.1)

where E is the energy of the photons, I0 is the initial radiation intensity,

μ is the attenuation of the material and x is the distance travelled through

the material.

This equation does not take into account photons which are detected af-
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Figure 2.1: Mass attenuation, μ/ρ, for photons travelling through water,
iron and lead where μ is the total attenuation coefficient and
ρ is the material density. Sharp peaks occur when the photon
energy is just high enough for the photons to interact with an
additional electron shell. The attenuation data was obtained
from the XCOM online database [12].

ter being scattered; for thin or low density materials, this is often sufficient.

However, for thicker or denser materials, such as the steel pipes and wa-

ter being examined in this project, scattered photons can have a significant

impact on the results through lowering the contrast. It is difficult to analyt-

ically calculate the impact of scattering; photon interactions in matter are

stochastic and are generally dealt with through probabilistic Monte Carlo

simulation. Deterministic scattering models have been developed [13, 14, 15]

but tend to be limited in application, for example only calculating first-order

scattering.

The attenuation coefficient of a material can be split into separate com-

ponents giving the attenuation coefficient for each type of interaction, which

is directly proportional to its probability. The relative probability of each

interaction varies with material type and photon energy. For example

Rayleigh scattering is more probable at low photon energies, and is never a

very strong effect relative to other interactions. Rayleigh scattering occurs

when the electromagnetic field of a photon interacts with bound atomic
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electrons. The electromagnetic field causes the electrons to oscillate at the

same frequency. This acts as an electric dipole, and emits radiation of the

same frequency as the original exciting photon. Hence, in Rayleigh scatter-

ing the scattered photon has the same energy but a new direction relative

to the incoming photon.

The important interactions for most of the energy range of interest in

industrial radiography are photoelectric absorption and Compton scatter-

ing, with pair production becoming significant at higher energies [12]. In

photoelectric absorption the photon is completely absorbed by an atomic

electron. The electron is excited and emitted from the atom, which becomes

ionised. The free electron then travels through the material, losing its ki-

netic energy through interactions within the material. If the electron is near

the surface of the material it may escape, otherwise it will be reabsorbed

into the material. The loss of an electron leaves the atom with a vacancy

in one of its energy levels; this vacancy will be filled by a nearby free elec-

tron or a bound electron in a higher energy level. The process of filling the

vacancy can cause x-ray fluorescence, in which a photon is emitted from

the atom, or the Auger effect, in which a bound electron is emitted. The

emitted photon or electron will go on to interact with other nearby atoms,

often causing the release of additional electrons from nearby atoms. Hence,

in general photoelectric absorption results in absorption of the x-ray photon

and emission of multiple fast electrons.

Compton scattering is where the photon interacts with a bound electron,

transferring a portion of energy to the electron. In addition to losing energy,

the photon’s direction is changed. The electron, known as a recoil electron,

becomes free and will leave the atom at an angle relative to the scattered

photon such that momentum is conserved. In Compton scattering the pho-

ton generally loses a fairly small proportion of its energy, meaning it may

go on to reach the detector or to have additional interactions.

For high energy photons, over 1.022 MeV, pair production becomes pos-

sible. This is where the photon annihilates to create an electron-positron

pair. The electron and positron will be dissipated through interactions in

the material, with the electron quickly absorbed and the positron combining

with a nearby electron to produce two photons with 0.51 MeV energy.

Both the photoelectric effect and Compton scattering can result in pro-

duction of high energy electrons in the material. These high energy electrons
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will be deflected by atomic nuclei, and emit Bremsstrahlung. Bremsstrahlung

is radiation produced by deceleration of the electrons when interacting with

other charged particles. The energy of the Bremsstrahlung depends on the

extent of electron deceleration and forms a continuous spectrum, with the

majority at low energies. Bremsstrahlung photons may go on to interact

with other atoms or to reach the detector, and will therefore contribute to

the amount and distribution of scatter detected.

The total attenuation coefficient and its components for different inter-

actions in two materials, water and iron, are plotted in Figures 2.2 and 2.3

respectively.
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Figure 2.2: Total attenuation and its components for photons travelling
through water. Total attenuation is a combination of atomic
scattering and absorption effects whose relative probabilities
change with photon energy. Data is from the XCOM online
database [12].

Comparing the dominance of interactions in water, Fig 2.2, and iron, Fig

2.3, it can be seen why water is considered a highly scattering medium.

In water photoelectric absorption is much weaker than in iron. Compton

scattering in water is proportionately higher and becomes the most probable

interaction at a lower energy (around 30 keV) compared to iron in which it

is most probable from around 100 keV. Compton scattering degrades image

quality by changing the direction of photons which will, if detected, reduce
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Figure 2.3: Total attenuation and its components for photons travelling
through iron. Data is from the XCOM online database [12].

contrast in the image.

This demonstrates the potentially large negative impact that water, for

example surrounding a subsea pipeline, can have on a radiographic image.

Its density is high enough that the number of interactions is non-negligible

while its probability of Compton scattering is relatively higher than other

materials. Being able to accurately simulate the impact of water would be

very useful as it would help determine detection limits and defect charac-

terisation accuracy in real inspections.

2.2 Radiographic Equipment

2.2.1 Sources

Radiography may be performed using either x-rays or gamma rays. Both

x-rays and gamma rays are high energy electromagnetic radiation; the main

difference between them is in their method of production. Gamma rays are

produced by radioactive decay of an unstable atomic nucleus, producing

high energy photons at a few discrete energies. In addition beta or alpha

particles may be released. Examples of radioactive isotopes commonly used

in industrial radiography are Iridium-192 and Cobalt-60. Ir-192 releases
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gamma rays at 0.31, 0.47, and 0.60 MeV while Co-60 releases energies of

1.17 and 1.33 MeV [16]. At these energies the gamma rays can penetrate

thick materials in a short exposure time, making them well suited for in-situ

radiography.

An example of the decay scheme of Co-60 is shown in Figure 2.4. The

nucleus decays via beta decay, in which a neutron is transformed into a

proton and a beta particle (electron) is released. In the case of Co-60 the

beta particle emitted may be low or high energy, with the Nickel-60 daughter

nucleus produced in a high or low energy state. The daughter nucleus will

then release one or two gamma ray photons while transitioning to a lower,

stable, energy level.

60
27Co

0.31 MeV β− (99.88%)

1.48 MeV β−

(0.12%)

60
28Ni

1.17 MeV γ

1.33 MeV γ

Figure 2.4: Decay scheme for Cobalt-60. The nucleus decays to Ni-60
through beta decay, releasing a beta particle with energy of ei-
ther 0.31 MeV with 99.88% probability or 1.48 MeV with 0.12%
probability. The Ni-60 nucleus is produced in an unstable, high
energy level, and releases gamma ray photons in transitioning
to a stable energy level.

Gamma ray sources cannot be turned off and are continuously releas-
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ing photons; hence for safe usage the radioactive material is kept inside a

shielded container. The amount of shielding required is dependent on the

energy of the gamma rays, with higher energies needing more shielding. To

release radiation the container must be opened; the source is also wound out

of the container from a distance, once the operator is in a shielded location.

Gamma ray sources are relatively small and portable, with most of their

weight due to the shielding material. A typical isotope size is 1.5 mm x

1.5 mm, while the shielding material required for an Ir-192 source is about

20 kg and about 230 kg for a Co-60 source [16]. The isotope material in

sources needs replacing regularly as its activity decreases over time.

X-ray sources are generally larger and less portable than gamma ray

sources, and also require cooling. They often need larger exclusion zones

than gamma rays, although this is dependent on source energies. In ad-

dition, x-ray sources require a power supply, which might not be readily

available for an in-situ inspection. These are the main reasons for use of

gamma rays instead of x-rays. The benefits of x-rays are that the generator

can be turned off when not in use, so there are fewer health and safety is-

sues, and the tube parameters, such as maximum voltage and current, can

be adjusted to give an output suited to a particular inspection.

The method of x-ray production differs significantly from gamma rays.

X-rays are generated when fast travelling electrons strike a target material.

An example of an x-ray tube is shown in Figure 2.5. When a voltage is

applied across the tube, electrons are accelerated from the filament on the

cathode towards a target on the anode. The target is made of a dense, heat

resistant material such as tungsten. When the electrons strike the target

most of the energy is released as heat, hence a cooling mechanism must be

used to prevent the target from melting. This may be a water cooling system

or a method such as rotation of the target so no single point is exposed to

heat continuously. About 1% of the electrons’ energy is converted into

high energy x-ray photons through the inverse photoelectric effect. X-rays

are produced at all angles inside the tube; most will be absorbed in the

tube walls, with a small window of thinner material allowing output in a

particular direction.

Unlike gamma rays, which are produced at a few discrete energies, x-rays

form a spectrum of energies. The maximum energy produced by an x-ray

tube is determined by the voltage applied across the tube; for example a
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Figure 2.5: Example of an x-ray tube. Electrons are accelerated from the
cathode to the anode in the vacuum tube. On striking the target
most of the electrons’ energy is dissipated as heat; about 1% is
converted into x-rays. X-rays will leave the tube through the
window, giving a relatively small aperture of useful x-rays.

voltage of 400 kV will release x-rays up to an energy of 400 keV. An example

of an x-ray spectrum is shown in Figure 2.6. Most of the spectrum is made

up of Bremsstrahlung, radiation produced though the inverse photoelectric

effect. Bremsstrahlung mainly consists of low energy photons, with decreas-

ing proportions of higher energies. However the lowest energies are easily

absorbed and are filtered out by the tube window material. The sharp peaks

at a few particular energies are produced by characteristic radiation from

the target material. This occurs when a fast electron knocks a bound elec-

tron out of an atom in the target. An electron in a higher energy level will

transition to the lower energy state, releasing a photon with energy equal to

the difference between the two energy levels. Hence characteristic radiation

is produced at a few discrete energies, with different energies produced by

different material targets.

For inspections of thick components, which require high energies, alter-

native methods of x-ray generation may be used. The same principle of

creating x-rays through bombardment of a target with fast electrons is used,

however electrons can be accelerated to much greater speeds with the use of

particle accelerators. In a betatron, electrons are accelerated in a circular

path using the magnetic field generated in a coil. Electrons can reach much
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Figure 2.6: Example of an x-ray spectrum using a tungsten target and 4
mm thick aluminium tube window. Tube parameters for this
simulated example were a voltage of 200 kV and a current of 1
mA.

greater speeds in this manner as they can repeat the circular path many

times before being released towards the target. The maximum energy of

x-rays produced by a betatron is limited by the magnetic field used. Typ-

ical betatron energies are from 2.5 to 9 MeV [17]. The number of photons

output by a betatron is relatively low as it produces x-rays in short pulses

rather than continuously. For higher output a linear accelerator (linac) may

be used. A linac accelerates electrons along a tube using a high frequency

electromagnetic wave [18]. X-ray energies in a similar range to betatrons are

produced, the advantage being the much greater total output. Most linacs

are very large, with for example an 8 MeV linac weighing 1200 kg [18], how-

ever portable versions are available. Betatrons are also relatively portable,

with a 7.5 MeV betatron weighing about 150 kg [17], and are also cheaper

than linacs. These traits make the betatron potentially useful for subsea

pipeline imaging; the energy is high enough to penetrate large, insulated

pipes, while it is sufficiently portable for a subsea setup to be feasible.
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2.2.2 Detectors

Three different types of detector are used within industrial radiography;

film, Computed Radiography (CR) and Digital Detector Arrays (DDAs).

In recent years there has been a gradual move from film based systems to

DDAs and CR systems. This has led to significant research comparing the

different detector systems and identifying the strengths and weaknesses of

each. The detector type used in subsea imaging will generally be a DDA, as

this allows data to be transferred without physical retrieval of the detector.

However, it is important to understand the uses and limitations of DDAs

compared to film and CR systems.

Film is still commonly used due to its low initial cost and easy availability,

although CR and DDA systems are becoming more prevalent. Radiographic

film typically consists of an emulsion containing silver halide crystals, for

example silver bromide [19]. When photons strike the film they can cause

ionisation of the halide atoms; electrons will then be captured by Ag+ ions.

A latent image is formed from these changes in structure. When the film

is developed the chemical reaction with the developer forms metallic silver

[19], creating an image visible to the eye.

CR uses phosphor based imaging plates which, similarly to film, store a

latent image when exposed to x-ray or gamma ray photons. In this case,

the latent image is made up of electrons which have been excited from the

valence band to the conduction band through absorption of a photon [20].

The latent image is read out by scanning the imaging plate with a laser; the

energy from the laser releases the electrons from the conduction band. The

electrons move back to the valence band, releasing visible photons which are

detected by a photo-multiplier tube. Hence the image is read into a digital

format. The process of scanning removes much of the latent image from the

plate; to fully wipe the plate it is exposed to bright light after scanning [20].

The plates can be reused multiple times, and like film are flexible so they

can be bent around a curved object.

DDAs, also called flat panel detectors, cannot be bent, and convert ab-

sorbed x-ray and gamma ray photons into a digital image, without any ad-

ditional steps for reading the image as required by film and CR. DDAs may

be direct or indirect; a direct detector converts absorbed photons directly

into electron-hole pairs, while an indirect detector converts x-ray photons

32



into lower energy photons, in the visible light range, and from visible light

into a current. Indirect detectors are more commonly used and consist of an

x-ray scintillator, photodiode and thin film transistor, usually amorphous

silicon [21, 22]. For more detail, technical aspects of digital detectors are

reviewed by Lanca et al. (2009) [23, 24].

A major benefit of digital methods is the ease of data storage and transfer

compared to film. Film also requires a dark room and various hazardous

developing chemicals making it a difficult method to use in some situations

such as offshore. Different detectors require different exposure parameters.

Therefore in moving from film to CR or DDAs it must be ensured that

operators are fully informed of the differences between the usage of each

system; Shetty et al. (2011) [25] discuss artefacts found in medical CR

images and identify that many are due to operator error.

As digital detectors began to enter NDE there was some concern over their

lower image quality and limited uses compared to film [26]. The technology

was primarily developed for medical applications where the suitable energy

range is frequently lower than that required for industrial applications, with

DDAs limited to fairly low energies (< 250 keV) [27]. Most digital systems

also suffer from lower spatial resolution than NDT film, although new sys-

tems developed for dental radiology have improved resolutions. However,

NDE specific research has found that contrast sensitivity of DDAs is greater

than film if calibration algorithms are used [27]. It has also been found that

DDAs can distinguish wall thickness changes of up to 1/1000 of the mate-

rial thickness, in comparison to 1/100 for film systems [28]. By using DDAs

with careful calibration as well as image integration techniques, where im-

ages are averaged to reduce noise, Kersting et al. (2010) [29] were able to

obtain a signal-to-noise ratio at least twice as good as film, as well as an

increase in probability of detection of weld seam defects. More recent work

comparing image quality of CR with film for high energy LINAC x-rays

[30] found similar performance for both systems, with CR having a greater

dynamic range. For imaging components with greatly varying thicknesses

this greater dynamic range means only one CR exposure may be needed,

while film requires several exposures of different times to obtain the same

information. The authors also comment on the usefulness of digital con-

trast enhancement tools commonly used with CR images, allowing more

information to be obtained from the images.
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As digital methods have become more prevalent, research has moved to

the relative merits of CR versus DDA systems. Papers comparing the two

[31, 32, 33] conclude that CR has a wider range of uses, being suitable for

both stationary and mobile inspection and for use under difficult weather

conditions. DDAs on the other hand require a stabilised temperature and

humidity, and so are more suitable for stationary, in-house inspections [27].

With DDAs, a range of calibration techniques are available, as well as pos-

sible quality compensation methods, where one parameter is improved at

the expense of others [34]. DDAs may also be able to obtain a better signal-

to-noise ratio (SNR) than CR; image noise in CR is mostly determined by

the imaging plate’s structural noise, with a linear dependence on grey level.

Calibration of DDAs is able to nearly eliminate structural noise, leading to

a square-root dependence of SNR on grey level [35]. This ability to calibrate

and reduce noise is a significant benefit to using DDAs subsea, in addition

to the ease of data transfer which makes the use of a DDA essential in deep

waters.

2.3 Pipeline Corrosion Imaging

Techniques of pipeline corrosion mapping with radiography have been

investigated and standardised [3, 4] for use above water. Accepted inspec-

tion methods are the tangential and double wall techniques. The method

currently used for practical subsea imaging is Double Wall Single Image

(DWSI). An illustration of the system, which uses a digital detector com-

bined with a 7.5 MeV betatron source, is shown in Figure 2.7. It is ma-

nipulated by a separate remotely operated vehicle (ROV), which can move

the system axially along the pipe. In addition the source and detector can

rotate around the pipe to take images at different angles.

In the DWSI method, shown in Fig 2.8 (a), the source and detector are

placed close to each side of the pipe. As the upper wall is very close to

the source any features are magnified across the whole detector, meaning

that this method effectively just images the lower pipe wall, close to the

detector. Corrosion is visible from the intensity change it causes, as more

radiation reaches the detector in areas where the wall is thinner. The DWSI

method is used in the current hardware as the relatively short source-to-

detector distance reduces the highly attenuating and scattering effects of
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Figure 2.7: [36] Illustration of a subsea pipeline radiography system. The
radiographic module contains a betatron source and a digital
detector which can be rotated around the pipe. The separate
ROV can move the system axially along the pipeline.

the water. A variant of double wall imaging is Double Wall Double Image

(DWDI), shown in Fig 2.8 (b), in which the source is set back from the pipe.

In this case the upper wall is not magnified to the same extent, and both

upper and lower pipe walls can be clearly imaged in a single exposure. In

tangential imaging, Fig 2.8 (c), the source is set back as in DWDI but the

detector is offset such that the edge of the pipe is visible in the radiograph.

Wall thickness at the tangential position can be measured on the resulting

radiograph directly, as the inner and outer wall positions are points of major

intensity change and therefore identifiable in a profile across the image.

In order to accurately measure wall thickness in a tangential image the

image must be dimensionally calibrated. The calibration is required to take

into account magnification effects in the setup. There are several differ-

ent methods of calibration; the magnification can be manually calculated

from known setup dimensions, alternatively if the pipe outer diameter is

known and the full diameter is visible in the image the magnification can

be calculated as the ratio of the known and measured diameters. Accurate

knowledge of setup dimensions may be difficult in-service, while for larger

pipes the full outer diameter will not be visible in an image. In these cases

a comparator must be included in the setup. A comparator is an object

of known size such as a ball bearing or cylinder. The comparator must be

made of a dense material such that it is clearly visible in a radiograph, and

is placed in a tangential position on the outer pipe wall [3]. The image can
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Figure 2.8: Standardised methods of radiographic imaging of pipelines for
corrosion mapping. (a): Double Wall Single Image, where the
source is placed close to the upper pipe wall (EN 16407: part
2 [4]). In Double Wall Double Image, (b), the source is set
further back (EN 16407: part 2 [4]). Tangential Imaging, (c),
allows direct measurement of the wall thickness at the tangential
position (EN 16407: part 1 [3])

then be calibrated by comparing the actual and measured comparator sizes.

In double wall radiography measurements of wall thickness loss are de-

pendent on intensities. Absolute thickness cannot be measured with this

method, instead the difference in thickness between two nearby points is

calculated. The difference in thickness between two points can be derived

from the Beer-Lambert Law, Equation 2.1, if the incident intensity and

attenuation coefficients at the two points are assumed the same [4]:

x2 − x1 =
1

μ
ln

I(x1)

I(x2)
(2.2)

where μ is the effective attenuation coefficient and x1 and x2 are the pene-

trated thicknesses at the two points, with I(x1) and I(x2) the corresponding

intensities. The effective attenuation coefficient accounts for the overall at-

tenuation experienced travelling from source to detector and depends on

both the materials travelled through and the photon energies. In order to

use Equation 2.2 the effective attenuation coefficient needs to be measured;

this is done with a step wedge placed in the setup. The step thicknesses

must be known, and the step wedge placed as close as possible to the area of

interest [4]. If the step wedge is not sufficiently close to the area of interest

the result will be inaccurate. This is because the effective attenuation coef-
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ficient is likely to be different in other regions of the image, due to different

paths travelled from the source to detector.

2.4 Image Analysis

Radiographic images can be analysed and compared using a series of im-

age quality parameters. These include the basic spatial resolution (SRdetector
b ),

Signal-to-Noise ratio (SNR) and Contrast-to-Noise ratio (CNR). Image Qual-

ity Indicators (IQIs) are used to aid image analysis and measurement of

image quality parameters. In general IQIs provide a quick idea of the qual-

ity of an image, prior to detailed measurement. There are several different

types of IQI; one of the most commonly used is the wire type IQI [37]. A

wire IQI consists of a series of wires of decreasing diameter; the smallest

diameter wire visible in a radiograph gives an indication of the overall qual-

ity of the image. The wires in the IQI must be made of a similar material

to the sample, and the range of wire diameters in the IQI used should be

decided based on the sample thickness. The correct placement of IQIs in a

radiographic setup is detailed in the relevant standards for the inspection

type. For example for a DWSI pipe inspection the IQI should be placed on

the detector side of the object, while for a DWDI setup the IQI should be

on the source side of the object [4]. In both cases the IQI should be in close

contact with the object surface and at the centre of the area of interest.

Other types of IQI in use are step/hole and hole-in-plaque types [37]. The

step/hole type consists of a step wedge with one or two holes in each step,

with hole diameter equal to step thickness. The hole-in-plaque IQI, com-

monly used in the US, is a uniform thickness plaque with holes of diameter

one, two and four times the plaque thickness. In both these IQI types the

smallest visible hole indicates the image quality.

Wire IQIs also come in the form of duplex wires, which can be used to

measure image unsharpness and hence basic spatial resolution. Duplex wire

IQIs are formed of pairs of wires with both decreasing diameters and a de-

creasing distance between them. For SRdetector
b measurement a duplex wire

IQI is placed on the detector in an exposure. The inherent image unsharp-

ness is determined from the smallest duplex wire pair which is separable

by a profile function with less than 20% modulation depth, in a linearized

profile [38]. SRdetector
b is related to the inherent image unsharpness, ui by
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the simple equation [3]:

SRdetector
b =

1

2
ui (2.3)

An example of SRdetector
b measurement is shown in Figure 2.9.

Figure 2.9: Measurement of basic spatial resolution. Top: Section of a sim-
ulated radiograph showing a duplex wire IQI. Bottom: Plot of
a profile through the duplex IQI image. The basic spatial res-
olution is found from the first pair of wires for which the peak
in between the pair is less than 20% of the dip caused by each
wire, in this example the fifth wire pair. This identifies the wire
pair as the smallest separable wires.

For a more precise basic spatial resolution calculation, interpolation be-

tween neighbouring pairs of wires can be used. This can identify the ex-

act size corresponding to 20% modulation depth in the profile, meaning

SRdetector
b does not have to be based on the closest wire to that point.

SRdetector
b which has been calculated through interpolation is called iSRdetector

b

[3].

Image unsharpness is a measure of the gradual change in intensity across

a sharp thickness change in an object. Inherent unsharpness depends on

the system and energy in use and is caused by the spreading out of a de-

tected photon into neighbouring detector pixels. This is usually through

stray electrons, which cause the neighbouring pixels to detect some signal,

resulting in a smearing of a sharp edge across several pixels. Another form of

unsharpness which affects the image is called geometric unsharpness. This
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type of unsharpness is a blurring due to the finite size of the source. Geo-

metric unsharpness depends on the source to detector distance (SDD) and

the object to detector distance (ODD) and can be reduced by increasing

the SDD or decreasing the ODD. Total image unsharpness is calculated as

a combination of geometric and inherent unsharpness.

Further measurements are required to numerically determine the signal-

to-noise and contrast-to-noise ratios. Signal-to-noise ratio is defined as the

ratio of the mean value of the grey level to the standard deviation of the

grey level in a given region of the image [3]. In practice a rectangular region

of interest is taken in an area of the image free from significant intensity

changes. For each horizontal line of pixels i, with n pixels per line, the mean

grey level (GVi) and sample standard deviation (σi) are given by [39]:

GVi =
1

n

n∑
j=1

GVij (2.4)

σi =

√√√√ 1

n− 1

n∑
j=1

(GVij −GVi)2 (2.5)

where GVij is the grey level at line i and column j in the region of interest.

These are calculated for each horizontal line of pixels, where there are M

lines. Signal-to-noise ratio is then given by:

SNR =
Median

[
GVi

]M
i=1

Median[σi]Mi=1

(2.6)

This is the unnormalised SNR, which has a dependency on the radiographic

system used. Normalised SNR, SNRN , is a more useful measure as it re-

moves this dependency. SNRN can be calculated from [39]:

SNRN = SNR.
88.6μm

iSRb

(2.7)

where iSRb is the interpolated basic spatial resolution of the image.

The contrast, C, of an object in a radiograph is given by [40]:

C = I − Iobj = ΔI (2.8)

where Iobj is the intensity measured on the object indication and I the
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intensity nearby. The contrast-to-noise ratio can then be calculated from:

CNR =
|ΔI|

σ
(2.9)

where σ is the standard deviation measured in an area near the intensity

measurements. Another measure is the relative contrast (Cr). Cr is inde-

pendent of the noise and is instead based on the relative change in grey

level, given by:

Cr =
|ΔI|

I
(2.10)

Relative contrast is particularly useful when comparing images with differ-

ent noise or grey levels in the area of measurement.

2.5 Computed Tomography

Computed Tomography (CT) is a method of obtaining a full 3D repre-

sentation of an object using x-ray images. In CT multiple radiographic

projections are taken at different positions and angles around the object.

The data is collected into a sinogram, which is an array representing the

data as a function of projection angle and translational distance. The sino-

gram can then be reconstructed into a 3D representation of the object.

The simplest form of CT is parallel ray, also called pencil beam CT.

This is where a single small detector is used to detect a collimated beam of

radiation through the object. The detector and source are translated across

the object to obtain a series of projections, then rotated by a small angle

and translated back. This process is shown in Figure 2.10.

Parallel ray CT has the disadvantage of a long acquisition time. Other

methods have been developed to decrease acquisition time by increasing the

size of the detectors and using partially collimated or uncollimated sources.

Fan beam CT uses a 1D line detector and therefore collects a line of data

from each angle, meaning the source/detector system only needs to rotate

around the object, not translate across. In both pencil beam and fan beam

CT the result is a 2D slice through the object. In order to get a full 3D

representation, the process must be repeated at a different position along

the object to obtain multiple slices. In cone beam CT a 2D detector is used,

so only rotation is required for 3D reconstruction.
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Figure 2.10: Parallel CT involves the source and detector translating across
the object, as in (a). They are then rotated, (b), and translated
back, (c). This process is repeated to acquire a full set of data.
The source is collimated to produce a pencil beam.

Total angular coverage of 360◦ is not required for parallel CT since projec-

tions 180◦ apart are mirror images of each other, however taking additional

projections will reduce the noise in the resulting reconstruction. For a fan-

beam set-up, an object can be reconstructed using 180◦ plus the fan beam

angle [41]. Reconstructing from the fan beam data also requires additional

filtering due to some regions being sampled more than others, creating arte-

facts.

Mathematically radiographic data collection is equivalent to a Radon

transform, summing up the attenuation across each source-detector line.

Reconstruction is an inverse Radon transform, and consists of ‘smearing’

the data back along the angle at which it was obtained, a process known as

back-projection. This is a simple process for parallel CT, where each pro-

jection is acquired at the same distance from the source, with a known angle

and position. However for fan and cone beams it becomes more complicated

and data must either be resorted and interpolated into corresponding par-
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allel beam data or back-projected with a weighting to account for diverging

beam geometry [41].

The most commonly used fan-beam CT reconstruction method is the Fil-

tered Back-Projection (FBP) technique, described in many papers and in

some detail by Kak & Slaney [41]. This method was extended for cone-

beam geometry by Feldkamp et al. (1984) [42] into a method known as

the Feldkamp or FDK algorithm after the authors. The FDK algorithm

has become the standard cone-beam reconstruction method in NDT due

to its straightforward approach [43]. The technique of CT results in a full

reconstruction of the object, allowing for easy and accurate identification

and characterisation of defects. However, it is extremely time consuming in

comparison to a single radiographic inspection, needing a large number of

projections to obtain a good quality result. Limited view CT is an active

research area attempting to develop reconstruction algorithms that can deal

with fewer projections and still produce reasonable quality images. Stan-

dard CT algorithms such as FDK result in low quality images with many

artefacts if used on limited data [44].

Algorithms for limited view reconstruction have been investigated for

many years in an effort to reduce scan time and medical dosage. One of the

first iterative methods, the algebraic reconstruction technique (ART) was

first proposed by Gorden et al. (1970) [45]. This technique was expanded

into the simultaneous algebraic reconstruction technique (SART) [46], and

the two methods are still popular iterative methods often used as com-

parisons against new algorithms. Other early methods include Bayesian

techniques to incorporate prior information into reconstructions from in-

complete data, described by Hanson (1987) [47]. There are a variety of

other more recent reconstruction methods. Tang et al. (2009) [48] gives an

overview of different statistical image reconstruction (SIR) algorithms. Li

et al. (2002) [49] proposes an iterative method to reconstruct sparse objects

from a limited number of cone beam projections, able to achieve good re-

constructions from as few as 15 projections. However most objects do not

satisfy the sparseness condition of relatively few non-zero pixels which is

assumed by their algorithm [50].

Sidky et al. (2008) [50] uses simulations to demonstrate the performance

of their circular cone-beam reconstruction algorithm, based on total varia-

tion (TV) minimization. The algorithm assumes that images have sparse
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gradient-magnitude images, and demonstrates reasonable reconstructions

with 25 projection views. TV minimization is a commonly used method, of-

ten in combination with other algorithms [51, 52, 53]. TV algorithms often

cause over-smoothness at the image edges; Liu et al. (2012) [54] present an

adaptive-weighted TV minimisation algorithm that compensates for this ef-

fect. Similar to the TV method the compressed sensing (CS) reconstruction

technique relies on solving a constrained minimization problem; Chen et al.

(2008) [55] extend and improve the method, obtaining accurate reconstruc-

tions with about 20 view angles. Singh et al. (2008) [56] presents a method

of reconstruction and image segmentation based on constrained metric la-

belling. Constrained metric labelling uses the fact that the object has a

set of distinct attenuation values which are known, while a reconstruction

typically shows a spread of attenuation values due to blurring and streak

artefacts. If the attenuation values in the reconstruction are constrained to

be from the subset of known values, then the problem reduces to assign-

ing each voxel to its ‘best-fit’ value. The study proposes an algorithm that

reassigns image voxel values in this manner. Results show greatly reduced

streak and blurring artefacts from a limited view of 20 projections, as com-

pared to standard ART. There are many possible artefacts that may be

caused by limited view methods, some of these are detailed by Machida et

al. (2010) [57], where the relationships between acquisition parameters and

potential artefacts are explained.

Although limited view CT methods provide a significant time saving com-

pared to full CT, they still require many more projections than would be

feasible for subsea imaging. In addition, the double wall single image setup

is not ideal for CT: if the source is placed directly on the insulation then

there will be areas of the pipe not covered in the field of view (FOV) for any

given exposure. This means that some areas of the object will have a greater

total exposure, and therefore intensity discontinuities will be seen in the re-

construction. These artefacts are known as truncated projection artefacts

(TPAs) and are described by Yao et al. (2013) [58], where a processing

method to reduce these artefacts is detailed. Jian et al. (2007) [59] also

covers this type of artefact, from the point of view of CT of large objects,

where the object is not entirely covered by the FOV. In this case the author

proposes a method of taking additional projections at offset positions to

reduce artefacts.

43



Another imaging method, for which TPAs are a particular problem, is to-

mosynthesis. Tomosynthesis is a pseudotomographic imaging technique that

uses a limited number of projections over a small angular range to recon-

struct a quasi-3D image [60]. Tomosynthesis is considered an extreme form

of limited view computed tomography. It has been developed in medicine

for the particular use of breast cancer detection, with the aim of overcoming

some of the limitations of mammography, while keeping the dose minimal.

Due to its main area of application, it is usually referred to as digital breast

tomosynthesis (DBT). DBT does not result in a fully 3D image; due to

the very limited angular range of projections, the spatial resolution in the

depth direction is very low compared to the other directions. Many CT

reconstruction algorithms can also be used for DBT, such as filtered back-

projection (FBP) and the algebraic reconstruction technique (ART). Nielsen

et al. (2012) [61] describes a modification to the standard FBP method, to

account for the specific acquisition geometry. However, there are many pro-

posed algorithms specifically for DBT. A recent review, Sechopoulos (2013)

[62], describes different algorithms and gives a comprehensive review of the

research into comparisons between reconstruction methods. These types of

reconstruction methods, even if not directly applicable subsea due to time

and cost or setup constraints, can give an insight into potential methods of

defect characterisation in subsea pipeline radiography.
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3 Radiographic Simulation Model

3.1 Introduction

In the initial phase of the project a radiographic simulation model, PRIM

(Pipeline-specific Radiographic Inspection Model), was developed. The aim

of the development was twofold; to provide a simple, fast alternative to

commercially available models and to help with understanding of methods

used in the commercial models. With the project focus on subsea pipelines

the model could be optimised for pipeline inspection configurations, giv-

ing lower versatility but much faster computational times. However, effects

such as pair production and electron transport were not included in PRIM,

meaning it is not as accurate as commercial models, particularly for higher

energies. Hence PRIM can be used to quickly visualise the expected radio-

graph for an inspection configuration and to adjust simulation parameters

for an optimum image, before moving on to simulate the inspection with

more accurate commercial models.

Scattering in PRIM is simulated using a Monte Carlo technique, a com-

monly used method of simulating scatter [63, 64, 65, 66]. Monte Carlo meth-

ods are often used where it is difficult to deterministically solve a problem.

This is the case for photon scattering, as it is not possible to calculate the

exact path of a photon, only the probability of each possible path. In the

Monte Carlo algorithm random sampling is used to decide on a photon’s in-

teractions, based on the relative probabilities of each interaction. While any

given photon will follow a random path, summing the results of many pho-

tons will give a realistic distribution based on these underlying probabilities.

If run for long enough Monte Carlo methods will accurately simulate both

direct and scattered radiation, producing the complete radiograph. How-

ever the computing time required would be correspondingly high; therefore

many models have applied a method of combining a straight-line analyti-

cal model using the Beer-Lambert Law, Equation 2.1, with a Monte Carlo
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method used to add scattering effects [64, 67, 68]. This is the technique

applied in PRIM.

PRIM is coded in C++, with additional post-processing of the output in

Matlab. Inputs to the model are in the form of text files, such that only

those needed in a particular setup are read in. Inputs needed include tables

of attenuation data for each material in a setup, tabulated source energy

data and further material details such as density and atomic number. To

model a material the simulation requires attenuation data, so any desired

compound or alloy could be simulated if its attenuation data is available or

can be calculated. The attenuation data used in PRIM was obtained from

the XCOM online database [12]. The source used can be specified as Ir-192,

Se-75 or Co-60, the three most commonly used isotopes in industrial radio-

graphy. Alternately, simple monoenergetic sources can be specified. The

model also incorporates x-ray sources; these are more complicated to model

as they consist of a continuous spectrum of energies, while gamma sources

have several discrete energies. The method to include x-ray sources involves

interpolating between energies to obtain the attenuation at numerous ener-

gies along the spectrum. The model does not generate x-ray tube spectra,

hence the desired x-ray spectrum must be provided in the form of a text

file. Variable setup parameters such as dimensions, exposure conditions and

defect type are also set in a text file, giving a very basic user interface and

meaning simulations can be run without editing the source code.

As the project is focussed on imaging of pipelines the model assumes a

pipe as object. This means the surface of the pipe can be included analyti-

cally rather than as a CAD model type object. The simplest pipe is assumed

to be a perfect cylindrical tube, however pipe ovality or smooth variations

in pipe wall thickness can be included for a more realistic pipe. The pipe

can also be insulated, with the insulation assumed to be a cylindrical tube,

again with the option of ovality or smooth variation in thickness. The ma-

terial of each component in the simulation; the pipe, insulation, inside pipe,

defect and surroundings, can all be set independently. Simple cylindrical or

spherical defect shapes are also modelled analytically. For more complex,

non-analytical defect shapes, a voxelisation method is used. The defect

domain is bounded by a sphere within which the defect is discretised into

volume elements called voxels. Each voxel is set as a particular material,

allowing arbitrary shaped defects to be included.
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The analytical ray tracing component of the model is described in the

next section, followed by the Monte Carlo method of scattering simulation.

Results are then compared against two commercially available radiographic

simulation models: CIVA [69, 70] and aRTist [71]. CIVA is a model de-

veloped by CEA LIST [72] in France. aRTist (analytical RT inspection

simulation tool) is developed by the Institute of Materials Testing (BAM)

[6] in Berlin.

3.2 Analytical Ray Tracing Model

The analytical part of the model is based on the Beer-Lambert Law (Eqn

2.1) and calculates the proportion of unscattered radiation reaching the

detector. The method is to trace straight-line rays from the source to the

centre of each detector pixel, identifying the distance travelled through each

material along the way. Each section of the ray in a different material is

dealt with in turn, adding the product of material attenuation (μ) and

distance through the material (x) to a running total. Since objects in the

model are included analytically, the path of a ray through each object can be

found by calculating the intersection points of the ray and object. Modelling

each ray consists of tracing the ray from one intersection point to the next

until it reaches the detector. Figure 3.1 shows the path of two example

rays from the source to the detector. The method is slightly different if a

voxelised defect is included. In this case an algorithm to calculate the path

of a straight line through a series of cubic voxels is used. The algorithm

used was derived from Siddon’s algorithm published in 1985 [73] and using

improvements by Jacobs et al [74].

The coding methodology is summarised in the flow chart in Figure 3.2.

For each detector pixel the equation of the straight line from source to pixel

is derived. This is used to calculate the first intersection point and the

distance travelled in the current material to find the first μx. The position

along the ray is updated to the intersection point. If the intersection is

with the pipe wall or insulation then the material value is updated and

the process repeated for the next intersection point. If the intersection is

with the bounding sphere of the defect then the voxel algorithm is used to

calculate μx through the defect, until the ray exits the bounding sphere and

the process of finding the next intersection is repeated. When there are no
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Intersection pointSample Ray
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Figure 3.1: Example showing the method of ray path calculation; intersec-
tion points are calculated and the ray is traced between points,
adding to the total μx along each section. If the ray enters
the defect bounding sphere a separate calculation of the path
through cubic voxels is used until the ray leaves the sphere. The
figure shows a simplified cross-section through the set-up.

intersection points left, then the distance remaining to the detector pixel

is used to find the final component of μx. The intensity reaching the pixel

can be found using the sum of μx over the ray’s entire path. A probability

of detection factor is calculated, depending on the detector’s material and

thickness; this probability can also be set to one for a perfect detector. The

intensity reaching the detector is multiplied by the probability of detection

factor to calculate the detected intensity. This is a very simplistic detector

model and likely overestimates defect detectability. In reality detectors are

extremely complex and can be difficult to model accurately.

The intensity reaching the detector is also normalised to account for the

pixel area and the spreading out of the beam from the source, resulting in

the total intensity reaching the pixel area. This detected intensity is stored

in the detector and the algorithm moves to the next pixel. Once all pixels

have been simulated the final detector is output in a simple matrix format

that can be read into Matlab for examination and processing. The model has

the option of running just an analytical calculation, which typically takes

less than two seconds, or including a scattering simulation. The scattering
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Figure 3.2: Flowchart showing the method of simulating the direct radiation
reaching the detector.

simulation is run independently of the analytical calculation, with separate

output files. A Matlab program is used for combination of scattering and

analytical results to produce the final expected radiograph. The method of

simulating scatter using a Monte Carlo technique is described in detail in

the next section.
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3.3 Monte Carlo Scattering Method

In the scattering Monte Carlo simulation each photon is traced individ-

ually. The total number of photons is set by the user before running. The

number of photons required depends on the size of the setup and the pho-

ton energies; lower energy or thicker materials in the setup will need more

photons in order to get a significant number reaching the detector. Esti-

mating the required number of photons is an open issue, and currently no

commercial simulation model offers this. The number of simulated photons

is generally an extremely small percentage of the experimental number. As

an example, a new cobalt source will have an activity of about 20 to 100

curies [75], where one curie is equal to 3.7 × 1010 atomic disintegrations

per second. In most cases each cobalt atom decay will release two gamma

rays, as seen in Fig 2.4. So for a 60 second exposure, a 20 curie source

will release about 9 × 1013 photons. In this case a typical simulation, with

108 photons, will be modelling approximately one photon for every million

actual photons.

In the model, each photon is initialised with a random direction within

the specified source opening angle. If the source is polychromatic the photon

energy will also be chosen randomly, based on the relative probabilities of

the possible energies. Once initialised, the first step is to calculate the

distance the photon will travel before interacting. This distance, s, is given

by [76]:

s = −
ln r

μ
(3.1)

where μ is the total attenuation coefficient of the material the photon is

in, and r is a random number uniformly distributed in the interval (0,1).

Attenuation is dependent on photon energy, and since the attenuation data

is obtained in tabular form it must be interpolated to find attenuation at

the particular energy of the photon. The interpolation method used is log-

log cubic-spline for energies above the K-shell absorption edge and linear

log-log fitting for energies below, this is as used in the XCOM database [12].

Equation 3.1 can be derived by considering the probability density func-

tion of the photon’s free path [77]. However the equation assumes constant

attenuation along the photon’s path; it does not take into account cross-

ing material boundaries. One of the benefits of the Monte Carlo method
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is its simplicity when dealing with boundaries. Photon transport can be

modelled as a Markov process [77], meaning future events can be predicted

solely based on the current state, regardless of past events. This means that

a photon can be stopped at any point and then restarted without changing

the results. Therefore if the photon reaches a material boundary before

it interacts, it is stopped at the boundary and restarted with a new value

of s, generated with the updated material attenuation and a new random

number. Boundaries are calculated by finding the intersection points of a

straight line in the direction of the photon with each of the setup objects.

If a voxelised defect is used and the photon is inside it then each voxel is

treated as if it were a new material, with a new s calculated every time the

photon crosses to a new voxel.

Once the photon reaches an interaction point the type of interaction is

chosen. To do this the interval (0,1) is split into subintervals with lengths

proportional to the relative probabilities of each interaction type. A random

number is used to choose a subinterval and thus an event type. The inter-

action is resolved and, if it has not been absorbed, the photon’s energy and

direction are updated. A new s is then calculated and the process repeated.

Simulation of the photon will complete when it is either absorbed, reaches

the detector or leaves the specified limits of the simulation domain. The

overall algorithm structure is illustrated in the flowchart in Figure 3.3.

The interaction types included in PRIM are the photoelectric effect,

Compton scattering and Rayleigh scattering. The simplest of these to model

is the photoelectric effect, in which the photon is completely absorbed. In

reality, photoelectric absorption of a photon will result in the release of

one or more electrons and characteristic x-ray photons. However, these sec-

ondary effects are not modelled in PRIM, so if the photoelectric effect occurs

the simulation of that photon is completed and the algorithm moves on to

simulate the next photon. If Compton scattering occurs then the photon

energy loss and scattering angle must be calculated; the photon direction

and energy are then updated and the photon is moved on until another

interaction occurs. Rayleigh scattering also requires calculation of the scat-

tering angle, although there is no energy loss; after scattering the photon’s

direction is updated before continuing to another interaction.

The scattering angle can be split into the azimuthal and polar scattering

angles. For both Rayleigh and Compton scattering the azimuthal angle, φ,
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Figure 3.3: Flowchart showing the method of simulating the scattered radi-
ation.
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follows a uniform distribution in the interval (0,2π) and is easily selected

using a random number. The polar angle, θ, follows a more complex prob-

ability distribution [78, 79]. In PRIM, scattering is simplified by assuming

no electron binding effects. Jaenisch et al (2006) [80] compares a scattering

simulation with and without electron binding. The intensity of scattered

radiation due to Rayleigh scattering is found to increase if binding effects

are included; this is mainly due to Rayleigh scattering having increased

forward directivity. Conversely Compton scattering has reduced forward

directivity when electron binding effects are considered, with results show-

ing a decrease in scatter. However, the differences were only examined at a

source energy of 100 keV. At higher energies, photon energy is large com-

pared to electron binding energy and hence binding effects can be neglected

for Compton scattering [81]. Similarly for Rayleigh scattering; at higher

energies the probability of Rayleigh scattering is very small compared to

Compton, and thus binding effects will have negligible impact.

The accept-reject method of sampling is used to decide the scattering

angle θ. This method is well described by Hirayama et al (2005) among

others [77, 82]. The details of the algorithm used follow that described in

Fulea et al (2009) [79]. For Rayleigh scattering this involves sampling the

differential Thomson cross section:

dσT (θ)

dΩ
=

r2e [1 + cos2 θ]

2
(3.2)

where σT is the Thomson scattering cross section and re is the electron

radius. The scattering angle θ can be found with:

θ = cos−1(1− u) (3.3)

where u = 2r and r is a random number in the (0,1) interval. A weighting

variable which represents the main θ dependency, w = [1 + cos2 θ], is used:

if w > 2r, where r is another random number, then θ is accepted. If not, the

process is repeated with new random numbers until a value of θ is accepted.

For Compton scattering the probability distribution of the scattering an-

gle is given by the Klein-Nishina equation [79]:

dσKN(E, θ)

dΩ
=

r2e
2

E

E0

[
1 +

(
E

E0

)2

−
E

E0
sin2 θ

]
(3.4)
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where E0 is the initial photon energy, re is the electron radius, θ the scat-

tering angle and E the energy of the photon after scattering, given by:

E =
E0

1 + E0

m0c2
[1− cos θ]

(3.5)

where m0c
2 = 512 keV is the electron rest mass.

The method of sampling is similar to that for Rayleigh scattering; in this

case the weighting variable used is:

w =

[
1 +

(
E

E0

)2

−
E

E0
sin2 θ

]
(3.6)

θ is again generated using Equation 3.3, with the value of u given by:

u =
m0c

2

E0

[(
1 + 2

E0

m0c2

)r

− 1

]
(3.7)

where r is a new random number. The value of θ is accepted if w > 2r, if

not the process is repeated. This method of selecting θ is summarised in

the flowchart in Figure 3.4.

generate r, calculate u

calculate θ, E0

calculate w,
generate r

is w > 2r ?

return θ

no

yes

Figure 3.4: Flowchart showing the accept-reject method of sampling used
for Compton and Rayleigh scattering angle calculation.
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Figure 3.5: Coordinate system of the photon. θ and φ are the scattering
angles, calculated relative to the photon’s direction. They must
be transformed back to the object coordinate system to calculate
the direction of the photon after scattering. θ′ and φ′ give the
photon’s direction in the object frame before scattering.

The scattering angles are visualised in Figure 3.5. The scattering angles,

θ and φ, are calculated relative to the photon direction. Therefore the

photon’s new direction, after scattering, must be transformed into the object

frame of reference. To calculate the photon’s new velocity in the object

coordinate system, rotation matrices are applied. For initial photon velocity

unit vector (vx, vy, vz) with scattering angles θ and φ the new direction of

the photon, (v′x, v
′

y, v
′

z) is given by [78]:

v′x =
sin θ(vxvz cosφ− vy sinφ)√

1− v2z
+ vx cos θ (3.8)

v′y =
sin θ(vyvz cosφ− vx sinφ)√

1− v2z
+ vy cos θ (3.9)

v′z = − sin θ cosφ
√

1− v2z + vz cos θ (3.10)
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or if vz is very close to 1:

v′x = sin θ cosφ (3.11)

v′y = sin θ sinφ (3.12)

v′z = SIGN(vz) cos θ (3.13)

where SIGN(vz) returns −1 for negative vz and +1 for positive vz.

Once the scattering angles have been computed the photon’s energy and

direction are updated, and a new interaction site calculated using Equation

3.1. This is repeated for each photon until all have been absorbed, left the

domain or reached the detector. To reduce run-time, photons are stopped

if they reach a lower bound cut-off energy below which they are considered

negligible; in most simulations this is set to 10 keV but is adjustable.

Random number generation is a key part of a Monte Carlo simulation.

Software based methods generate pseudo-random numbers which pass most

of the tests for randomness, but have a period after which the sequence

repeats. Generators included in standard C++ libraries tend to have low

periods, making them unsuitable for use in Monte Carlo methods. The

pseudo-random number generator used in this model is the Mersenne twister

MT19937 developed and coded by Matsumoto et al [83], and available online

[84]. The authors find the algorithm to be suitable for a Monte Carlo

simulation due to its period of 219937 − 1, much longer than most others,

while it also obtains similar speeds [83].

Since each photon is independent of all the others the code has been par-

allelised with OpenMP to run on multiple CPU cores. To allow for parallel

processing a new random number generator is defined in each thread using

the thread number as the seed. This allows each thread to run indepen-

dently, saving any detected energy to a shared memory detector after each

photon run.

In order to get a full representation of a radiograph the analytical ray

tracing and the Monte Carlo results are combined. The method used follows

that described by Tabary et al (2004) in [67]; full details can be found in

the paper, with a brief description given here. The method involves running

two Monte Carlo simulations; these must be uncorrelated and simulate the

same number of photons. The scatter image is calculated as the sum of the

two Monte Carlo results, which is then filtered using a low-pass Butterworth
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filter. The filtered image is scaled to the analytical dose using the average

ratio between the analytical result and the direct radiation calculated in

the Monte Carlo simulation. The scaled image can then be added to the

analytical result, giving a combination of direct and scattered radiation.

Noise also needs to be added. The noise is found by first subtracting the

two Monte Carlo results, and calculating the variance of the resulting image.

The variance is scaled to the analytical dose, using the same ratio as for the

scatter image scaling. It is then used along with a Gaussian random number

to calculate the final noise image. The final noise is added to the analytical

and scatter images, giving the complete radiograph.

3.4 Results

To verify results, PRIM has been compared against CIVA and aRTist. A

range of setups were compared to identify any causes of mismatch. Materials

used included water, plastic, iron, lead and air, giving a good range of

attenuation behaviours. Energies were between 200 keV and 1.2 MeV, with

monoenergetic, gamma ray and x-ray sources used. Results were split into

the analytical, direct Monte Carlo and scattered Monte Carlo components,

with each compared separately to ensure a match in each component of the

models.

An example of a simple test case is an iron block object with 50 mm

thickness, and 150 mm side length in both other dimensions. Source to

detector distance was 50 mm, with a detector size of 51.2 mm2 and 512×512

pixels. A monoenergetic 1 MeV source was used, with a cone opening angle

of 80 degrees and 1× 1010 photons simulated in the Monte Carlo run. The

resulting total energy reaching the detector, as calculated in the Monte

Carlo method in PRIM, is shown in Figure 3.6. This Monte Carlo result

was compared with the same setup simulated in aRTist. Example cross-

sections through the detectors are plotted, with direct radiation shown in

Figure 3.7 and scattered radiation in Figure 3.8. These show a good match

between the models.

A second simple setup tested was of an iron pipe, with outer diameter

320 mm and wall thickness 25 mm. No defects or insulation were added

to the setup, and the source used was again a monoenergetic 1 MeV, with

a source to detector distance of 400 mm. The detector had a side length
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Figure 3.6: Total energy reaching the detector for a 50 mm iron block. Cal-
culated using the Monte Carlo method in PRIM.
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Figure 3.7: Comparison of direct radiation reaching the detector in aRTist
and PRIM for a 50 mm iron block. The plot shows cross-sections
through the centre of the detector, at pixel 256. Calculated from
the Monte Carlo method in both cases.
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Figure 3.8: Comparison of scattered radiation reaching the detector in
aRTist and PRIM for a 50 mm iron block. The plot shows
cross-sections through the centre of the detector, at pixel 256.
Calculated from the Monte Carlo method in both cases.

of 409.6 mm corresponding to 1024 pixels. Monte Carlo simulations were

run in both aRTist and PRIM and results compared. Again a good match

was found between the models; an example of cross-sections through the

detector is shown in Figure 3.9.

The simple setups involving blocks and basic pipes were found to produce

good agreement between the different models in all cases. More complex

setups, containing multiple materials and objects were then tested. The

next section details two example setups and results for simulations compared

with CIVA. This is followed by another two examples, this time compared

with aRTist.
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Figure 3.9: Total energy reaching the detector for a 320 mm outer diameter
pipe. Calculated using the Monte Carlo method with 1 × 1010

photons.

3.4.1 Comparison with CIVA

Two sets of results are detailed here; together they demonstrate and verify

some of the capabilities of PRIM. Figure 3.10 shows the setup for the first

example. The setup includes many factors to test; different materials, a

range of distances and sizes and a lead sphere modelled using the analytical

defect method.

Both the Monte Carlo and the ray-tracing simulation were run on this

set-up. Parameters used were 1× 109 photons for the Monte Carlo and 100

s exposure time with a 1×109 Bq activity source for the ray-tracing model.

The source is collimated into a 45◦ half-angle cone for the Monte Carlo

simulation and is uncollimated in the ray-tracing model. The analytical

result produced by PRIM is shown in Figure 3.11. For model validation the

same set-up was modelled in CIVA. For comparison a cross-section is taken

through the centre of the detector perpendicular to the pipe axis. Results

for the analytical, direct Monte Carlo and scattered Monte Carlo are plotted

in Figures 3.12, 3.13 and 3.14 respectively. In all cases CIVA results match

those from PRIM very well.

To increase the complexity of the test case an insulation layer was added
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Source

Detector

Pipe

Figure 3.10: Test case used for model validation. The pipe is not insulated
and is surrounded by a vacuum. The pipe material is iron and
it contains water. To test defect inclusion a spherical ball of
lead is modelled inside the pipeline at the centre of the set-
up. The source is a monoenergetic 1 MeV. The detector is a
perfect detector for the Monte Carlo method. Its size is 100
× 100 mm2 and it consists of 800 × 800 pixels. The source to
detector distance is 50 mm, pipe outer diameter is 30 mm and
wall thickness is 5 mm. Diameter of the sphere is 6 mm.

with a thickness of 9.5 mm, leaving gaps of 0.5 mm at each side between ob-

ject and the source and detector. A medium attenuation element, calcium,

was used as the material. In addition to this the lead sphere was changed

to a lead cube of side 8 mm and its position offset from the centre of the

domain in all three coordinates. This tests the defect voxelisation method

as it is modelling a cube set within a bounding sphere. The source was also

changed from monoenergetic 1 MeV to a Cobalt-60 gamma ray source, with

all other parameters kept constant. A Cobalt-60 source is high enough en-

ergy that pair production would occur; an interaction not included in either

PRIM the version of CIVA (10.1) used in this work. However, pair produc-

tion is not significant until photon energies of several MeV, as seen in Fig

2.2, so neglecting it for a Co-60 source will not have a noticeable impact.
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Figure 3.11: Full analytical result calculated by PRIM for the case of a water
filled pipe containing a lead sphere. The source is uncollimated,
monoenergetic 1 MeV.

0 100 200 300 400 500 600 700 800
4

5

6

7

8

9

10

11

12

Pixel

E
n
er
gy

(k
eV

)

CIVA

PRIM

x 106

Figure 3.12: Cross-section through the analytical result for the case of a
water filled pipe containing a lead sphere, calculated with both
PRIM and CIVA.

Figure 3.15 shows the resulting analytical radiograph calculated in PRIM.

A cross-section through the centre of the analytical detector, perpendicular
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Figure 3.13: Comparison of direct Monte Carlo result in PRIM and CIVA,
for the case of a water filled pipe containing a lead sphere.
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Figure 3.14: Comparison of scattered Monte Carlo result in PRIM and
CIVA, for the case of a water filled pipe containing a lead
sphere.

to the pipe axis, is shown in Figure 3.16, along with the result from CIVA.

A comparison of cross-sections 10 mm (80 pixels) from the centre so as to

cross the lead cube area is shown in Figure 3.17.
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Results are shown in Figures 3.15 to 3.19. Figure 3.15 shows the radio-

graph resulting from the ray-tracing method. A cross-section through the

centre of the detector perpendicular to the pipe axis is shown in Figure 3.16,

and a cross-section 10 mm (80 pixels) from the centre so as to cross the lead

cube area is shown in Figure 3.17. Results along this same cross-section for

the direct and scattered Monte Carlo simulation are shown in Figures 3.18

and 3.19.

As an example of the time taken for the simulation to run, this PRIM

Monte Carlo simulation took just under 8 minutes, while the same set-up

in CIVA took 36 minutes. Both were run on the same standard desktop

computer, with an eight core processor and eight gigabytes of RAM. The

analytical method took less than 2 minutes in both models.
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Figure 3.15: Full analytical result calculated by PRIM for the case of an
insulated, water filled pipe, containing a lead cube. The source
is Cobalt-60.
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Figure 3.16: Cross-section through the centre of the analytical result for the
case of an insulated, water filled pipe, containing a lead cube.
Calculated with both PRIM and CIVA.
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Figure 3.17: Cross-section through the analytical result, 10 mm along pipe
from the centre, for the case of an insulated, water filled pipe,
containing a lead cube. Calculated with both PRIM and CIVA.
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Figure 3.18: Cross-section through the direct Monte Carlo result, 10 mm
along pipe from the centre, for the case of an insulated, water
filled pipe, containing a lead cube. Calculated with both PRIM
and CIVA.
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Figure 3.19: Cross-section through the scattered Monte Carlo result, 10 mm
along pipe from the centre, for the case of an insulated, water
filled pipe, containing a lead cube. Calculated with both PRIM
and CIVA.
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3.4.2 Comparison with aRTist

Two larger and more realistic simulation setups were used to compare

PRIM and aRTist. The first test case was a 320 mm outer diameter iron

pipe with a wall thickness of 25 mm. The source to detector distance was 400

mm, with the pipe centred between source and detector. The detector had

a side length of 409.6 mm, corresponding to 1024 pixels. A flat bottomed

hole defect with diameter 25 mm and centre thickness 3 mm was added to

the inner pipe wall. The source used was an x-ray source with a maximum

energy of 1 MeV. The x-ray spectrum was calculated in aRTist and can be

seen in Figure 3.20.
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Figure 3.20: X-ray spectrum used in test setup of an iron pipe with a flat-
bottomed hole defect. The spectrum was generated in aRTist
and was used in both aRTist and PRIM simulations.

The total energy reaching the detector is shown in Figure 3.21, calculated

using the Monte Carlo method in PRIM. A comparison of the analytical

result in PRIM and aRTist is shown in Figure 3.22. The direct and scattered

components of the Monte Carlo results are compared separately, and can

be seen in Figures 3.23 and 3.24 respectively. In all cases good agreement

is seen between the models.

A more complex case tested was of a water filled, insulated pipe. The
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Figure 3.21: Total energy reaching the detector in PRIM for a 320 mm outer
diameter pipe, with a flat bottomed hole defect. Calculated
using the Monte Carlo method with 1× 1010 photons.
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Figure 3.22: Comparison of analytically calculated direct radiation reaching
the detector in aRTist and PRIM. The object was a 320 mm
outer diameter pipe, with a flat bottomed hole defect. The
plot shows cross-sections through the centre of the detector, at
pixel 512.
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Figure 3.23: Comparison of direct radiation reaching the detector in aRTist
and PRIM for a 320 mm outer diameter pipe, with a flat bot-
tomed hole defect. The plot shows cross-sections through the
centre of the detector, at pixel 512. Calculated from the Monte
Carlo method in both cases.

simulated iron pipe had an outer diameter of 290 mm and wall thickness

of 10 mm, and was covered with 15 mm thick plastic insulation. The pipe

content was set to be water. A flat bottomed hole with 25 mm diameter and

3 mm centre depth, the same dimensions as in the previous test case, was

included in the setup. The source used was a monoenergetic 1 MeV, while

the detector had side length 409.6 mm and 1024 pixels. The Monte Carlo

scattering simulation was run in both PRIM and aRTist, using 1×1010 pho-

tons in each case. The time taken to run the simulation in PRIM was 4.9

hours, while aRTist took 16.5 hours. Both were run on the same standard

desktop computer, with eight cores and eight gigabytes of RAM. This illus-

trates the time saving achieved in PRIM through the use of analytical object

shapes. The total energy reaching the detector, calculated using the Monte

Carlo method in PRIM, is shown in Figure 3.25. As with the previous test

case, aRTist and PRIM are compared by taking cross-sections through the

resulting images. Examples of cross-sections through the direct radiation

and scattered radiation components of the Monte Carlo result are shown in

Figures 3.26 and 3.27 respectively. Again, good agreement is found.
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Figure 3.24: Comparison of scattered radiation reaching the detector in
aRTist and PRIM for a 320 mm outer diameter pipe, with a flat
bottomed hole defect. The plot shows cross-sections through
the centre of the detector, at pixel 512. Calculated from the
Monte Carlo method in both cases.
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Figure 3.25: Total energy reaching the detector in PRIM for a water filled,
insulated pipe with a flat bottomed hole defect. Calculated
using the Monte Carlo method with 1× 1010 photons.
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Figure 3.26: Comparison of direct radiation reaching the detector in aRTist
and PRIM for a water filled, insulated pipe with a flat bottomed
hole defect. The plot shows cross-sections through the centre
of the detector, at pixel 512. Calculated from the Monte Carlo
method in both cases.
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Figure 3.27: Comparison of scattered radiation reaching the detector in
aRTist and PRIM. Results are for the same case as in Figure
3.26.
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3.5 Summary

In this chapter the development of a radiographic simulation model has

been described. The model, PRIM (Pipeline-specific Radiographic Inspec-

tion Model), is optimised for modelling of pipeline inspection configurations.

The aim of the development was to provide a simple, fast alternative to com-

mercially available models. In addition, the aim was to aid in understanding

of the simulation methods used in models such as aRTist and CIVA; thus en-

suring these models could be used accurately and efficiently in later project

work.

PRIM uses a combination of an analytical calculation of direct radiation,

and a Monte Carlo simulation for scattered radiation. This is the same

approach as used in CIVA and aRTist. Both the analytical and Monte Carlo

components of the model have been compared against CIVA and aRTist for

validation. Test cases range from simple blocks of iron up to an insulated,

water filled pipe containing a flat bottomed hole defect. In all cases good

agreement was found between the models.

Subsea radiography makes use of high energy sources, such as a 7.5 MeV

betatron. This means that PRIM could not be used to accurately repli-

cate experimental subsea setups, due to not modelling pair production or

including a realistic detector model. A suitable model for high energies is

aRTist, as it includes pair production in addition to second order effects of

photon interactions, such as electron transport. Therefore aRTist has been

used for much of the project. However PRIM has continued to be useful,

for example to provide images when developing the defect characterisation

method described in Chapter 5.
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4 Simulation Validation

4.1 Introduction

One of the initial aims of this project was to examine different methods of

pipeline corrosion imaging in a subsea environment, analysing the impact of

water and identifying the most effective setups. Ideally this would be done

with experimental data, but sufficient data for research could not be ob-

tained due to the cost and complexity of subsea inspections. An alternative

is to use simulations, which are significantly more affordable and accessible

than subsea experimental data, and are able to model a wide range of un-

derwater radiographic setups. However, simulation models have not been

fully validated as accurate for high energy underwater imaging, and before

conclusions can be drawn from simulation results they must be shown to

be comparable to experimental measurements. In particular, since we are

interested in how image quality changes with water thickness, the image

quality in an experimental image needs to be accurately reproduced in the

simulation.

There are numerous studies comparing simulated radiographs to exper-

imental images, and several focussing on analysing subsea pipeline radiog-

raphy. However, most use different equipment or setup geometries to those

of interest here, or do not include analysis of image quality parameters.

A set of work with aims closely aligned to this project is covered in sev-

eral papers: Souza et al. (2008, 2011, 2014) [85, 86, 87] and Correa et

al. (2009) [88]. These detail comparisons between simulated and exper-

imental radiographs, followed by the use of the simulation to investigate

scattering in subsea pipeline imaging. The authors make use of the Monte

Carlo N-Particle (MCNPX) code [89] developed at the Los Alamos National

Laboratory [90]. MCNPX is a versatile code for particle transport simula-

tion, and can be used for photon, electron and neutron transport. As it

is not specifically aimed at radiographic image modelling it does not in-
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clude features such as radiographic detector responses, and results must be

post-processed to convert into standard 16-bit digital radiographic images

[85].

Using MCNPX, the authors model a DWSI inspection setup with an

Iridium-192 source and a computed radiography detector. As the CR de-

tector is flexible it is curved around the pipe, giving a different inspection

geometry to that of interest in this project. In addition the authors do not

measure or compare image quality parameters such as SNR, CNR and SRb

in experimental and simulated images. Souza et al. (2008) [85] finds good

agreement in overall trends between experiment and simulation, but there

is visibly significantly more noise in the experimental images, which is not

measured or analysed. Correa et al. (2009) [88] uses MCNPX to estimate

weld thickness loss in subsea pipelines; however only grey level ratios are

compared with experimental images. Souza et al. (2011, 2014) [86, 87] fo-

cus on analysing the impact of scatter on radiography of subsea pipelines.

This is done purely through simulation in MCNPX, and results are given

as a percentage scatter contribution for images with different setup param-

eters. While this is a useful measure, it is difficult to translate it into defect

detectability or IQI visibility, which would give more information on the

implications for inspections.

Other papers tend to focus on validation of particular simulation models

or using specific setups and equipment. Tisseur et al. (2016) [91] describes

the validation of CIVA for a high energy linear accelerator source. The

validation is done through comparison with experimental images of a cylin-

drical steel casting using film as the detector, which is curved around the

object. The results show good agreement between simulation and experi-

ment. There is some error, which the authors put down to differences in

the source, as the manufacturers did not release all the data required to

simulate it. Another recent study, Kolkoori et al. (2016) [92] looks at the

influence of scattering on dual energy x-ray imaging. A high energy beta-

tron source is used, with simulation and experiment compared and good

agreement found. Again a small error, about 1% deviation, is identified,

with the authors suggesting a shift in the maximum beam intensity of the

betatron as the cause.

Despite this range of research there has not been a study which defini-

tively demonstrates the accuracy of a simulation model for high energy
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underwater imaging. In this chapter I present an investigation into sim-

ulation model accuracy using the setup and equipment relevant for high

energy subsea pipeline imaging. To do this I obtained a set of experimental

radiographs of a well characterised pipe in water and simulated the same

setups in the simulation tool aRTist [71]. The experimental data was used

to adjust aRTist parameters with the aim of matching simulated to ex-

perimental radiographs. In particular, image quality parameters such as

signal-to-noise ratio, contrast and basic spatial resolution were compared.

With this method signal-to-noise ratio was successfully matched, while dif-

ferences were still found in contrast-to-noise ratio comparisons. This means

that measurements depending on absolute intensity are not accurate enough.

However wall thickness measurements in tangential images, which are not

based on absolute intensity, were found to produce similar results in simu-

lated and experimental cases.

The differences in contrast and intensity are thought to be due to detec-

tor backscatter and additional scatter from out-of-setup objects within the

exposure bay, due to a lack of source collimation. These would affect the

experimental results but were not included in the simulated setup. This was

investigated by including different proportions of peripheral water and other

objects in the modelled setup and examining the effect on image quality pa-

rameters. Results show that additional scatter has a significant impact on

the radiograph, particularly on image contrast, and is therefore the proba-

ble cause of differences between experimental and simulated images. This

implies that it will be very difficult to completely match simulated to ex-

perimental results, as including all possible scattering objects in the model

would be very complex. An improvement could be made by using real sub-

sea data to estimate this additional scattering, which could then be used to

calibrate the model. However there would still be significant uncertainties,

for example due to lack of knowledge of what objects may be adjacent to

any given subsea setup. This means there would still be uncertainty in the

ability of the model to accurately produce realistic intensity and contrast.

As well as the uncertainties in modelling accuracy due to scattering, there

is also the possibility that the source spectrum is incorrectly modelled. With

today’s technology it is not possible to measure the spectrum of a high en-

ergy, pulsed source such as a betatron; spectra used in modelling are calcu-

lated through Monte-Carlo simulations. So a contributor to the difference
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between experimental and simulated results could be that the source spec-

tra are not the same. Another issue is that there is an angular variation of

the source flux and spectra in real sources. Current commercial codes do

not take all these effects into account, giving more potential causes of error.

This set of work was performed in collaboration with the Institute of

Materials Testing (BAM) in Berlin, where I spent time working in order to

collect experimental data. The chapter is based on a journal paper which has

been published in NDT&E International [9]. Experimental and simulation

methods are explained in the next sections, followed by methods of tuning

the simulation to match image quality parameters.

4.2 Experimental Method

Experiments were performed in the high-energy X-ray laboratory at BAM.

The pipe used for testing and the experimental setup are shown in Figures

4.1 and 4.2 respectively. The sample, Fig 4.1, was a stepped pipe with an

outer diameter of 322.6 mm and wall thickness from 8.5 mm to 25 mm.

The pipe also has three sets of internal flat bottomed holes with depths of

10%, 20% and 50% wall thickness. The experimental setup, Fig 4.2, used

a pulsed betatron with a maximum energy of 7.5 MeV [93] and a digital

detector array. The detector (Perkin Elmer XRD 1621 model [94]) has a

sensitive area of 409.6 mm x 409.6 mm with 2048 x 2048 pixels and a pixel

size of 200 μm. To provide a higher signal-to-noise ratio the detector was

used in pixel binning mode. This is where the image pixel is calculated

from the sum of four detector pixels, resulting in an image with 1024 x 1024

pixels of 400 μm.

A source to detector distance of 1650 mm was used, with a pipe centre

to detector distance of 504 mm as shown in Figure 4.3. Due to equipment

constraints it was not possible to move the source or detector closer to the

pipe, as required for the double wall single image method. Instead images

were taken with the double wall double image and tangential methods. All

images were taken with the same exposure time of 2 s per frame and the

same calibration, using a 100 frame gain image and a 20 frame offset image.

Copper filters (1 mm thickness) were used at the source and/or detector in

some images to improve image quality.

To add water to the setup the pipe was placed in the centre of a rectan-

76



Figure 4.1: Stepped pipe used as test object.

Figure 4.2: Setup for high energy radiography of the pipe.

Figure 4.3: Setup dimensions used for experimental image acquisition.
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gular plastic water tank. This allowed for setups with two different water

thicknesses to be imaged by rotating the water tank, as illustrated in Figure

4.4. Silicone sealant was used to create a seal around the base of the pipe

allowing for images to be taken with water around the pipe but air inside,

in addition to those with water both inside and outside the pipe.

Figure 4.4: The stepped pipe was placed in a rectangular water tank, (a)
& (b) show two setups with different water thicknesses made
possible by rotating the water tank.

4.3 Simulation Method

The same setups as used experimentally were simulated in aRTist, a sim-

ulation tool developed by BAM. A visualisation of the simulation setup is

shown in Figure 4.5.

Figure 4.5: Radiographic setup modelled in aRTist. Dimensions and dis-
tances used were as in experimental setups.

Further details on aRTist can be found in Bellon et al. (2012) [95] and

Jaenisch et al. (2011) [96]. The detector was modelled using a new Detec-
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tor Calculator module [97] which uses data from an experimental reference

image to characterise the detector, while the betatron source was modelled

with the spectrum calculator incorporated into aRTist [98]. The source

spectrum is plotted in Figure 4.6. Although the maximum energy of the

betatron is 7.5 MeV the majority of the photons produced are at much

lower energies. This makes simulation of photon scattering very impor-

tant as Compton scattering is the dominant photon interaction for most of

the betatron energy range. aRTist makes use of a Monte Carlo technique

to model scatter, combined with an analytical straight-line calculation of

direct radiation.
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Figure 4.6: Spectrum of the 7.5 MeV betatron as modelled in aRTist.

4.4 Simulation Tuning

The simulation was adjusted with the aim of matching the main im-

age quality parameters to those measured experimentally. These include

Signal-to-Noise ratio (SNR), Contrast-to-Noise ratio (CNR) and basic spa-

tial resolution (SRdetector
b ). Chapter 2 described the method of measuring

these parameters according to the standards [3, 4]. However, some addi-

tional steps were required in practice. A key requirement for measuring the

standard deviation or signal-to-noise ratio in a section of an image is that

there should be no overall trend in grey level in the area of measurement. It
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was found that almost every region of the images had a significant trend in

grey level, meaning a standard deviation calculation would overestimate the

noise. Therefore a pre-processing step was used in which, for each line of

pixels to be included in a measurement, a best-fit polynomial line was calcu-

lated. This line was used as a baseline to remove the grey level trend, with

the mean value of the pixel line kept the same. This procedure effectively

compensated for the problem of grey level trends in the images, and ensured

calculated SNR and noise levels in different images were comparable.

In addition to matching the main image quality parameters, the profile

across the edge of the pipe in tangential images was also taken and com-

pared in simulated and experimental cases. Taking a line profile across the

radiograph, the edge profile is a portion of this in which the edge of the

pipe is visible, as visualised in Figure 4.8(a). Figure 4.8(b) shows the grey

value (intensity) versus pixel plot for this portion of the radiograph, where

the pixel refers to the detector pixel number and is equivalent to a distance

along the radiograph. The main parameter affecting the shape of the profile

is unsharpness. Images with low unsharpness have clearer, better defined

edges, while those with high unsharpness have smoother edges and lower

contrast. Unsharpness has been shown to be a superposition of a short

range effect and a long range effect [99]. The short range unsharpness can

be seen by measuring the slope of an edge profile, while the long range com-

ponent manifests as the extended rounded spurs to either side of the edge.

The difference between long and short range unsharpness is illustrated in

Figure 4.7.

In aRTist the long range unsharpness can be varied directly, while the

‘unsharpness ratio’ parameter sets the relative proportions of long and

short range unsharpness. Results of simulations with example values of

low, medium and high unsharpness are plotted to illustrate the effects of

these parameters, along with the experimental profile. The unsharpness

parameters were varied to get a similarly shaped profile to experimental

results.
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Figure 4.7: Diagram illustrating long and short range unsharpness.

Figure 4.8: (a) Diagram illustrating the edge profile, a portion of the line
profile across the radiograph in which the edge of the pipe is vis-
ible, (b) The edge profiles of experimental and simulated images
are plotted. The minimum intensity seen at pixel 451 identi-
fies the inner pipe wall position, while the outer pipe wall is at
the point at pixel 542 where the rate of increase in intensity
suddenly stops or slows significantly.

4.5 Results

An example of an experimental tangential radiograph with points of in-

terest highlighted is shown in Figure 4.9.
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Figure 4.9: An example of an experimental tangential radiograph. It has
been filtered for better visualisation and points of interest are
highlighted. A 13 mm comparator was fixed to the edge of the
pipe to calibrate dimensions in the image. A measuring tape
with lead numbers was wrapped around the pipe. A single wire
IQI was placed on the outer pipe wall, on the side nearest the
detector while a duplex wire IQI was placed on the detector in
the free beam area of the image. Although a detector calibration
was applied there are still some step-like artefacts visible in the
free beam area of some of the images.

Edge profiles across simulated and experimental images were taken and

compared. These profiles include the edge of the pipe and a distance to

either side. Figure 4.10 shows simulated and experimental profiles for (a)

the setup with no water either inside or outside the pipe, and (b) the setup

with water outside the pipe but not inside.

Examining these profiles it can be seen that there is an offset in inten-

sity in some areas. The differences in simulated and experimental intensity

values means that the contrast-based measurements of double wall imaging

in simulated images will not match the same measurement in experimental

images. However, tangential imaging does not depend on the particular

intensity values but on the positions of the inner and outer pipe wall given

by the minimum intensity (inner wall) and the point where the sharply in-

creasing intensity stops or slows significantly (outer wall). From the profiles

in Fig 4.10 it can be seen that these pipe wall positions are fairly accurately

82



Figure 4.10: Profiles across the radiograph for experimental and simulated
images in the cases of (a) No water, (b) With water outside
the pipe but not inside. For each image the dashed black line
indicates the positions of the inner and outer pipe walls.

reproduced in the simulated results, meaning tangential measurements may

be equivalent to experimental results.

To test this, wall thickness measurements were taken of the thickest, 25

mm, pipe wall in a set of images. Results are shown in Figure 4.11 for one

simulated and experimental image in each of the five setups used: those

with water both inside and outside the pipe and with either the longer,

670 mm, or shorter, 510 mm, water tank thickness, those with water just

outside the pipe and with the 670 mm or 510 mm thickness and finally

those with no water. All measurements are within ±0.8 mm of the actual

value, and although the simulated results tend to be lower than experimental

ones this difference is fairly small. Analysis of more images is needed but

an initial conclusion is that the simulation produces results comparable to

experimental ones for tangential measurements.

Contrast-to-noise and signal-to-noise ratios were also measured and com-

pared in experimental and simulated images. CNR was measured across

several pipe wall thickness steps in each radiograph and results averaged to

get a single value to compare for each image. While there is a trend in CNR

with wall thickness within each image there is also an overall trend between

images. Comparing just a single step measurement has more inaccuracy as

it is only a single measurement for each image. Since we are interested in
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Figure 4.11: Wall thickness measurements of the 25 mm pipe wall in tan-
gential experimental and simulated images for the five different
setups used.

the differences between images rather than actual CNR values then aver-

aging reduces the noise and shows the trend between images more clearly.

Using the same measurement points in each image ensures comparability of

the resulting CNR. Figure 4.12 shows the CNR for images in all five setup

types. Images are numbered with 1 – 5 referring to the setup type, while a

– d refers to the copper filter used, as labelled in the figure.
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Figure 4.12: Contrast-to-noise ratio for a series of simulated and experimen-
tal images in the five different setup types. The images were
all taken with 100 frames. Copper filters were used in some
images, labelled a – d where a = no filter, b = 1 mm copper at
the source, c = 1 mm copper at detector and d = 2 mm copper
in total with 1 mm at both source and detector.
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From Fig 4.12 it can be seen that the simulated CNR values are higher

than the experimental ones. This is the same problem as seen in the profile

comparisons. However, although the CNR values differ, the same overall

trend of increasing CNR with decreasing water thickness seen experimen-

tally is reproduced in the simulation results. This demonstrates that the

model takes into account the effects of water and correctly responds to

changes in water thickness.

SNR was also measured, near to the CNR measurement points, and sim-

ilarly averaged. Results are shown in Figure 4.13. In the case of SNR

both the absolute values and overall increasing trend of experimental mea-

surements are reproduced in the simulated results. This is an encouraging

result as the frame number used in the simulations, which directly affects

SNR, was tuned using experimental images from only one setup type. All

simulated images were then taken with the same frame number, with the

agreement in trend again demonstrating that the effects of water are being

taken into account correctly by the model.
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Figure 4.13: Signal to noise ratio for the same set of images as in Fig 4.12.

4.6 Peripheral Scatter

The simulated setup, while including all objects in the direct source-

detector path, does not account for scattering from out-of-setup objects

that would have occurred experimentally. Peripheral scattering refers to

the case in which a photon is emitted off to the side of the object being

imaged, in this case the stepped pipe, and then undergoes one or more
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scattering interactions with other objects in the exposure bay. With each

scattering event the photon’s direction may be changed, which could result

in the photon reaching the detector after one or more peripheral interac-

tions. No source collimation was used either in the experimental or simula-

tion methods, meaning photons will have been emitted over a wide angular

range. The next section describes simulation setups used to investigate how

significant this additional scattering is, followed by results.

4.6.1 Simulation method

It is too complex to model the entire experimental area, but an idea of

how big an impact this type of scattering has was obtained by increasing

the height and length of the modelled water tank as shown in Figure 4.14.

Images with a range of water tank sizes were simulated, with the tank

depth kept constant such that the straight line path from the source to any

detector pixel was the same for all images. All images were simulated with

an air-filled pipe and a fixed source opening angle.

Figure 4.14: Radiographic setup modelled in aRTist for peripheral scatter
study, (a) Original setup matching experimental dimensions,
(b) With water tank height and length increased. Tank depth,
d, is kept constant meaning the thickness of water in the source-
detector line is as in the experimental setup. The impact of
scattering from the additional peripheral water can be exam-
ined by comparing images with different sized water tanks.

A more realistic setup including simulated surroundings was also mod-

elled, as shown in Figure 4.15. In this case objects similar to those in

the experimental surroundings were placed in the model. Two scattering

86



regimes were tested by setting the model surroundings first as low scatter-

ing iron and then as higher scattering water. No water tank was used and

the pipe was air-filled, making these images comparable to the experimental

setup with no water present.

Figure 4.15: Radiographic setup modelled in aRTist including some nearby,
peripheral objects similar to actual surroundings in the experi-
mental setup. The material of the additional objects was set to
be either iron or water, as examples of a weakly and a strongly
scattering material.

Simulation parameters were kept as previously set, however exposure time

was varied between images. This was in order to keep the maximum grey

level constant as images receiving higher scattering have higher grey levels

making direct comparisons difficult.

4.6.2 Results

Profiles across an experimental tangential radiograph and simulated re-

sults for water tanks varying in size are shown in Figure 4.16. The water

tank size was varied from the original 670 mm length and 400 mm height up

to a maximum of 1150 mm length and 880 mm height, corresponding to an

additional 480 mm in each dimension. The increased size of the water tank

is seen to have a significant impact on the profile with the contrast and

definition of the pipe wall very much reduced for the larger water tanks.

This is due to the additional scattering reaching the detector in these cases,
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as the source to detector direct path remains unchanged.
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Figure 4.16: Profiles across the radiograph for experimental and simulated
tangential images with increased water tank lateral dimensions.
Numerical values in the legend indicate the increase in water
tank size, with 0 mm as the original 670 × 400 mm tank and
120 mm as an increase to a 790× 520 mm tank, etc.

Contrast-to-noise ratio was also measured for each image. The method

of CNR measurement is as previously described, with measurements taken

across seven wall thickness steps in an image. The measurements were then

averaged, giving a mean CNR value for each image. Mean CNR as well as

CNR measured across three of the steps is shown in Figure 4.17 for a series of

images with different water tank sizes. Simulated images are labelled from

0 to 12 and have a difference of 40 mm in water tank height and length

between them, ranging from the original 670× 400 mm tank, labelled 0, up

to the 1150 × 880 mm tank, labelled 12.

From Fig 4.17 it can be seen that increasing the water tank size causes a

sharp decrease in contrast for the first few 40 mm increases (images 0 to 4).

These differences begin to tail off, becoming insignificant around image 8,

corresponding to a water tank size of 990×720 mm. This is consistent with

expected behaviour of out-of-beam scattering objects as additional water

close to the beam will have a larger effect than that further away.

The mean signal-to-noise ratio for the same set of images is shown in Fig-
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Figure 4.17: Contrast-to-noise ratio for images with different sized water
tanks. Simulated images are numbered from 0 to 12 in order
of increasing water tank size, with increases in 40 mm steps.
Mean CNR is the mean of seven measurements for each image,
three of which are also shown as Steps 1, 4 and 7. Step 1 is
a measurement taken near the thinner, top area of the pipe,
step 4 is near the centre and step 7 is near the thickest, lower
portion of the pipe.
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Figure 4.18: Mean signal-to-noise ratio for images with different sized water
tanks. Images are labelled and ordered as in Fig 4.17. In this
case only the mean value is plotted, calculated as the average
of measurements near each of the seven steps.

ure 4.18. The simulation was not directly calibrated with the experimental

image in this case, and exposure times were varied to get better matching

grey levels, hence SNR has no clear trends and shows the simulated results

to be much higher than experimental. To ensure differences in noise were
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not responsible for the observed change in CNR the relative contrast (Cr)

was also measured, shown in Figure 4.19. With some minor differences the

relative contrast produces the same trend as CNR.
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Figure 4.19: Relative contrast for images with different sized water tanks.
Images are labelled and ordered as in Fig 4.17.

The same comparisons were also performed for the images without water

inside or around the pipe, but with simulated surroundings as in Fig 4.15.

In this case four images were compared: one experimental, the original

simulated image without surroundings, a simulated image with iron (Fe)

surroundings and a simulated image with water surroundings. Profiles of

these four images are shown in Figure 4.20. Again, the change caused by

additional peripheral scattering is significant. The case of iron surroundings

results in a slight decrease in contrast from the original. Iron is relatively

weakly scattering so this is as expected. For the stronger scattering water

the change is much greater, with the inner pipe wall barely identifiable in

the profile.

Contrast-to-noise ratio for the four images is shown in Figure 4.21. CNR

with additional scattering is much lower compared to the original simulated

image, with experimental CNR higher than the simulated water case but

lower than simulated iron, indicating an actual rate of additional scattering

between the two. To check that results are not due to differences in noise

the relative contrast is shown in Figure 4.22. Relative contrast can be seen

to produce the same trend, confirming this result.

To examine how different energies within the betatron spectrum con-

tribute to peripheral scattering, simulations were also run with monoen-
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Figure 4.20: Profiles across the radiograph for experimental and simulated
images with no water in the beam path. Three simulated im-
ages are shown, one with no peripheral objects, one with iron
surroundings and one with water surroundings both simulated
using the setup shown in Fig 4.15.

ergetic sources. Two energies were chosen; 300 keV and 2 MeV. 300 keV

was used because it is near the peak in photons produced by the betatron

in the 100 keV to 1 MeV range as shown in Fig 4.6. 2 MeV was used as

an example of a high energy (over 1 MeV) in the betatron spectrum. The

setup in Fig 4.15 was used as the test setup. Four simulations were run; two

with each monoenergetic source, of which one included water surroundings

while the other had no additional scattering objects. For each image the

scatter-to-primary ratio, SP , was calculated at every pixel. SP is given by:

SP =
IS
IP

(4.1)

where IS is the intensity of scattered radiation and IP the intensity of pri-

mary radiation. It is customary to express scatter contribution in terms of

build-up factor, which is defined as 1 + SP . However in this case using SP

directly gives more insight. In order to compare the difference in scattering

between the two source energies a relative scatter-to-primary ratio for each

91



Image
Sim-Original Sim-Fe Sim-Water Exp

C
on

tra
st

 to
 n

oi
se

 ra
tio

 (C
N

R
)

0

10

20

30

40

50

60

70 Step 1
Step 4
Step 7
Mean

Figure 4.21: Contrast-to-noise ratio for images with different peripheral ob-
jects. Sim-Original has no additional objects, while Sim-Fe
and Sim-Water have simulated surroundings made of iron and
water respectively.
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Figure 4.22: Relative contrast for images with different peripheral objects,
as in Fig 4.21.
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source was calculated. The relative scatter-to-primary ratio, SRel, demon-

strates the change in scatter ratio caused by the water surroundings and is

calculated from:

SRel =
SPwater

SPnone
(4.2)

where SPwater is the scatter-to-primary ratio in the image with water sur-

roundings and SPnone is the scatter-to-primary ratio in the image without

additional surroundings. The relative scatter ratio for each image pixel is

calculated, however for ease of comparison a cross section down the image,

in the free beam area, was taken.
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Figure 4.23: Relative scatter ratios for the cases of monoenergetic 300 keV
and 2 MeV sources. The plotted section is a cross section down
the image in the free beam area. Pixel 1 is at the top of the
image while pixel 1024 is the lowest pixel. The increasing trend
from pixel 1 to pixel 1024 is due to the additional scattering
objects being placed under the pipe, giving higher scattering in
the lower portion to the detector. The difference between the
300 keV and 2 MeV cases demonstrates that the lower energy
is impacted by peripheral scattering to a much greater extent.

The relative scatter ratio, SRel, for each source is plotted in Figure 4.23.

This shows that the relative scatter ratio is much greater for the 300 keV

source than the 2 MeV source. The implication is that peripheral scattering

has a much more significant effect on low to medium energy photons. This
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is consistent with the attenuation coefficients plotted in Fig 2.1, showing

total attenuation to decrease with energy until much higher, tens of MeV,

energies. A more in depth analysis of scattered radiation could be achieved

by calculating the energy spectra; for example to compare the initial spec-

trum with that reaching the detector. This could form the basis of valuable

future work.

4.7 Discussion

Results from the original simulation-experiment comparison (Section 4.5)

show differences between the two, particularly in image contrast. However,

the simulation did not account for the additional scatter from other ob-

jects in the exposure bay which would have happened experimentally. This

scatter was initially assumed to be negligible, however when investigated in

aRTist (Section 4.6) it was found to have significant effects on the image,

reducing the contrast to values closer to those measured in the experimental

data.

The high impact from peripheral scattering can be explained by looking

at the source spectrum of the betatron, Fig 4.6, and the attenuation coeffi-

cients of water and iron shown in Chapter 2 in Figs 2.2 and 2.3. The source

spectrum shows that, although the maximum energy is 7.5 MeV, most pho-

tons are at much lower energies. Those below about 100 keV are likely to

be absorbed relatively quickly, particularly if passing through the pipe as,

from Fig 2.3, photoelectric absorption is the most probable interaction for

photons below 100 keV in iron. This leaves most photons in the 0.1 MeV

to 1 MeV range. At these energies Compton scattering is the most proba-

ble interaction, and the photons also have high enough energies that they

are likely to be able to undergo multiple scattering events before reaching

negligibly low energies. This makes it more likely that photons that have

been scattered away from the detector will, after one or more additional

scattering events, still reach the detector with significant energy remaining.

The high impact of peripheral scattering on an image with a 300 keV

monoenergetic source is demonstrated in Fig 4.23, in which the relative

scatter ratio is plotted along with that from a 2 MeV source. These ef-

fects, combined with the simulated results in Section 4.6, demonstrate that

the probable cause of the difference between experimental and simulated
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data is peripheral scattering. To confirm this, additional experiments in a

more highly controlled environment could be performed, with lead shielding

around the setup and fewer potential scattering objects in the exposure bay.

While there would still be scattering from the lead, it has a much higher

probability of photoelectric absorption compared to other materials such as

iron or water. In lead, photoelectric absorption is a larger effect than Comp-

ton scattering up to about 500 keV, compared to 30 keV in water and 100

keV in iron. So a much greater proportion of the betatron spectrum would

be absorbed rather than scattered if lead shielding were used. However,

lead generates x-ray fluorescence at about 80 keV meaning some detectors

may need additional copper shielding between the detector and lead.

The high proportion of peripheral scattering found in this study could

have significant impacts for accurate simulation of radiographic inspections.

Modelling is often used to check the feasibility of inspection setups and to

calculate the expected quality of results. However generally only materials

between the source and detector are included in the model, meaning scat-

tering may be underestimated and results not representative of the actual

inspection. For the example of a subsea pipeline inspection, accurate mod-

elling would need to include the equipment surrounding and manipulating

the source and detector as well as the water for some distance around the

setup. In this case the actual inspection setup may be simpler to model than

a laboratory setup, as in the actual inspection there is a large thickness of

water all around which will greatly reduce scattering from objects at more

than a short distance from the beam. In the laboratory case the water is

likely to be in a relatively small container, allowing scatter to potentially

reach all around the exposure bay.

The effects of additional scattering also make it harder to fully validate

simulation models. It is very difficult to include an accurate representation

of all possible scattering objects from an experimental setup in a modelling

setup. Therefore when comparing simulated and experimental data there

are likely to be differences even if the simulation is accurate for the mod-

elled setup. This makes it harder to identify any other potential differences

between experiment and simulation.

Instead of attempting to model many potential scattering objects it may

be possible to achieve a better matching model by calibrating it with real

data. In this case real data means data from the type of inspection being

95



modelled rather than experimental laboratory data. For the case of subsea

pipelines, if real data of a subsea inspection can be obtained it could be

used to estimate the proportion of peripheral scattering, which could then

be added into the model. This would greatly simplify the model as it would

not need to include the equipment surrounding the setup. However there

would still be significant uncertainties, for example due to the sea floor.

This could cause uneven scattering across the detector which would change

if the setup were rotated. Any type of local scatter like this could cause

inaccurate calibration of the model, either including the local scatter in

all images or in none, depending on which experimental data was used for

calibration.

4.8 Summary

The aim of this work is to investigate the accuracy of a radiographic

simulation model for subsea pipeline imaging. A set of experimental data

was obtained and used to adjust simulation parameters, aiming to match

simulated results to experimental ones. The model was found to produce

matching signal-to-noise ratios and the correct trend in contrast-to-noise.

However differences were found in the profile across the radiograph and the

CNR values. A possible cause of the discrepancies is scattering from objects

in the experimental exposure bay which were not included in the simulation

setup. Compton scattering is the dominant effect for the range of energies

most common in the betatron spectrum, meaning the contribution of uncol-

limated scatter may be particularly strong for the setups examined in this

work. Additional simulations were performed to test this possibility. Scatter

from peripheral, out-of-setup objects was found to have a significant effect

on the resulting image, in particular reducing the contrast. These results

show that additional scattering from objects not included in the model is

probably the cause of differences between experimental and simulated data.

The implication is that for accurate modelling of an inspection scenario an

area around the setup should be included in the model to account for addi-

tional scattering. An alternative would be to calibrate the model using a set

of experimental data from the actual inspection being modelled. However

there will still be unavoidable uncertainties, particularly in interpretations

based on intensity.

96



5 Defect Characterisation

5.1 Introduction

Techniques of pipeline corrosion mapping with radiography have been in-

vestigated and standardised [3, 4] for use above water. Accepted inspection

methods are the tangential and double wall techniques, with the double

wall method being used in current practical subsea radiography. Double

wall imaging is good for defect detection, imaging a relatively large portion

of pipe wall in one exposure. For full coverage of the pipe wall the setup

needs to be rotated about the pipe and images taken at different angles, but

the number of images required is relatively low compared to the tangential

method. However defect characterisation from double wall imaging can be

difficult. Traditional methods of radiographic defect sizing rely on using ad-

ditional objects of known size placed in the setup. For example, to estimate

defect depth a step wedge must be included in the exposure, placed on the

pipe as close as possible to the region of interest [4]. The step wedge is

used in the resulting image to calibrate the relation of intensity to material

thickness, allowing for defect depth to be calculated from its change in grey

level. In a subsea environment, where the inspection is being controlled with

a remotely operated vehicle, inclusion of objects such as a step wedge would

add an additional layer of complexity to an already difficult inspection. Fac-

tors such as the positioning of the step wedge can impact the accuracy of

the resulting defect characterisation, which could affect the reliability of the

method. It has also been found that high levels of scattering – which would

occur in subsea imaging – complicates analysis [100] and potentially causes

errors. Therefore it would be advantageous to develop methods of defect

characterisation for double wall pipeline radiography that do not require

additional objects in the setup.

One method of full defect characterisation is computed tomography (CT).

It would be ideal if a full 3D reconstruction could be achieved, as in CT.
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However, it would not be feasible to acquire a CT scan along a subsea

pipeline, partly due to the required acquisition time and therefore cost, and

partly due to the less-than optimum setup of double wall single image caus-

ing severe truncated projection artefacts, as described in Chapter 2. An

alternative promising technique is 3D point reconstruction. This method is

based on stereography, in which two images are taken with the object in

different positions. The setup geometry must be known, and 3D positions

can then be obtained by triangulating points from the two images. The

method was developed by Doering (1992) [101], and found to produce a sig-

nificant amount of the information given by CT but with much lower cost

and acquisition time. Research building on Doering’s work includes that

by Lindgren (2014, 2015, 2015) [102, 103, 104], which focusses on detec-

tion, sizing and positioning of submillimeter welding pores using 3D point

reconstruction. Again the method is found to produce very good results.

Another similar method is automatic multiple view inspection [105, 106], in

which flaws are tracked through multiple radiographs in order to eliminate

false positive indications. While both the setup and defect size range is very

different from subsea pipelines, these methods demonstrate a capability to

identify and characterise defects using relatively few radiographic images.

In this chapter I present a method of pipeline defect characterisation

based on knowledge of the setup geometry and the use of images taken at

different angles around the pipe. The method does not require changes to

the radiographic setup or additional objects. It has been tested on a range of

simulated and experimental data and found to give good agreement of lateral

and axial defect size, and reasonable estimates of defect thickness in most

cases. The method has the potential to be fully automatic, requiring input

of a set of images and setup geometry and from this calculating defect size

without further manual intervention. The defect characterisation method

is described in detail in the following section. This chapter is based on a

paper which has been published in NDT&E International [10]

5.2 Methods

For any radiographic setup, if the source and detector positions are known

then the straight-line path from the source to each detector pixel in 3D space

can be calculated. If the pixels in an image showing a defect can be identified
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then the range of possible positions and sizes for the defect is found. This

is illustrated as the cone of possible defect locations in Figure 5.1.

Figure 5.1: Left: An example setup for radiography of a pipe containing
a flat bottomed hole defect. Right: Using just the source and
detector positions, along with the extracted defect pixels, a cone
of possible defect locations is calculated through ray tracing.

For a single image the range of possible defect locations and sizes is large,

and no useful sizing conclusions can be drawn. However, if multiple radio-

graphic images are taken at different angles around the pipe, with the same

defect visible in several, then the range of defect sizes and locations can

be significantly narrowed. The process of tracing a path from defect pixels

to their corresponding source is repeated for each image, with the possible

defect now limited to the region where rays from all images overlap. An

illustration in 2D is shown in Figure 5.2 for the case of three rotated images

of the same defect.

Characterisation from ray tracing of multiple images is significantly im-

proved on single image results, particularly with regard to lateral and axial

dimensions which are accurately determined at this point. However the

depth resolution is still poor. In order to improve defect thickness calcula-

tions a series of constraints on possible defects are applied. For example,

a constraint is applied on the pipe wall, and assumes the approximate lo-

cation of the inner and outer pipe walls are known. Only that part of the

possible defect volume which is inside the pipe wall can be defect, so any

regions outside the pipe wall can be removed from consideration. Several
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Figure 5.2: Lines are drawn from each defect pixel to its corresponding
source position. If this is repeated for multiple rotated images
showing the same defect then the 3D volume within which the
lines overlap is the area where the defect is. An example for
three images shown here.

other constraints are also applied and combine to greatly improve depth

resolution.

The overall defect characterisation method is split into three parts: fea-

ture extraction, ray tracing and the application of constraints. The feature

extraction method is based on background subtraction and is used to iden-

tify pixels showing a defect in radiographic images. This is followed by ray

tracing, which makes use of the known source and detector positions and the

angle of rotation between images to calculate the potential defect volume.

Finally, constraints are applied.

5.2.1 Feature Extraction

The feature extraction method is based on background subtraction. The

object being imaged is a pipe, so radiographs taken at different angles

around the pipe should look broadly the same if no defects are present.

Therefore images with no defect can be used to define the background. The

background here refers to changes in grey level across an image not due to

a defect. These background intensity variations can obscure changes caused
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by a defect, and so background subtraction can be used to improve defect

visibility. In order to define the background a minimum of two radiographic

images of the pipe without any defects present are needed. More images

provide improved resilience to effects such as changes in exposure conditions

between images or differences due to pipe ovality. Figure 5.3 shows exam-

ples of the background mean and standard deviation calculated from a set

of four simulated images of a pipe taken at different angles, with no defects

visible.

Figure 5.3: Characterisation of the background is key for feature extraction.
The background mean, (a), is the mean intensity of the set of
images without a defect present. The standard deviation of the
same images is shown in (b).

Once the background has been characterised the next step is to subtract

the background mean from the image of interest, which should allow the

defect to be seen much more clearly. An example image of interest with a

visible defect is shown in Figure 5.4. The new image, shown in Figure 5.5,

is defined as Inorm = I − Bm where I is the original radiograph and Bm

is the background mean. With the background intensity variation removed

the defect is much clearer in Fig 5.5.

If the background has been successfully removed then the average inten-

sity in the image should be close to zero, with pixels that show a defect

being furthest from this average. At this point a thresholding method is

used to identify defect pixels in Inorm. A threshold T is chosen and pixels
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Figure 5.4: Original radiographic image, with the defect highlighted.

are selected as defect if the following relation is true:

|Inorm| > T ×Bstd (5.1)

where Bstd is the background standard deviation. The initial threshold

value T is set fairly high such that the incidence of false positives – pixels

falsely identified as defect – is small, with the effect that not all defect pixels

are identified. Figure 5.6 shows Inorm after thresholding, with defect pixels

marked in red.

As is clear from Fig 5.6 this thresholding does not identify all defect pixels,

therefore a lower threshold is needed to fully extract the defect. The lower

threshold is adaptively chosen based on the defect pixels already found.

These defect pixels are used to calculate a mean Inorm intensity for the

defect, with a background mean Inorm calculated from the remaining pixels.

By analysing a histogram of Inorm between the two means a lower threshold
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Figure 5.5: Inorm, the image after subtraction of the background mean. The
defect is much more clearly visible compared to Fig 5.4, and most
of the background intensity variation has been removed.

can be found. Beginning at the mean background value each histogram bin

is compared to its neighbouring bins. The threshold is chosen as the first

histogram bin which has greater frequency bins on both sides. Effectively,

a minimum is identified between the background and defect means. This

is illustrated in Figure 5.7, which shows a histogram of Inorm split into

defect and background components, with both defect and background means

marked, along with the identified border.

The lower threshold is then applied, selecting the remaining defect pixels.

A filter is also used to remove isolated pixels. These are pixels which may

have been picked as defect but have no neighbouring defect pixels and are

therefore likely false positives, or vice versa for pixels set as background but

surrounded by defect pixels. The filter is applied to the binary image in

which a pixel is either a one for defect or a zero for background. It works by
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Figure 5.6: An enlarged area of Inorm after thresholding, with defect pixels
marked in red. It is clear that not all defect pixels have been
identified.
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Figure 5.7: Log scale histogram of Inorm pixels. The histogram is coloured
according to defect and background components.

first summing over the eight neighbours of each pixel, and then comparing

this sum of neighbours with the value of the pixel. For a defect pixel the
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sum should be greater than two, or for a background pixel it should be

less than seven. If this criterion is not met then the pixel type is switched

from defect to background or vice versa. Figure 5.8 shows the final Inorm

with defect pixels in red. The detector coordinates of each defect pixel are

now known, along with the intensity and difference from the background

intensity. This is the key input for the ray tracing method.

Figure 5.8: Resulting Inorm, with defect pixels marked in red. The major-
ity of defect pixels have been successfully identified, although a
small number around the edges of the defect may be missed.

5.2.2 Ray Tracing

In the ray tracing method, the space between source and detector is discre-

tised into a 3D array of volume elements called voxels. The voxels through

which each pixel to source line passes are calculated using a voxel traversal

algorithm [107, 73, 74]. Voxels through which rays pass are flagged as a

possible defect location, as shown in a simplified 2D case in Figure 5.9.

The ray tracing process is repeated for the images taken at different angles

around the pipe, using the same voxels. Thus voxels through which rays

from all images pass are identified. These overlapping voxels give a 3D

volume and represent the range of potential sizes and locations of the defect.

At this point the lateral and axial dimensions of the defect can be calculated
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Figure 5.9: A line is traced back from each defect pixel to its source.

from the voxels. However, depth resolution is poor, with typically a range

many times the actual defect size. Figure 5.10 shows the thickness map for

the example of ray tracing of three images of a defect, one with the defect

centred below the source and the other two at ±60◦ angles. The defect is an

inner wall flat bottomed hole with lateral and axial sizes of 25 mm in both

dimensions and a maximum thickness of 3.05 mm. From the overlapping

voxels the lateral and axial sizes are calculated as 25.2 mm and 25.5 mm

respectively, in good agreement with the real size. However the maximum

defect thickness, Fig 5.10, is found to be 35 mm, over ten times the actual

defect maximum thickness. Therefore additional constraints on the defect

volume are needed to better define the thickness. Note that defect thickness

is used throughout this chapter to refer to the through-wall extent of the

defect, or thickness of material removed.
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Figure 5.10: Defect thickness map calculated from the overlap volume pro-
duced by ray tracing. The actual defect thickness is 3.05 mm,
demonstrating the need to apply additional constraints.

5.2.3 Application of Constraints

The simplest constraint to apply is on the pipe wall. This constraint

requires that the approximate positions of the inner and outer pipe walls

are known. Some error in position is acceptable, as the input positions will

be varied to identify if any close positions are more likely. The pipe wall

constraint is that for voxels to be considered as part of a defect they must be

between the inner and outer pipe wall positions. This is illustrated in Figure

5.11 which shows the pipe location imposed over the simple 2D ray tracing

example. The area of potential defect is significantly reduced, as any part of

the overlapping volume outside the pipe wall is no longer considered. The

thickness map of the potential defect volume after application of the pipe

wall constraint is shown in Figure 5.12. The maximum possible thickness

has been reduced by almost a factor of two. However, it is still fairly large

and has not been narrowed sufficiently to give a good estimate of the defect

thickness.

The next constraint that is applied makes use of the intensity of each pixel.

Taking each image in turn the thickness map for that image is calculated;

that is, the distance a ray travelled through the defect before arriving at each
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Figure 5.11: The potential defect must be in the region within the pipe wall.

Figure 5.12: Thickness map of potential defect after applying the pipe wall
constraint. The maximum possible thickness has been reduced
from Fig 5.10 by almost a factor of two.
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pixel. These image specific thickness maps are calculated from the potential

defect voxels resulting after application of the pipe wall constraint. From the

background subtraction the difference between the detected intensity and

background intensity, Inorm, is known for each image pixel. The magnitude

of Inorm indicates the impact of the defect, with a high Inorm meaning a

more significant impact than low Inorm. Although the exact mapping from

Inorm to distance travelled through the defect is unknown, it should be the

case that a ray travelling through a thick defect will result in a larger Inorm

than one travelling through a thin defect. Therefore the relationship of

higher Inorm meaning longer distance can be imposed on the defect pixels.

This relationship is only imposed within an image as there may be other

causes of different Inorm between images.

Figure 5.13 shows the intensity of each defect pixel for the image with a

centred defect. The procedure is to sort the pixels by intensity. The distance

travelled through the defect volume for each pixel can then be analysed in

relation to intensity. The defect thickness, or distance, is modified such

that a pixel with lower intensity will also have a shorter distance travelled

through the defect. The process is illustrated for a small number of pixels in

Figure 5.14 which shows the original distance and that after processing. The

same minimum and maximum overall thicknesses still remain after distance

processing, but they have been redistributed to match the intensity. The

image specific defect thickness after distance processing is shown in Figure

5.15. Comparing with the Inorm intensity map, Fig 5.13, the maximum

distance now corresponds to the maximum intensity.

The final constraint used is on the effective attenuation coefficient. This

constraint is also applied within each image individually, based on the image

specific thickness maps. The intensity of direct radiation arriving at a pixel,

I, is given by the Beer-Lambert law of attenuation:

I(E) = I0(E)e−μ(E)x (5.2)

where E is the energy of the photons, I0 is the initial radiation intensity,

μ is the attenuation of the material and x is the distance travelled through

the material. In this case we have two images; one of the background and

one with a defect present. For a given pixel in the defect image the intensity
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Figure 5.13: Intensity (Inorm) of the pixels in the image with a centred de-
fect. Pixels not identified as defect are ignored, hence they are
set to zero in this example image.

of the background IB and the intensity through the defect, ID, are:

IB = I0e
−μeffxt (5.3)

ID = I0e
−μeff (xt−xD) (5.4)

where xt is the total distance from the source to pixel, xD is the distance

travelled through the defect and μeff is the effective attenuation coefficient

which depends on both the materials travelled through and the photon
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Figure 5.14: An example of distance processing. Defect pixels are sorted in
order of increasing normalised intensity (Inorm = I−Bm). The
distance travelled through the calculated defect by each pixel
is then modified to follow the same relation as intensity, ie if
a pixel has a lower intensity than another it must also have a
smaller distance.

energies. Dividing these equations:

ID
IB

=
e−μeff (xt−xD)

e−μeffxt
= eμeffxD (5.5)

This leads to the final equation for effective attenuation coefficient:

μeff =
1

xD
ln

(
ID
IB

)
(5.6)

In this equation both ID and IB are known and an estimate of xD has been

found, as shown in Fig 5.15. This means the effective attenuation coefficient

for each pixel in an image can be calculated. The effective attenuation

coefficient for each pixel is shown in Figure 5.16.

At this stage a constraint can be applied on the range of μeff values.

It is assumed that, as the defect is fairly localised, μeff should not vary

significantly between pixels with similar intensities. The allowed range in

μeff is decided based on the range in Inorm; images with a large range of
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Figure 5.15: Defect thickness after distance processing. Pixels of high in-
tensity are now assigned higher thickness than low intensity
pixels. This is the image specific defect thickness, calculated
as the distance travelled through the defect for each pixel in
the image with a centred defect.

Figure 5.16: The effective attenuation coefficient for each pixel, calculated
using the distances through the defect illustrated in Fig 5.15.
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intensity are allowed a larger range in μeff than those with small intensity

ranges. The calculated μeff values are then mapped to the allowed range,

with the mean value and the relative ordering of pixels conserved. Finally

Eqn 5.6 is inverted to calculate xD based on the new μeff values. The effect

is to remove extreme values of defect thickness, both high and low. The

resulting image specific defect thickness is shown in Figure 5.17. Comparing

with the defect thickness prior to this constraint, Fig 5.15, it can be seen

that the extremes in defect thickness have been removed. Since the ordering

of pixels was conserved the relation of longer distance occurring in pixels

with higher intensity still holds, as can be seen comparing to the intensity

map Fig 5.13.

Figure 5.17: Distance travelled through the defect for the image with the
defect centred, after the application of all constraints.

The final step is to convert the image specific thickness map back into

voxels so that the dimensions in x, y and z can be calculated. If an image

with a centred defect was used then this image produces the most accurate

results after application of the last two constraints, relating to intensity.

This is because, with the defect in line with the source, intensity maps more

directly to defect thickness than in images taken at an angle. Therefore

the specific thickness of the centred image is used to calculate the final

defect thickness map. If the centred image is not available then the final
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defect thickness map can be calculated by combining the specific maps of

all images, however this will result in higher errors. In this example the

centred image is used to calculate the final thickness map, shown in Figure

5.18.

Figure 5.18: Thickness map of the defect after application of all constraints.

The true thickness map of the defect is shown in Figure 5.19. Comparing

Fig 5.18 and Fig 5.19, it can be seen that the calculated defect is very close to

the real one. While individual pixel values are variable, the overall maximum

thickness is within 0.5 mm of the actual maximum. Instead of taking the

single maximum thickness, an estimated defect depth is calculated as the

mean of the highest 1% of pixels. This provides resilience against possible

effects of a very small number of high thickness pixels. In this case the

estimated defect thickness is calculated as 3.25 mm, while the true thickness

is 3.05 mm.
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Figure 5.19: Real thickness map of the defect.

5.3 Experimental and Simulation Studies

5.3.1 Data Acquisition Methods

The defect characterisation method described in the previous section has

been tested on a range of defects; both simulated and experimental flat

bottomed hole defects and simulated realistic corrosion defects. This section

details the methods used in obtaining the data.

Simulated data was produced in aRTist; for more detail, Chapter 4 ex-

plained methods of simulation in aRTist. The simulated source and detector

were modelled based on a 7.5 MeV betatron source and a digital detector

respectively. The setup used was a 320 mm diameter pipe with 25 mm wall

thickness and a source to detector distance of 400 mm, giving a double wall

single image inspection configuration. Two different types of defect were

used; ideal flat bottomed hole defects and realistic corrosion type defects.

Defects were positioned in the inside pipe wall in line with the source such

that at 0◦ rotation the defect was centred in the image. The simulation

was run in Computed Tomography mode so that it would rotate the setup,

taking images at defined angular intervals. Each simulation was run with a

single defect present, so images produced never had more than one defect

visible. Background images were taken as a set of four images in which the
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defect was out of view. The same set of background images was used for all

simulated cases.

The experimental data used here was collected during the Simulation

Validation work described in Chapter 4. The data is of the same stepped

pipe, source, detector and setup parameters as previously described. The

data of most use here is a set in which the pipe was placed on a turntable and

rotated, with images taken at every 5◦ rotation. The centre of rotation was

as close as possible to the pipe centre. An example of a resulting radiograph

is shown in Figure 5.20.

Figure 5.20: An example of an experimental double wall radiograph. It has
been filtered for better visualisation. The steps in pipe wall
thickness are clearly visible, along with one set of flat bottomed
holes. A measuring tape with lead numbers that was wrapped
around the pipe can also be seen.

As this data was collected for a different set of work [7] it is not ideal data

for testing the defect characterisation method. Multiple features, both flat

bottomed hole defects and step changes in wall thickness, are present in all

images. This means there was no background set of images without defects

present to use for feature extraction. Instead, a set of images was chosen

in which no features overlapped significantly with the region of interest,

allowing for their use as background images. A window around each region

of interest in the images was set manually, and in cases where slight overlap
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of outside features occurred the threshold was also adjusted manually.

5.3.2 Results

The defect characterisation method was tested on both simulated and

experimental flat bottomed hole defects and simulated corrosion defects.

Current work is focussed on inner wall defects and hence defects tested are

all inner wall. However the method is also applicable to outer wall defects,

which we aim to examine in future work. A key point is that for any defect

the method calculates a potential size for both inner and outer wall, and

if possible decides which is more probable based on consistency with input

parameters. If it is known that the expected defect is inner or outer wall

then this can be input to the model. If it is not known and the model

is unable to select one then both sets of results are produced, generally

resulting in a wider potential range in defect size. For the following results

the model was successful at designating the defect as inner wall, however

an example set of results is given to demonstrate the effect of calculating

defect size with the incorrect assumption of an outer wall defect.

Simulated Flat Bottomed Holes

The 25 mm diameter flat bottomed hole defect with maximum depth 3.05

mm, as used to illustrate the method in Section 5.2, was used to investigate

the impact of the angle between images on the resulting characterisation.

Images were taken at 5◦ angles around the pipe. The defect was found to

be fully visible in the images between ± 60◦, with further rotation putting

it partially or completely out of the shot. The method requires three input

images; the key recommended image is that with the defect centred, as this

should give greater accuracy both in calculating lateral and axial dimensions

and in application of constraints on thickness. Therefore the centred defect

image was included in all sets of images. The other two images were set

as ranging from ± 5◦ to ± 60◦, giving twelve sets of images with the same

angular separation between all three images in each set. The defect char-

acterisation method was run on all sets of images. The resulting axial and

lateral dimensions are plotted in Figure 5.21. Results show an improvement

in sizing with greater angular separation between images, but even for the

5◦ separation the calculated size is within 1 mm of the actual size.
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Figure 5.21: Calculated lateral and axial dimensions for a flat bottomed hole
defect using different sets of three images. The image sets all
include the straight down, centred defect image and two other
images ranging from ±5◦ to ± 60◦ rotation from the central
image. The flat bottomed hole has a real size of 25 mm in both
dimensions.

The calculated defect thickness is shown in Figure 5.22, and in this case

there is a significant dependence on angular separation. With small angle

separations it is not possible to narrow down the defect thickness at all,

and thus the result is at the maximum feasible value, close to the pipe wall

thickness. It is only at high angular separations, from around 50◦, that

thickness estimates close to the real value are obtained. This implies that

the best images to use for defect characterisation, in addition to the centred

defect image, are those at the largest angular separation in which the defect

is visible.

As stated in the previous section, it is expected that errors will be greater

if the 0◦ straight down, centred defect image is not included in the set of

three images. To test whether this is true, and if so how big the errors are,

the defect characterisation method was run on sets of three images without

the 0◦ image. The images were of the 25 mm flat bottomed hole defect, and

the image sets all used the two images at ± 60◦ rotation. The third image
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Figure 5.22: Calculated thickness for a flat bottomed hole using the same
sets of images as in Fig 5.21. The pipe wall thickness, 25 mm,
and true defect maximum thickness, 3.05 mm, are also shown.

ranged from the expected best case of 0◦ to a 30◦ rotation image, in steps

of 5◦. The calculated lateral and axial dimensions for each set of images are

plotted in Figure 5.23. The error in axial size is fairly small for all cases.

This is because all the images have the defect centred in the axial direction.

The error in lateral size begins to increase after the 10◦ image, and becomes

greater than 1 mm after 15◦. The calculated maximum defect thickness for

the same sets of images is shown in Figure 5.24. In this case errors increase

much faster than for the lateral size, with the calculation overestimating

by a factor of two at the 20◦ case. It was also observed that the defect

thickness maps were much more variable in these results than when the 0◦

image was used. These figures demonstrate that results should always be

more accurate if the 0◦ image is used. However, error is still fairly small

with an image up to 10◦ rotation, meaning it is not crucial to get an image

at exactly 0◦.

Figs 5.23 and 5.24 also show why a minimum of three images is used for

characterisation. Without a 0◦ or close to 0◦ image there would be much

more error in lateral and depth dimensions. While from Figs 5.2 and 5.22

it can be seen that the two images at the largest rotation to either side of
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the 0◦ image contain the most unique information and produce the most

accurate characterisation. So although some characterisation could be made

using only two images, errors would be significantly increased.
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Figure 5.23: Calculated lateral and axial dimensions for a flat bottomed
hole defect using different sets of three images, examining the
error if the straight down, centred defect image is not included.
The image sets all include the two images at ± 60◦ rotation.
The third image ranges from the straight down, centred defect
image to a 30◦ rotation image in steps of 5◦. The flat bottomed
hole has a real size of 25 mm in both dimensions.

The impact of using more than three images was also tested. Figure

5.25 shows the calculated lateral and axial sizes for a range of different sets

of images. In this case each set included images at 5◦ intervals up to the

maximum angle, with the maximum angle from ±5◦ to ± 60◦. For example,

the set of images with a maximum angle of 10◦ contained five images, that

with a maximum of 15◦ contained seven images and so on. Fig 5.25 can be

compared with Fig 5.21, which shows results for the same maximum angles

but using only three images. The effect of including many more images is

small, with a similar range of results. The calculated defect thickness for

the same sets of images was also found not to have improved upon results

using only three images, Fig 5.22, and the same maximum angles. Slight

differences, of less than ±0.2 mm, were found making the results from many
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Figure 5.24: Calculated thickness for a flat bottomed hole using the same
sets of images as in Fig 5.23. The true defect maximum thick-
ness, 3.05 mm, is also shown.

more images barely distinguishable from those with three images. This

demonstrates that, for a set of images with a given angular separation,

there is no benefit to including additional images at angles in between those

already used. The ideal set of images to use is three images; one centred at

0◦ and two at the maximum possible angles to either side.

To investigate whether defect diameter affects the accuracy of results the

simulation, taking images every 5◦, was run with three different diameter

flat bottomed holes. The defect characterisation method was then run on

each set of three images, again with angular separation from ± 5◦ to ± 60◦.

The actual hole depth was 5.5 mm in each case, and the hole diameters

were 12.5 mm, 25 mm and 50 mm respectively. The difference between

calculated and actual lateral and axial size was used to compare results.

Both lateral and axial results were very similar so axial size is given as an

example, shown in Figure 5.26. It can be seen that the error in the 50 mm

diameter case is significant until at least a 15◦ separation, however from 15◦

all results are fairly good, within ± 2 mm of the actual size.

The defect thickness results for the same sets of images are shown in

Figure 5.27. As found for the 3 mm defect, Fig 5.22, the accuracy of the re-

sults improves with angular separation. There are no significant differences
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Figure 5.25: Calculated lateral and axial dimensions for a flat bottomed hole
defect using different sets of images. The image sets all include
the straight down, centred defect image and all other images
at 5◦ intervals up to ± the maximum angle. The flat bottomed
hole has a true size of 25 mm in both dimension.

seen between the different diameter holes, although the 50 mm result again

behaves more erratically for small angular separations.

The effect of defect thickness on accuracy and required angular separation

was also tested. The same simulations were run for three flat bottomed hole

defects with a 25 mm diameter and different thicknesses of 5.5 mm, 10.5

mm and 15.5 mm respectively. Axial and lateral dimensions were again

calculated fairly accurately from small angular separations. However, for

defect thickness calculations higher errors were found. This is demonstrated

in Figure 5.28 which shows the error in defect thickness for each of the

defects for a range of angular separations. The smallest, 5.5 mm, defect

is seen to give fairly good results from around 40◦ separation, while the

10.5 mm defect only gives a good result at 60◦ and the 15.5 mm defect

calculated thickness never comes within ±5 mm of the actual value. This

result demonstrates that the actual defect size can have a significant impact

on the accuracy of the characterisation.
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Figure 5.26: Error in axial size, defined as (calculated - actual) size, for flat
bottomed holes with diameters of 12.5 mm, 25 mm and 50 mm.
Results for sets of three images with angular separation ranging
from ±5◦ to ±60◦ are shown. The 60◦ angular separation case
for the 50 mm defect is not shown as the defect was partially
out of the field of view at 60◦.

Angular separation (degrees)
5 10 15 20 25 30 35 40 45 50 55 60

D
ef

ec
t t

hi
ck

ne
ss

 (m
m

)

5

10

15

20

25

30
12.5 mm diameter
25 mm diameter
50 mm diameter
Actual
Pipe wall thickness

Figure 5.27: Calculated thickness for flat bottomed holes with diameters of
12.5 mm, 25 mm and 50 mm.
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Figure 5.28: Thickness error for flat bottomed holes with 25 mm diameter
and thicknesses of 5.5 mm, 10.5 mm and 15.5 mm. Results for
sets of three images with angular separation ranging from ± 5◦

to ± 60◦ are shown. Error was taken as (calculated - actual)
size.
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Experimental Flat Bottomed Holes

The defect characterisation method was also tested on experimental data.

The aim was to calculate the sizes of two sets of flat bottomed holes in the

stepped pipe shown in Fig 4.1. The pipe wall thickness ranged from 8.5

mm to 25 mm and the sets of flat bottomed holes were of 20% and 50%

wall thickness respectively. The diameter of each hole was equal to the wall

thickness, giving a range of diameters from 8.5 mm to 25 mm. Three images

were selected for each of the sets of holes. Images had to be chosen in which

the defects did not overlap with other features, as this would obscure the

defect and make background subtraction difficult. For both sets of holes the

image was chosen in which the defects were, visually, close to the centre line

of the image. For the 20% holes the other two images were taken as those

at -45◦ and +60◦, while for the 50% holes the images were at ±45◦ from

the central image. The defect characterisation method was run on each hole

individually. The difference between calculated and actual dimensions was

used for comparison of accuracy. The results for the 20% holes are shown

in Figure 5.29, while those for the 50% holes are shown in Figure 5.30.
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Figure 5.29: Error in dimensions of 20% wall thickness flat bottomed hole
defects. Dimensions were calculated using a set of three exper-
imental images. The images were used were at 0◦, -45◦ and
+60◦. Error was taken as (calculated - actual) size.
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Figure 5.30: Error in dimensions of 50% wall thickness flat bottomed hole
defects. Dimensions were calculated using a set of three exper-
imental images. The images used were at 0◦ and ±45◦. Error
was taken as (calculated - actual) size.

Calculated and experimental dimensions in Figs 5.29 and 5.30 show good

agreement, although a slightly higher error is seen compared to the results

for simulated data. There are many additional causes of error introduced by

the experimental data, for example errors in the setup dimensions such as

source to detector distance and pipe centre position, the centre of rotation

and finally no background images to calibrate the background subtraction.

So for results to be within ±4 mm of the actual values and in most cases

much closer is a positive sign, demonstrating the applicability of the method

to experimental data.

Simulated Corrosion

The method was also tested on realistic corrosion defects. A CAD model

of a real corrosion defect obtained from laser scan data was added to the

aRTist setup to obtain simulated data. The aRTist setup used was the same

as for the flat bottomed hole defects. A thickness map of the defect is shown

in Figure 5.31.

A series of different sized real corrosion defects were obtained by scaling
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Figure 5.31: Thickness map of the real corrosion defect. The lateral and
axial sizes are 20.8 mm and 21.1 mm respectively.

the original defect. For the first set of defects the depth was scaled by

factors of two, three and four giving a maximum thickness of 7.9 mm, 11.7

mm and 15.9 mm respectively compared to the original maximum of 3.8

mm. The lateral and axial dimensions were kept constant at 20.8 mm and

21.1 mm respectively. The defect characterisation method was run for each

defect using images taken at 0◦ and ±60◦. The calculated thickness map of

the original, unscaled defect is shown in Figure 5.32.

The results for all four defects, in terms of the difference between cal-

culated and actual dimensions, are shown in Figure 5.33. All results are

within ±2 mm of the actual dimensions. The underestimation of axial and

lateral dimensions may be due to the feature extraction method missing

some defect pixels around the edge of the defect where, from Fig 5.31, they

are mostly low thickness and therefore more difficult to detect.

A second set of defects was produced by scaling the lateral and axial

dimensions of the four different thickness defects to be 33.2 mm and 33.8

mm respectively. Therefore this set of defects had the same thicknesses as

those in Fig 5.33 but larger lateral and axial sizes. The resulting difference

between calculated and actual size is plotted in Figure 5.34. Errors are

slightly higher for the larger diameter defects, although all results except
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Figure 5.32: Calculated thickness map of the real corrosion defect. The
calculated lateral and axial sizes are both 19.1 mm.

for one are within ±3 mm of the actual dimensions.

Finally, the impact of not knowing whether the defect is inner or outer

wall was investigated. The method produces results for both cases, and the

general effect is that the outer wall results are several millimetres higher

than the inner wall results. This is because, due to lesser magnification, a

defect on the outer wall must be larger than one on the inner wall to produce

the same size image on the detector. Examples of potential outer wall defect

dimensions for the smaller diameter corrosion defects are shown in Figure

5.35. As expected outer wall results are higher than those for the inner

wall. In this case, since lateral and axial dimensions were underestimated

in the inner wall case they are actually more accurate in the outer wall

case. However, the potential thickness is significantly greater in the outer

wall case. This demonstrates that it is very helpful, but not crucial, to know

whether defects are most likely inner or outer wall.
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Figure 5.33: Error in calculated defect dimensions for real corrosion defects.
Defect number 1 is the original defect, shown in Fig 5.31, while
numbers 2, 3 and 4 have the same lateral and axial size but
increased thickness by factors of 2, 3 and 4 respectively. Error
was taken as (calculated - actual) size.
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Figure 5.34: Error in calculated defect dimensions for larger diameter real
corrosion defects. Defect number 1 has been scaled to have
lateral and axial sizes of 33.2 mm and 33.8 mm respectively,
while numbers 2, 3 and 4 have the same lateral and axial size
but increased thickness by factors of 2, 3 and 4. Error was
taken as (calculated - actual) size.
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Figure 5.35: Results for the same defects as shown in Fig 5.33 but for the
case that they are identified as outer wall defects by the model.
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5.4 Discussion

Characterisation of pipeline defects with radiography traditionally relies

on calibration objects such as a step wedge being included in the setup.

However, including these objects in the correct location can be complex

and time consuming, with the potential for significant error if not correctly

placed. In addition, the measurement of wall thickness from intensity, even

when calibrated with a step wedge, is an estimate and susceptible to errors,

for example due to high levels of scattering [100]. This chapter has presented

an alternative method of defect characterisation for which no changes to

the setup or calibration items are needed. Instead, characterisation makes

use of three images of the defect taken at different angles, combined with

knowledge of the setup geometry. The model is resilient to minor errors in

the input parameters, such as the angle between images or pipe position, and

is able to check for and correct possible errors. The method is aimed at use

in situations where access is difficult such as in subsea pipeline inspections.

In these cases including calibration objects may be particularly difficult,

and will add an additional layer of complexity to the inspection.

The defect characterisation method has been tested on simulated and ex-

perimental flat bottomed hole defects and on simulated corrosion patch de-

fects. Results show an excellent lateral and axial sizing ability. The largest

errors were seen for lateral sizing of the experimental 20% wall thickness

holes, which were consistently underestimated by about 3 mm. The con-

sistent underestimation could be due to the feature extraction method not

identifying all defect pixels; there was no set of background images available

for feature extraction in the experimental data, making errors more likely.

Defect thickness is more difficult to calculate and results show greater

error, as expected. However, in most cases, particularly for smaller defects,

the method still gave results to within ±3 mm of the actual thickness. A

key consideration on the defect thickness calculation is that, in cases where

it is not accurate, it is an overestimate. The thickness was underestimated

in only two of all the defects tested, and by less than 0.5 mm in these cases.

Therefore the thickness result could be taken as an upper bound on the

defect thickness rather than an actual defect thickness. While an actual

thickness would be ideal, an upper bound on thickness would still prove

useful in determining the severity of the defect.
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The angle of separation between images was found to have a significant

impact on the accuracy of thickness calculations. The most accurate results

were found for sets of images with one at 0◦ and two others at the maximum

angles possible while keeping the defect in view. These three images provide

the most useful data for defect characterisation. Images at smaller angles of

separation could be included, in addition to the ideal three images, however

they do not add significant information and results are not much improved, if

at all. The added time and expense of taking more images would far exceed

any minor improvements in accuracy. Therefore the ideal three images

should be used wherever possible. In cases where large angles of rotation

are not available the method will still produce accurate axial and lateral

sizing and place a limit on defect thickness.

So far the method has been tested on good quality, low noise data. The

feature extraction method depends on there being significant differences

between intensity through a defect and background intensity and could have

trouble identifying a defect if the difference is masked by noise. However, the

focus of this work has been on developing the ray tracing and application

of constraints parts of the method. While feature extraction is required

in order to get the pixel positions of the defect in each image, this could

be performed manually if needed. Therefore, while the method may not be

able to be fully automatic for low quality images it would still be applicable.

Alternatively more advanced methods of feature extraction could be used.

5.5 Summary

This chapter has presented a pipeline defect characterisation method

based on radiographic images taken at different angles around the pipe.

The method consists of three main parts; feature extraction, ray tracing

and application of constraints. In feature extraction a set of background

images is used to identify defects in the images of interest. Ray tracing is

then used to calculate the potential positions and sizes of the defect. By

using ray tracing on sets of images of the same defect but at different an-

gles, the range of defect size and position can be reduced. Constraints on

pipe wall location, defect intensity-distance relationship and the effective

attenuation coefficient are then applied. These constraints act to further

narrow down the potential defect thickness. The method has been tested
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on simulated and experimental inner wall flat bottomed hole defects and

simulated inner wall corrosion patch defects. Results show good agreement,

within ±3 mm, for lateral and axial dimensions, and in most cases similar

accuracy in thickness calculations, but with some overestimation. Further

work should address a realistic inspection context, for which the method

could be tuned for maximum performance. It should also take into account

the availability of the radiographs and setup geometry data required by the

method and the performance targets of the inspection. The key point of the

method is that it does not require additional objects such as a step wedge

to be placed in the exposure setup. It is aimed at use in situations where

access is difficult such as in subsea pipeline inspections.
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6 Conclusion

6.1 Summary

In this thesis I have described three key aspects of my doctorate work:

development of a radiographic simulation model, investigation of the ac-

curacy of simulation models for subsea inspections and development of a

method of pipeline defect characterisation. I began the thesis by explain-

ing the motivation behind this research, which centres on the need in the

oil and gas industry for accurate, reliable detection and characterisation of

subsea pipeline defects. In Chapter 2 I covered useful background theory

for the project, ranging from photon interactions in matter to a comparison

of different detector types. I described the main project work in roughly

chronological order in Chapters 3, 4 and 5. Each of these chapters is a

self-contained segment of my work, revolving around investigating and im-

proving external radiographic inspection of subsea pipelines.

In the first year of the project I developed a radiographic simulation

model, PRIM. In Chapter 3 I detailed the method of radiographic simula-

tion used in PRIM, which combines an analytical ray tracing calculation

with a Monte Carlo scattering simulation. I also demonstrated a validation

of PRIM results through comparison with commercial models CIVA and

aRTist. The key appeal of PRIM is that it is optimised for pipeline imaging

and is thus, for pipeline setups, usually faster than more generalised com-

mercial models. It has proved to be useful as a simple, easily modifiable

simulation model, able to provide data for development and testing in other

areas of my project.

In Chapter 4 I described an experimental validation of aRTist for high

energy underwater radiography. The aim was to compare simulated and ex-

perimental data and to develop a set of simulation parameters for matching

simulated to experimental images. However, I found a significant unex-

pected difference between simulated and experimental data, particularly in
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the image contrast. After some investigation I identified a potential cause of

the differences: scattering from additional objects in the exposure bay which

were not included in the simulation. Although some additional scattering in

the experiment is to be expected, the difference found is surprisingly large,

even in the absence of water around the pipe. This finding could have sig-

nificant implications for the ability of simulations to predict experimental

data in some circumstances. In particular it implies that it will be very dif-

ficult to completely match simulated to experimental data, as including all

possible scattering objects in the model would be very complex. Improve-

ment in simulation potential could be made by calibrating the model with

experimental subsea data, which should help account for additional scat-

tering. It may also be possible to reduce the impact of scattering by using

filters and shielding in the experimental setup. However there would still

be significant uncertainties, for example due to lack of knowledge of which

objects may be adjacent to any given subsea setup. This means there would

still be uncertainty in the ability of the simulation to accurately produce

realistic intensity and contrast.

Finally, in Chapter 5 I detailed the development of a pipeline defect char-

acterisation method. The aim was to develop an alternative to traditional

methods of radiographic defect characterisation, which often rely on calibra-

tion objects placed in the setup. My method uses images taken at different

angles around the pipe instead of calibration objects, with a stereographic

type approach to combine the data from each image. The method is aimed

at use in situations where access to the pipe is difficult, as in subsea in-

spections. I have tested it on a range of simulated and experimental data

and found it to give good agreement of lateral and axial defect size, and

reasonable estimates of defect thickness in most cases. The method has

the potential to be fully automatic, requiring input of a set of images and

setup geometry and from this calculating defect size without further manual

intervention.

6.2 Future Work

My project has been a broad investigation of subsea pipeline radiogra-

phy. As such, there are a couple of ways my work could be extended. One

key research area is investigation of peripheral scattering in radiography.
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In Chapter 4 I described initial results showing that peripheral scattering

has a surprisingly large impact on the final radiograph. A first step in any

further work would be to experimentally verify this finding. An example

experiment would firstly take a set of radiographs in a fairly clear exposure

bay, with few unnecessary scattering objects present. A second set of ra-

diographs would then be taken, using the same setup parameters but with

an additional – preferably highly scattering – object placed near the setup.

Comparison of the two sets of radiographs should reveal the impact of pe-

ripheral scattering. When running the experiments it would also be useful

to measure radiation around the exposure bay, in various locations. This

could confirm the amount of radiation around scattering objects, and could

be used to provide additional measurements for comparison with simulation.

As I explained in Chapter 4, it is likely that peripheral scattering varies

significantly with the source energy spectrum. It would be interesting to

investigate this variance; for example, through repeating the peripheral scat-

tering experiment for a range of different source energies. This work would

give insight into high energy radiography in general rather than just sub-

sea. It would be particularly useful if an optimum source energy could be

identified, where peripheral scattering has least impact.

Following on from experimental verification of peripheral scattering, the

next stage would be fully validating radiographic simulation models, like

aRTist, for high energy, underwater imaging. The method of validation

could be a comparison between experimental and simulated results as de-

scribed in my thesis, but with shielding to reduce experimental peripheral

scattering. Alternatively the full exposure bay, including all objects, could

be modelled in the simulation. Once the simulation model is validated, an

analysis would be needed of how accurately the simulation could predict ex-

perimental subsea images, accounting for peripheral scattering. Differences

between simulation and experiment may persevere, due to (for example) un-

known location and impact of objects, such as the sea floor in some setups.

At this point, calibration of simulated images with experimental data could

be used to improve accuracy. However, the validity of this technique and

potential improvements would need thorough examination. The final aim in

this stream of work would be the ability to accurately simulate and compare

different subsea radiographic setups, quantifying the impact of water and

the limiting factors on image quality.
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The other main area for further research is continuing my work on defect

characterisation. In this thesis I have contributed the foundation for a new

defect characterisation method. But significantly more testing and develop-

ment would be needed before the method could be used within industry. On

the testing side, the method needs to be run on a much wider range of data

to verify where it works best, along with errors and limitations. In terms of

development, some aspects of the method, particularly the feature extrac-

tion method, were not the focus of my work and hence could be improved.

The idea that the method could be fully automated is also an interesting

area to explore. For an automated method, testing and validation would be

very important to ensure errors are picked up by the model alone, without

a human operator.

The next stage in development would involve working with industry to

deploy the method in practice. Methods of subsea pipeline radiography

use systems which can rotate around the pipe as well as move along it – so

obtaining three images of a defect at different angles should be possible with

current equipment. However, it is likely that the pipeline imaging would be

constrained by cost, meaning taking any additional images would need a

strong motivation. A cost-benefit analysis of the defect characterisation

method may demonstrate the benefits and permit quantitative comparisons

against other methods, such as including a step wedge in the setup. In

terms of use of the software, a user interface would need to be developed.

However, as the method is mostly self-contained and just requires the input

of relevant images and setup parameters, this could be kept fairly simple.

In summary, in this section I have described the two main areas of work

following on from my project. The first, studying peripheral scattering and

validating a simulation, is an academic topic which should prove useful for

high energy radiography in general. The second, further development of my

defect characterisation method, is more about software development and

technology transfer to industry, but has the potential to greatly improve

defect characterisation in subsea pipeline imaging.
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