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Abstract

Detection and sizing of corrosion in pipelines and pressure vessels over large, partially

accessible areas is of growing interest in the petrochemical and nuclear industries.

Traditionally, conventional ultrasonic thickness gauging and eddy current techniques

have been used to precisely measure the thickness in structures. These techniques

only allow the measurement of the local thickness under the probe. Consequently

obtaining the remnant thickness of a specimen over a large area requires the probe to

be scanned, which is a long and tedious process. Moreover, with these techniques,

the scanning may become impossible when the area of inspection is inaccessible.

There is therefore a need for a rapid, accurate, long range inspection technique to

measure the remaining thickness in corrosion patches.

Low frequency guided waves are now routinely used to screen large area of pipes and

other structures for cracks and corrosion. Their detection and location capability is

very good, but the standard screening technique only gives a rough estimate of the

remaining wall thickness. Guided waves have multiple properties which can be used

for thickness mapping over large partially accessible areas e.g. dispersion and cutoff

frequency thickness product of the high order modes.

The present work aims to demonstrate the potential of guided waves for thickness

mapping over large partially accessible areas. It starts with a general introduction

on ultrasonic guided waves and a literature review of the different techniques for the

evaluation of thickness with guided waves. The severity of the errors introduced in

time-of-flight tomography for thickness reconstruction by breaking the assumption

of the ray theory are investigated. As these errors are significant, the possibility of

using the cutoff property of the high order modes is investigated in a frequency range

where the ray theory is valid. It is found that the attenuation due to the scattering

of the waves in corrosion is too large for this technique to work. Finally the use of

low frequency guided wave for diffraction tomography is examined. Finite element

simulations of a 64 element circular array on a plate show that when the scattering

mechanism of the object to be reconstructed satisfies the Born approximation the
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reconstruction of the thickness is accurate. However the practical implementation is

more challenging when the incident field is not known. Experimental results demon-

strate that ultimately the scattering from the array of transducer is a major source

of error in the tomographic reconstruction, but when there is no scattering from

the array of transducers the reconstructions are very similar to the finite element

simulations.
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Chapter 1

Introduction

1.1 Motivation

Corrosion of pipelines, pressure vessels and storage tanks is a very important issue in

the petrochemical and nuclear industries. In these industries the pipelines, pressure

vessels and storage tanks are often carrying hazardous or valuable liquids. The

environmental and economic impacts of any leakage can have severe consequences.

The structures that need inspection are often large and only partially accessible.

A good example is the inspection of slug catcher lines presented in figure 1.1 (a)

which are sitting on large supports as shown in figure 1.1 (b). In order to accurately

evaluate the remnant thickness in the pipe at the support, the inspection technique

involves lifting the pipe, which is time consuming and can be dangerous. There is

therefore a clear need for corrosion detection and sizing over large partially accessible

structures.

Traditionally conventional ultrasonic thickness gauging [1] and eddy current tech-

niques [2] have been used to precisely measure the thickness in structures. These

techniques only allow the measurement of the local thickness under the probe. Con-

sequently obtaining the remnant thickness of a specimen over a large area requires

the probe to be scanned, which is a long and tedious process. Moreover, with these

techniques, the scanning may become impossible when the area of inspection is
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(a) (b)

Figure 1.1: (a) slug catcher lines and (b) close up on a large pipe support. Photographs

from Shell Global Solutions.

inaccessible.

In the last 10 years the ultrasound non-destructive evaluation (NDE) method based

on guided wave propagation has seen a gradual transfer from scientific and tech-

nological development to the commercial and industrial environments. Successful

commercial application was achieved by use of deployable arrays of transducers

generating and receiving guided waves in pipelines [3–7], allowing fast screening of

these structures and evaluation of loss of cross sectional area. The detection and

location capability of low frequency guided waves is very good, but the standard

screening technique only gives a rough estimate of the remaining wall thickness. A

conventional NDE technique usually then complements the guided wave inspection

for exact sizing. Pipeline inspection with such equipment has become widespread

and most large oil companies are developing protocols of usage.

Guided waves have interesting properties that can be used for the evaluation of the

remnant thickness in the structure they are propagating. The dispersive nature,

variation of the velocity with the frequency thickness product, and the cutoff fre-

quency thickness product of the high order modes can both be exploited for thickness

evaluation over large areas. The petrochemical industry is particularly interested in

mapping the remaining pipe wall over a large area with defects of a diameter 3 to

4 times the pipe wall. Therefore the purpose of this initial study is to investigate
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the feasibility of guided wave based techniques to map the thickness of a large area

where the diameter of the defects is of the order of 60 mm diameter and the sepa-

ration distance between the source and the sensor is approximately 1 m in a 10 mm

plate. The 60 mm diameter defect is seen here as a relatively undemanding case but

close enough to reality in a feasibility study. All the results presented in this thesis

were obtained on plates, but the conclusions also apply to large diameter pipes, as

in this case the curvature has an insignificant effect on the propagation of guided

waves [8].

1.2 Thesis outline

This thesis will follow the sequence of topics described below.

Initially a background on ultrasonic guided waves and a literature review of the

different techniques for the evaluation of thickness using guided waves is given in

chapter 2.

Chapter 3 investigates the possibility of using ray tomography with low frequency

guided waves. A review of the possible points of operation, frequency and guided

wave mode, for time-of-flight tomography is presented. However the ray theory is

not valid with the possible points of operation for the problem of interest, accurately

sizing a 60 mm defect in a 10 mm plate over a propagation distance of approximately

1 m. Therefore the chapter focuses on the severity of the errors introduced by break-

ing the assumptions of the ray theory. Finite element modelling and experimental

results were used to demonstrate that breaking the validity of the ray theory causes

serious errors in the reconstruction. The material of this chapter is the basis of a

paper published in NDT & E International (P3 in the list of publications).

From the conclusion of chapter 3 the obvious option is to increase the frequency up

to the point where the ray theory becomes valid. However the number of modes that

can propagate increases with the frequency and the signal processing becomes more

complex. Above the cutoff of the higher order modes it is difficult to excite and de-
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tect a single mode, as required in time-of-flight tomography. Chapter 4 investigates

the possibility of using the cutoff property of the high order guided wave modes to

obtain an estimation of the minimum remaining thickness between a source and a

sensor. Finite element simulations were used to demonstrate the concept. Experi-

mental results obtained on an accelerated corrosion patch were used to evaluate the

attenuation of high frequency guided waves in corrosion.

It is possible to use the low frequency points of operation described in chapter 3 with

more complex diffraction tomography algorithms. In contrast, with the time-of-flight

straight ray tomography algorithms which reconstruct the thickness from time-of-

flight projections, the input to a diffraction tomography algorithm is the wave field

scattered by the defects to be imaged. In order to perform a diffraction tomography

reconstruction, an approximation of the wave equation must be used to calculate

the scattered field from the total and incident fields. The incident field corresponds

to the wave field when the structure has no defect whereas the total field is the

superposition of the incident and scattered fields. Finite element simulations were

used to generate the data and verify the detection, location and sizing capabilties of

the technique. The experimental implementation challenges were also studied with

an array of transducers. A novel approach in which the incident field is not required

to perform a diffraction tomography reconstruction is proposed. The material of this

chapter is the basis of a paper submitted to the IEEE Transactions in Ultrasonics,

Ferroelectrics and Frequency Control [P5 in the list of publications].

Finally, the conclusions and major contributions of the thesis are outlined in Chap-

ter 6.
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Chapter 2

Guided Wave Background and

Literature Review

2.1 Ultrasonic Wave Background

Before being able to evaluate the minimum remaining thickness of a structure using

ultrasonic waves, a thorough understanding of how waves propagate and interact

with defects is necessary. Bulk waves can only propagate far from any boundaries

where the longitudinal and shear waves are uncoupled. At the interfaces of the

material, the bulk waves interact with these interfaces by means of reflection and

refraction. Mode conversion between longitudinal and shear wave can also occur

at the interfaces. It is these interactions of bulk waves with the interfaces of the

material that lead to the development of elasto-dynamic guided waves (hereafter

called guided waves) in a structure. In contrast with bulk waves, a condition for

guided waves to develop is the existence of interfaces between two materials. Guided

waves are waves that, like light in an optical fibre, are guided by the boundaries of

the structure in which they propagate. There are multiple types of guided waves.

For example Rayleigh waves are free waves on the surface of a semi-infinite solid [9].

The boundary conditions for this problem are a traction-free surface and the waves

must decay with depth from the surface. Another example is Lamb waves which are
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plane-strain solutions to the free plate problem [10]. Stoneley waves are the waves

that occur at the flat interface of two media and decay away from the interface [11].

The basic principles of guided waves are very well known and several textbooks

discuss the topic [12–14]. Therefore an extensive review is omitted and only the

main characteristics are reviewed in this chapter.

2.1.1 Wave Propagation in Bulk Media

The propagation of elastic waves in infinite isotropic media is well documented in

textbooks [14–16]. Therefore here the principal equations are briefly outlined.

The equation of motion for an isotropic elastic medium in the absence of body forces

(Navier’s equation) is

(λ + μ)∇∇ · u + μ∇2u = ρ
∂2u

∂t2
(2.1)

where u is the three dimensional displacement vector, ρ is the material density, λ

and μ are the Lamé constants and the ∇2 is the three dimensional Laplace operator.

Using the Helmholtz decomposition, u can be expressed as the sum of the gradient

of a scalar, φ and the curl of a vector potential, Φ,

u = ∇φ +∇×Φ (2.2)

where Φ has zero divergence or

∇ ·Φ = 0. (2.3)

Substition of these potential functions into Navier’s equation 2.1 means that the

equation of motion can be separated into two independent equations; one for the

dilatation or equivoluminal motion φ

∂2φ

∂t2
= c2

l∇2φ, (2.4)

which governs longitudinal waves and one for rotational motion Φ

∂2Φ

∂t2
= c2

s∇2Φ, (2.5)
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which governs shear waves. cl and cs are the velocities of longitudinal and shear

waves in the infinite isotropic medium and can be expressed as

cl =

√
λ + 2μ

ρ
(2.6)

cs =

√
μ

ρ
. (2.7)

This reveals that there are only two types of wave which can propagate in an un-

bounded isotropic medium. Equations 2.4 and 2.5 are independent of each other

meaning that longitudinal and shear waves can propagate without interaction in un-

bounded media. The general solution to equations 2.4 and 2.5 which fully describes

the propagation of the two waves is

φ,Φ = Aei(kl,sz−ωt) (2.8)

where z is the spatial coordinate of the wave, t is the time variable, A is an arbitrary

wave amplitude constant, ω is the angular frequency and kl,s are the longitudinal

and shear wavenumbers which can be expressed as

k2
l,s =

ω2

c2
l,s

(2.9)

where cl,s are the longitudinal and shear velocities.

2.1.2 Guided Waves

Two different solutions of the free plate case will now be detailed i.e. the shear hori-

zontal guided waves and the Lamb waves. These two solutions are briefly introduced

in what follows. For a more detailed insight see [14,15].

Shear Horizontal Wave Modes in Plates

Consider a free isotropic plate with thickness b with traction free surfaces as in figure

2.1. These are the boundary conditions to the free plate problem. The solution to

the free plate problem by the method of potentials seeks to solve equations 2.4 and
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y

z

y = -b/2

y = b/2

Figure 2.1: Schematic of a free plate with thickness b and surfaces at −b/2 and b/2.

2.5 for the two potentials φ and Φ respectively. Solutions when the scalar potential

φ vanishes are known as Shear Horizontal (SH) plate modes.

If the assumption is made that guided waves propagate in the z direction then the

solution to equation 2.5 takes the form

Φ = Φ0(y)ei(kzz−ωt), (2.10)

where kz is the propagation wavenumber. The form of the solution is similar to the

form of the general solution expressed in equation 2.8. This solution is a function

of y and represents waves traveling in the z direction. Substitution of the assumed

potential into equation 2.5 yields an equation for the unknown potential in terms of

through-thickness sinusoids

Φ0(y) = A sin(kyy) + B sin(kyy), (2.11)

where

k2
y = k2

s − k2
z , (2.12)

where ks is the bulk shear wavenumber introduces in equation 2.9 and ky is the

through-thickness wavenumber. The strain-displacement relations are used to find

the strains in terms of the unknown vector potential Φ. Then Hooke’s law is used to

find the stresses in terms of the strains and hence in terms of the unknown potential.

The boundary conditions state that the surfaces are traction free which leads to the

condition that

(λ + μ)
∂vx

∂y
= (λ + μ)

∂

∂y

(
∂

∂y
Φz + ikzΦy

)
= 0 (2.13)
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at y = b/2 and y = −b/2. A thorough analysis is presented in [15]. Substition of

the potential 2.11 shows that equation 2.13 is satisfied when

ky =
pπ

b
, (2.14)

where p is an integer from 0 to infinity. Then by substituting equations 2.9 and 2.14

in 2.12 an expression for kz is obtained

k2
z =

(
ω

cs

)2

−
(pπ

b

)2

. (2.15)

By using the definition of wavenumber kz = ω/cp, where cp is the phase velocity of

the mode of interest, equation 2.15 can be solved for the phase velocity in terms of

the frequency thickness product

cp(fb) = ±2cs

(
fb√

4(fb)2 − p2c2
s

)
. (2.16)

When p = 0, corresponding to the zeroth-order SH mode (SH0) the phase velocity cp

is equal to cs. The velocity of SH0 is therefore constant for any frequency thickness

product. For all other SH modes (p > 0) the phase velocity is varying with the

frequency thickness product. The phenomenon of a changing phase velocity with

frequency is called dispersion, and results in the distortion of the shape of a wave

packet containing multiple frequencies that propagates for long distances. The dis-

tortion of the shape of a wave packet generally reduces the signal amplitude and

increases the length of the time domain signal. These effects are both detrimental to

long range propagation of ultrasonic guided waves. This is therefore a very impor-

tant effect that has to be taken care of when working with long range guided wave

applications. Traditionally guided waves have been mainly used in non-dispersive

regions [17,18] to avoid the distortion of the signals. The SH mode dispersion curves

for the first few modes generated using equation 2.16 are shown in figure 2.2 for alu-

minium (cs = 3130 m/s). The phase velocity of all the SH modes converge to cs

as the frequency thickness product becomes large. Mode cutoffs occur at specific

frequency thickness products for modes higher than SH0. At these frequency thick-

ness products, the phase velocity approaches infinity. The cutoff frequency thickness

products of the high order SH modes (SH1, SH2, ...) can be found by setting the
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SH0

SH1 SH2 ...

Figure 2.2: Phase velocity dispersion curves for the SH modes in an aluminium plate (cs

= 3130 m/s).

denominator in equation 2.16 equal to zero. The cutoff frequency product of the pth

is therefore given by

fbp =
pcs

2
, (2.17)

where p is an integer. If the excitation is below the cutoff frequency thickness

product of a given mode then no energy of that mode will propagate. This property

of the SH modes will be further investigated for thickness mapping in chapter 4.

The phase velocity represents the velocity at which a mode at a given frequency

is traveling in a medium. If this mode is dispersive, then the group velocity is

associated with the propagation velocity of a group of waves of similar frequency.

The group velocity corresponds to the velocity at which the energy of a multi-

frequency wave packet is traveling. By differentiating equation 2.15 and after some

algebra an expression for the group velocity is obtained [14]

cg(fb) = cs

√
1− (p/2)2

(fb/cs)2
. (2.18)

Figure 2.3 presents the group velocity dispersion curves for an aluminium plate.

Lamb Wave Modes in Plates

Lamb wave modes are formed from the combination of vertically polarised shear

waves (SV) and longitudinal waves (P). SV and P waves cannot exist individually in
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SH0

SH1

Figure 2.3: Group velocity dispersion curves for the SH modes in an aluminium plate

(cs = 3130 m/s).

kz = ω/cz

kz

ky

Figure 2.4: Wavenumber graphical representation of the free plate dispersion relation for

coupled SV and P partial waves.

the free plate case but are coupled, making the solution more complex. The traction

free surfaces at y = ±b/2 of figure 2.1 leads to the condition that both SV and P

wave vectors must have the same wavevector component in the z direction [15].

This is illustrated graphically in figure 2.4. The two wavevectors prescribe two

different circles of radii ks and kl whose axial component kz must match to obtain

a propagating modal solution. Some geometric algebra, see for example [15], leads

34



2. Guided Wave Background and Literature Review

to the Rayleigh-Lamb frequency equations

tan kysb/2

tan kylb/2
= − 4k2

zkyskyl

(k2
ys − k2

z)
2

(2.19)

for the symmetric modes and

tan kysb/2

tan kylb/2
= −(k2

ys − k2
z)

2

4k2
zkyskyl

(2.20)

for the antisymmetric modes. The transverse wavevector components are linked to

ω and the z component of the wavevector by

k2
ys = k2

s − k2
z =

(
ω

cs

)2

− k2
z (2.21)

and

k2
yl = k2

l − k2
z =

(
ω

cl

)2

− k2
z . (2.22)

The dispersion relations of the Lamb waves can be obtained by substituting equa-

tions 2.21 and 2.22 in equation 2.19 for the symmetric (S) modes or in equation

2.20 for the antisymmetric (A) modes. The dispersion relations are transcendental

and are solved numerically, for example, using DISPERSE [19]. Figure 2.5 shows

(a) the phase velocity and (b) the group velocity of the Lamb wave symmetric and

antisymmetric modes for aluminium with cs = 3130 m/s and cl = 6320 m/s. In con-

trast with the SH modes the Lamb modes are all dispersive. The phase velocity of

the fundamental symmetric and antisymmetric modes (S0 and A0) converges to cR,

the Rayleigh wave velocity of the material, and all the other Lamb modes converge

to cs, the shear wave velocity of the material. The high order Lamb modes also ex-

hibit a frequency thickness product cutoff. As for the SH modes, the phase velocity

approaches infinity as the group velocity approaches zero. These frequency thick-

ness products occur whenever a standing longitudinal or shear waves are present

across the thickness of the plate [13]. The dispersive property of the fundamental

Lamb modes will be further investigated in chapters 3 and 5 for time-of-flight and

diffraction tomography.
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Figure 2.5: (a) Phase velocity and (b) group velocity dispersion curves for the Lamb

wave symmetric and antisymmetric modes in an aluminium plate (cs = 3130 m/s and cl

= 6320 m/s).

2.2 Literature Review of Thickness Mapping us-

ing Guided Waves

This section reviews the literature on the use of guided waves for thickness measure-

ment over large areas using different properties of guided waves.

2.2.1 Ray Tomography

Tomography is derived from the Greek word τoμos which means slice. It is a method

which aims at recovering the cross-section of an object from projection data. A
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Figure 2.6: (a) Two parallel projections at different angles and (b) two fan beam projec-

tions at different angles.

projection corresponds to a set of line integrals of a given parameter through an

object at a given angle. The reconstruction of a function from its projections was

first achieved in a paper by Radon in 1917 [20]. Fifty-five years later Hounsfield

received a Nobel prize for the invention of the first x-ray computed tomography

scanner. Since the invention of Hounsfield, research on tomographic imaging has

been focusing on new applications as well as faster and more accurate reconstruction

algorithms.

There are two main bodies of literature in tomography. The first is medical imag-

ing and is primarily concerned with computed tomography scanning. Hounsfield

developed an iterative algorithm for his scanner; however, medical imaging research

has, since then, focused on convolution backprojection algorithms. The convolution

backprojection algorithms are well suited to only two scanning geometries: the par-

allel beam and the fan beam, see figure 2.6. These algorithms take advantage of the

scanning geometry and the Fourier Slice theorem [21] to reconstruct the unknown

object.

The second body of literature is geophysical imaging. Geophysical tomography dif-

fers from medical tomography in terms of the physical scale but also of the scanning

geometry. It would be impossible to use a parallel or fan beam geometry for geo-
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physical tomography. Consequently this field of imaging carried on developing the

iterative methods first presented by Hounsfield. They developed iterative algorithms

that are more general than the convolution backprojection algorithms because they

can work with random scanning geometries. Some scanning geometries are however

more suitable than others. Ray tomography is investigated in the context of guided

wave time-of-flight tomography in chapter 3.

Convolution Backprojection Algorithms

The convolution backprojection algorithms were first presented by Ramachandran

and Lakshminarayanan [22] in 1971 and later developed and popularized by Shepp

and Logan [23] in 1974. The algorithm was originally dedicated to the parallel beam

scanning geometry.

The filtered backprojection is an algorithm developed in straight-ray medical tomog-

raphy. The straight-ray assumption implies that the ray paths are not influenced

by the inhomogeneities in the specimen. As the name implies, the filtered back-

projection is a two step algorithm: the filtering and the backprojection steps. This

algorithm takes advantage of the Fourier Slice theorem. A schematic of the theorem

is presented in figure 2.7. This theorem is stated as [21]:

The Fourier transform of a parallel projection of an object f(x, y) taken

at an angle θ gives a slice of the two-dimensional transform F (u, v),

subtending an angle θ with the u-axis.

This theorem is valid for parallel beam geometry and only in the case of straight-ray

tomography. In the frequency domain, the Fourier transform of a parallel projection

is bandlimited to Ω which is a function of the sampling in the space domain and is

given by equation 2.23.

Ω =
π

Δt
(2.23)

where Δt is the distance between each transducer.
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Figure 2.7: Schematic of the Fourier Slice theorem.

The idea of the filtered backprojection is to calculate projections at as many angles

θ as possible to obtain a discrete estimate of the two-dimensional Fourier transform

of the object. Then the object is recovered by taking the inverse Fourier transform

of this discrete estimate of the two-dimensional Fourier transform of the object.

Jansen and Hutchins [24] were the first to publish on Lamb wave tomography in

1990. They inspected a 0.688 mm aluminum sheet immersed in a water bath. They

suspended above the plate two immersion transducers, inclined at the critical angle

for the generation of the desired Lamb wave mode. The transducers were separated

by a distance of 120 mm and they were scanned across the surface by a stepping

motor system to create the parallel projections. They investigated tomography using

the attenuation and the slowness of the S0 mode. For the attenuation tomography,

the energy of S0 was determined with the Fourier transform of the signal recorded

at the receiving transducer. The energy of S0 was compared with a reference value

to obtain the attenuation. For the slowness reconstruction, the time-of-flight of

each ray needs to be evaluated. In order to obtain an accurate value they used

the cross-correlation between the reference waveform and the data waveform to

obtain the time difference due to defects. These two reconstruction parameters were

compared for a 5 by 7 mm oval through hole and were implemented with the filtered

backprojection algorithm. Each reconstruction was built using 32 projections at

different angles over 180◦ each consisting of 51 rays. The oval shape was detected to
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some degree in both cases. However the attenuation reconstruction is not as accurate

as the slowness reconstruction in terms of the dimensions of the defect. In the

attenuation reconstruction the defect area was much larger than the original defect

size and this is due to diffraction effects around the defect. They also investigated

the reconstruction of a 40% part-through cylindrical hole of 7.8 mm diameter. In

this specific case, no significant variations in velocity or attenuation of S0 were

noticed. Hence they decided to use attenuation of the A1 and S1 modes and the

frequency shift of the centroid of S1. The frequency shift of the centroid is obtained

from the Fourier transform of the signal recorded by the receiving transducer. All

reconstructions had a peak at the centre of the part-through hole and they were all

equally effective. However the size and depth of the defect cannot be evaluated from

this peak because the reconstructions show a defect region much smaller than the

original hole. This problem might be solved by increasing the number of rays per

projection and the total number of projections.

In 1992 Hutchins et al [25] investigated a slightly different technique. Instead of

using inconvenient immersion transducers, they used a Nd:YAG laser to generate

the Lamb waves and they compared in-plane and normal motion EMAT transducers

for detection. The in-plane motion transducer is used to detect S0 and the normal

motion transducer is used to detect A0. The excitation frequency was chosen to

be below the cut-off of the high order modes so that only the three fundamental

modes can propagate. They compared three different reconstruction techniques im-

plemented again with the filtered backprojection algorithm for parallel projections:

the attenuation, the slowness and the frequency centroid shift. The sample they

used was a 0.68 mm thick aluminium plate containing a 8mm diameter through

thickness hole. With both the in-plane and normal motion EMAT the attenuation

reconstruction gives a defect larger than the original hole. The slowness and fre-

quency centroid shift methods were the most accurate; the frequency centroid shift

being the best of the two.

More recently Wright et al [26] used micromachined silicon air-coupled capacitance

transducers to image defects in a 0.69 mm aluminium sheet. They compared two
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image reconstruction techniques: the attenuation and the shift in centroid frequency

for a non-circular defect and for a multiple defects case. The two techniques were

implemented with the filtered backprojection algorithm using parallel projections at

a frequency below the cut-off of the high order modes. The first case they studied

was a through thickness 1 mm by 10 mm slot and the second case was two through

thickness holes of 10 mm and 5 mm respectively. In the first case the slot shape was

not reproduced accurately, possibly due to the size of the defect in relation to the

scan resolution and the wavelength of the chosen Lamb wave mode. In the second

case the two defects were resolved, with greater change in attenuation or centroid

frequency shift associated with the larger defect. However the shape of the smaller

defect was distorted, possibly due to its position inside the image area. It was in

fact close to the edge of the image area where the ray density is smaller.

Pei et al [27] used a pair of patented pin transducers (see [28]) to implement to-

mography with the A0 mode. The frequency was chosen such that the transducer

excites a very pure A0 mode. They used the time-of-flight together with a filtered

backprojection algorithm to reconstruct the slowness of a 1 mm aluminium plate

with a 6.4 mm by 12.7 mm 50% part-through slot. They extracted the time-of-flight

from the difference in time between the first zero crossing of the input signal and

the first zero crossing of the signal recorded by the receiving transducer. From the

dispersion relation of the A0 mode they converted the slowness map into a thickness

map. They calculated 60 parallel projections spread over 180◦ around the object to

be reconstructed. Each projection had 64 rays. The slot area was clearly shown on

the map but its shape and depth were not reconstructed accurately.

As seen in the references mentioned above, the parallel projection scanning geometry

can easily be implemented with the filtered backprojection, however this scanning

geometry is not practically convenient because it cannot be carried out with a fixed

array of transducers. Figure 2.8 (a) presents the position of the transducers for four

projections at different angles. On figure 2.8 each dot represents the location of a

transducer, either a receiver or a transmitter required for one of the projection. In

reality more than four projections are required to reconstruct an object accurately
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Figure 2.8: Two possible scanning geometries: (a) the parallel projection and (b) the

crosshole.

and thus the number of transducer required would be too large to be implemented

on an array. Hence in order to collect the projections with the minimum number of

transducers either the object or the transducers needs to be rotated. McKeon and

Hinders [29] compared the parallel projection scanning geometry implemented with

the filtered backprojection and the crosshole scanning geometry implemented with

an iterative algorithm. The crosshole scanning geometry is presented in figure 2.8

(b). This scanning geometry contains only two lines of transducers, on both sides

of the reconstruction area and the signals are recorded between each pair. Their

measurements were performed at a frequency thickness product of 2 MHz.mm, where

S0 is the fastest mode. They used the time-of-flight of S0 to reconstruct the slowness

in the image area. One advantage of the crosshole technique is that it requires access

to only two sides of the region. However with the crosshole tomography, the ray

density varies inside the image area and the rays do not pass through the region

of interest from all orientations. The authors claim that these drawbacks in the

reconstruction quality are offset by the increased practicality of the measurement.

Figure 2.9 presents (a) the reconstruction they obtained with the parallel scanning

geometry and (b) with the crosshole scanning geometry where the defect is a 20 cm2

circular region of 50% thickness reduction in a 2.45 mm thick aluminium plate.

The images covers 100 × 100 mm, in (a) the image was reconstructed from 18
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Figure 2.9: The results of McKeon and Hinders [29] obtained for (a) a parallel projection

scanning geometry with the filtered backprojection and (b) a crosshole scanning geometry

with an iterative algorithm.

projections of 100 rays for a total of 1800 rays and in (b) it was reconstructed from

400 rays. In (a) the image is noisy but the dimensions of the defect are close to

reality. The ray density in (b) is insufficient and the reconstruction is not accurate

enough to extract the exact size of the defect.

By slightly modifying the filtered backprojection it can be adapted from the parallel

scanning geometry to the fan beam scanning geometry. The advantage of the fan

beam is that it can be implemented on a circular array. Thus there is no need to

rotate the object or the transducers. Malyarenko and Hinders [30] compared the

circular array implementation of the filtered backprojection with a double crosshole

scanning geometry implemented with an iterative algorithm. Figure 2.10 presents

these two scanning geometries, (a) the circular array and (b) the double crosshole.

The images they obtained with both methods show good quantitative agreement

with the defect shape. However, for the circular array, they said that the fraction

of the area inside the scanning ring that is free from reconstruction artefacts, the

fill factor, is relatively small. This is due to the fact that they used a fast algorithm

that makes an approximation that should be avoided if a large fill factor is desired.

They concluded that this low fill factor is a serious limitation to the circular array
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Figure 2.10: Two possible scanning geometries: (a) the circular array and (b) the double

crosshole.

implementation of the filtered backprojection and that the double crosshole is a

more appropriate scanning geometry for Lamb wave tomography.

Iterative Algorithms

As stated above the iterative algorithms were first introduced by Hounsfield in 1972

for the first x-ray computed tomography scanner. However these algorithms were

later developed in geophysical imaging. The iterative algorithm approach is com-

pletely different from the convolution backprojection approach. To illustrate the

principle, assume there is only one transmitter and one receiver as shown in figure

2.11.

In figure 2.11 the arrow represents a straight ray between the transmitter and the

receiver. A mesh of square cells is drawn between the two transducers; the idea is

to find the path of the ray between the 2 transducers and to calculate the length of

the path in each cell. If the ray does not pass in a cell the length in this cell is set

to zero. If the velocity of propagation of a wave is assumed constant within a cell

than the time-of-flight of a wave is given by

Testimate =
∑
i,j

di,j

V gri,j

(2.24)
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Figure 2.11: Schematic of the iterative algorithms.

where di,j and V gri,j are respectively the length and the group velocity in the cell

i, j. The estimate of the time-of-flight Testimate is then compared with the measured

value and the group velocity for all cells in the path is updated until the estimate

and the actual values of the time-of-flight are close together. The principle of the

iterative algorithms was illustrated with the time-of-flight but the same procedure

can be applied to any other parameters used in tomography.

In the case of the algebraic reconstruction technique (ART) the procedure described

above is repeated for all rays. However ART reconstructions usually suffer from

noise which is caused by the inconsistencies introduced at each iteration, [21]. The

mesh of cells is usually chosen such that there is more than one ray passing through

each cell. As a consequence each cell is updated by more than one ray and this

results in inconsistencies. An alternative to the ART is the simultaneous iterative

reconstruction technique (SIRT). The approach is identical to the ART until the last

step. Instead of updating the cells after processing each ray, the cells are updated

with the average of all computed changes. This algorithm usually leads to smoother

reconstruction at the expense of slower convergence.

As presented previously McKeon and Hinders [29] and Malyarenko and Hinders [30]

respectively compared the filtered backprojection implemented on a parallel beam

scanning geometry with the ART implemented on a crosshole scanning geometry

(see figure 2.8) and the filtered backprojection implemented on a circular array with

the SIRT implemented on double crosshole scanning geometry (see figure 2.10). In
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Figure 2.12: Schematic of a crosshole scanning geometry on a pipe.

both these investigations they concluded that the iterative methods were superior to

the convolution backprojection techniques. Amongst the advantages of the iterative

method is its great flexibility, allowing practically any scanning geometry and in-

complete data sets. The reconstruction quality of the iterative methods is, though,

poorer than the convolution backprojection techniques. However the reconstruction

quality drawbacks are offset by the increased practicality of the measurement.

Another advantage of the iterative methods and especially of the crosshole scanning

geometry is that it can be applied to pipes. Figure 2.12 presents a schematic of a

crosshole scanning geometry on a pipe. The pipe simply has to be unwrapped and

the crosshole scanning geometry can be applied; the shortest helical path between

a transducer and a receiver needs to be carefully evaluated.

Leonard and Hinders [31, 32] investigated Lamb wave tomography on a steel pipe

with an inner radius of 75 mm and an outer radius of 102 mm with SIRT. The

distance between the two rings of transducers was 320 mm. The input signal was

a 15-cycle toneburst centred at 2.25 MHz. They used the travel time of the first

arriving mode, which in their case was the S6 mode, to reconstruct the slowness and

the thickness of the pipe wall. Figure 2.13 shows four reconstructions of a 25% wall

thinning of increasing length. The grey horizontal striations and the black criss-cross

artifacts indicate the location of the flaws (area contained within the black ellipse),

which can be seen to increase in size, as expected. Note that the scans are shown

for different angular positions of the flaws, but all other scanning, reconstruction,
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Figure 2.13: Four reconstructions are shown of a 25% wall thinning increasing in size.

Figure from [32].

and rendering parameters were remained unchanged. The flaw is not clear and its

size and depth cannot be evaluated. Hence in order to improve the image quality

they examined frequency compounding. This technique can be viewed as a way of

enhancing the contrast between the flawed and unflawed region by reconstructing the

image for input signals centred at multiple frequencies. Figure 2.14 presents (a) the

reconstruction of an irregular 2 × 2 in2 gouge on the inner diameter of a steel pipe

for a single frequency and (b) when 10 frequencies are compounded. In this case the

pipe wall was 20 mm and its outer diameter was 175 mm. The distance between the

rings of transducers is again 320 mm. It can be seen that the tomographic frequency

compounding technique significantly reduced the noise in the reconstructed images.

The iterative algorithms can be implemented on various types of scanning geome-

try and they are flexible due to their iterative nature. A major advantage of the

iterative algorithms and especially of the crosshole scanning geometry is that it can
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Figure 2.14: Reconstruction of an irregular gouge on the inner diameter of a steel pipe.

(a) single frequency reconstruction and (b) compounded image using 10 frequencies. Figure

from [32].

be implemented to reconstruct an image of a pipe wall. The pipe simply has to be

unwrapped and any of the iterative algorithms can then be employed. Frequency

compounding was presented as a good technique to enhance the contrast of a tomo-

graphic reconstruction and to reduce noise.

2.2.2 Diffraction Tomography

In their investigation McKeon and Hinders [29] and Malyarenko and Hinders [30]

recognised that diffraction was a major issue to the successful implementation of

low frequency guided wave tomography for thickness mapping in plates or pipes.

Assuming that a thickness reduction only causes the frequency thickness product of

guided wave to shift to a lower value is only a reasonable assumption when the ray

theory is valid. Moreover when the size of the defects is comparable to or smaller

than the wavelength of the signal the diffraction effect becomes dominant [21]. When

using low frequency guided waves it is common that the defects have dimensions in

the range of the wavelength. Diffraction tomography is investigated in the context
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Figure 2.15: Aluminium plate with two circular thinned areas. The squares are a

schematic of the position of the transducer around the reconstructed area. (b) is the

straight-ray reconstruction and (c) is the bent ray reconstruction. Figure from [33].
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Figure 2.16: Aluminium plate with five through holes. The squares are a schematic of

the position of the transducer around the reconstructed area.(b) is the straight-ray recon-

struction and (c) is the bent ray reconstruction. Figure from [33].

of thickness reconstruction with guided waves in chapter 5.

Malyarenko and Hinders [33] investigated Lamb wave diffraction tomography with

SIRT (see the previous subsection). Instead of assuming a straight ray between each

transmitter and receiver they compared two ray tracing algorithms: the simulated

annealing ray tracing and the iterative shooting ray tracing. Once the bent ray path

is obtained the SIRT is exactly the same as the straight ray version. Figures 2.15

to 2.17 present three comparisons of reconstruction with straight ray SIRT (b) and

bent ray SIRT (c) for double crosshole reconstructions (see figure 2.10). The area

reconstructed is a square of size 20 × 20 cm on an aluminium plate.
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Figure 2.17: Aluminium plate with oblong thinned. The squares are a schematic of the

position of the transducer around the reconstructed area.(b) is the straight-ray reconstruc-

tion and (c) is the bent ray reconstruction. Figure from [33].

From visual comparison their conclusions are that the size of the defects recon-

structed with straight ray SIRT often exceeds reality whereas with bent ray SIRT

the defects appear smaller and closer to their actual size. Furthermore the bent ray

SIRT partially eliminates the artifacts at the centre of the defect that are visible

on the straight ray reconstructions. Both the straight ray and bent ray SIRT have

reconstruction artifacts due to non uniform ray density. In the case of straight ray

tomography it is possible to have uniform ray density. However if diffraction effects

are taken into account the ray bending distorts the uniformity and the distortion

grows with the size and severity of the defects. In fact the most severe artifacts are

observed on figure 2.17 (c) with the largest defect area and the weakest artifacts

are on figure 2.15 (c) where defects are small and do not introduce large changes

to the ray density. They found that this distortion can be minimized by sufficient

smoothing of the reconstructed image.

For the parallel projection scanning geometry or with a circular array the diffraction

effects can be taken into account with the Fourier Diffraction theorem. The Fourier

Diffraction theorem relates the Fourier transform of the measured scattered data

with the Fourier transform of the object. Figure 2.18 presents a schematic of the

Fourier Diffraction theorem. The statement of the theorem is as follows [21]:

When an object is illuminated with a plane wave, the Fourier transform
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Figure 2.18: Schematic of the Fourier Diffraction theorem.

of the forward scattered field measured on a line gives the values of

the 2D Fourier transform of the object along a semicircular arc in the

frequency domain.

The radius of the semicircular arc is related to the wavelength. As the frequency

increases, the wavelength decreases and the radius of the arc in the Fourier domain

increases. By varying the orientation of the plane wave the data can be collected on

various semicircular arcs and by varying the frequency of the incident plane wave

the data can be collected on arcs of different radius. If the source is much smaller

than the wavelength and the object f(x, y) is far from a circular array of transducers

the incident wave field can be considered as a plane wave at the object and therefore

the Fourier Diffraction theorem applies.

The object is reconstructed from the phase and amplitude of the scattered field. The

scattered field corresponds to the field generated by the object when illuminated

by an incident field. In a typical implementation of diffraction tomography the

total field, or the superposition of the incident and scattered fields is measured. In

order to perform a diffraction tomography reconstruction, an approximation of the

wave equation must be used to calculate the scattered field. The Born and the

Rytov approximations are the most common [34,35]. These approximations can be
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expressed as

Born: Ua = Ut − Ui

Rytov: Ua = Ui log

(
Ut

Ui

)
(2.25)

where Ua is the data for the diffraction tomography algorithm when using either

the Born or the Rytov approximation, Ut is the total field and Ui is the incident

field. Therefore both approximations require the incident field in the evaluation of

the scattered field. The incident field corresponds to the wave field that propagates

in a structure when there are no inhomogeneities.

The two approximations have quite different validity criteria [36, 37]. For the Born

approximation the phase difference between the incident field and the wave propa-

gating through the unknown object must be less than π. Consequently this approx-

imation is only valid for small or low contrast objects, the contrast being defined

as the difference between the background medium velocity and the velocity in the

unknown object. For the Rytov approximation it is the change in the scattered

phase over a wavelength that is important and not the total phase change.

Rohde et al [38] recently examined diffraction tomographic imaging of flexural inho-

mogeneities i.e. change in thickness, density, Young’s modulus or shear modulus in

plates within the Born approximation for structural health monitoring applications.

Using a structural health monitoring approach greatly simplifies the implementa-

tion of diffraction tomography because it implies that baseline measurement can be

used as the incident field in the evaluation of the scattered field. Figure 2.19 shows

tomographic reconstructions of a circular defect in a 1.02 mm aluminium plate for

three different defect diameters and relative thickness changes. The dimension of

the thickness map is 100 × 100 mm. In all cases the location, diameter and relative

thickness change is accurate, which is a major improvement from the time-of-flight

tomography results presented in the previous subsection. A simulated incident field

was used in the evaluation of the Born approximation. Parallel linear arrays of

sources and sensors were revolved around the area of inspection to obtain the data

required for the reconstruction.
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Figure 2.19: Tomographic reconstructions presented in [38] for three relative thickness

changes with three different diameters. (a) thickness map and (b) the corresponding thick-

ness profile. The dashed line in (b) corresponds to the theoretical thickness profile.

2.2.3 High Order Guided Wave Mode Cutoff for Thickness

Gauging

Fundamentally the presence of corrosion is simply a change in the waveguide thick-

ness. The significance of the high order modes cutoff property explained in the first

section of this chapter is that if a thickness reduction is present along a propagation

path such that the frequency thickness product was shifted below the cutoff fre-

quency thickness product of a given mode no energy of that mode would propagate

through the reduced thickness region. The energy would be partially reflected and

converted into lower order modes. Therefore by identifying which modes propagate

through a thickness reduction or corrosion patch, it is in principle possible to obtain

an estimation of the minimum remaining thickness in the propagation path.
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This idea has been investigated in the past [39–42]. In all these studies the A1

mode was excited at a frequency thickness product slightly above its frequency

thickness product cutoff on one side a thickness reduction and depending whether

this mode was detected on the other side of the thickness or not they were able

to evaluate whether thickness was smaller or larger than a given value. This value

of the thickness corresponding to the thickness at the frequency thickness product

cutoff of A1. This technique is investigated in chapter 4.

2.3 Summary

Bulk waves can travel in two ways, as a shear wave and as a longitudinal wave and

the two wave types are uncoupled in an infinite medium. In a finite medium the

bulk waves interact with the boundaries of the medium to generate guided waves. A

brief overview of two possible solutions was presented: the SH guided wave family

and the Lamb guided wave family. Except for the SH0 mode, all the guided wave

modes are dispersive i.e. the phase velocity varies with the frequency thickness

product. This is an important properties of the guided waves that can be used in

thickness measurement. Except for the three fundamental modes (A0, S0 and SH0),

all the guided wave modes can only propagate above a specific frequency thickness

product cutoff. This property of the high order modes can also be used for thickness

measurement.

The literature review presented three different techniques for thickness evaluation.

Ray theory can be implemented in multiple ways that can be divided into two

families i.e. the convolution backprojection algorithm and the iterative algorithms.

The iterative algorithms have the advantage that they can be implemented with

various scanning geometries. It is, for example, easy to use a crosshole scanning

geometry on a pipe. The results obtained in a number of studies with various ray

tomography algorithms and scanning geometries demonstrated that, to some extent,

it is possible to get an approximation of the shape of the defect. Ray tomography is

investigated in the context of guided wave time-of-flight tomography in chapter 3.
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However Malyarenko and Hinders [30] recognised that diffraction was a major issue

to the successful implementation of low frequency guide wave ray tomography for

thickness mapping. They attempted to take the diffraction effect into account with

a bent ray iterative algorithm. The results they obtained were a slight improvement

from their ray tomography reconstructions. Rohde et al [38] used a more complex

algorithms that takes the scattering from inhomogeneities into account and obtain

very accurate results for the thickness reconstruction. Diffraction tomography is

investigated in the context of thickness reconstruction with guided waves in chapter

5.

The high order mode cutoff property has also been studied in the past to obtain

an approximation of the remaining thickness between a source and a sensor. The

significance of the high order modes cutoff property explained in the first section

of this chapter is that if a thickness reduction is present along a propagation path

such that the frequency thickness product was shifted below the cutoff frequency

thickness product of a given mode no energy of that mode would propagate through

the reduced thickness region. The idea is that if a high order mode is excited close

to its cutoff frequency thickness product and it is possible to identify whether this

mode is detected or not by a sensor, it is then possible to evaluate whether the

thickness is smaller or larger than the thickness required at the cutoff frequency

thickness product of that mode. This technique is examined in chapter 4.
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Chapter 3

Guided Wave Time-Of-Flight

Tomography

3.1 Introduction

Low frequency Lamb wave tomography has been used in a range of applications for

the detection of defects and is potentially attractive to evaluate the remnant wall

thickness in corroded structures. If the frequency is limited to below the cutoff of

the high order modes, only the three fundamental guided wave modes can propagate

and thus the signal processing and time-of-flight measurement is greatly simplified.

Guided waves have traditionally been used at non-dispersive frequencies in order

to simplify the signal processing. For thickness reconstruction using guided wave

time-of-flight tomography the velocity must vary with the thickness. Consequently

dispersion of the chosen guided wave mode is required.

Straight ray time-of-flight tomography algorithms assume that the ray theory is

valid and this may not be the case in the low frequency regime. For the ray theory

to be valid the size of the defect to image must be larger than the wavelength and

larger than the width of the first Fresnel zone. When either of these conditions is

not met the scattering from defects interferes with the direct ray.
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The aim of this chapter is to investigate the severity of the errors introduced by

breaking the assumption of the ray theory. The results presented in this chapter

were published in P1, P2 and P3 in the list of publications. In the first section two

likely points of operation, guided wave mode and frequency, in the low frequency

range are discussed. Three criteria were established to find the optimal points of

operation, velocity sensitivity to thickness change, the excitability and detectability

and the leakage attenuation.

The second section demonstrates, via finite element (FE) simulations, that the ray

theory criteria cannot be relaxed for thickness reconstruction with defects of the size

of interest in this study using guided wave time-of-flight tomography. Finally the

last section verifies the conclusions obtained in simulations experimentally.

3.2 Likely Points of Operation

The results of any of the straight ray tomography algorithms largely depends on

the accuracy of the projection data. Consequently three selection criteria were

established in order to find the most suitable point of operation for guided wave

time-of-flight tomography:

• Velocity sensitivity to thickness change

The velocity sensitivity to a thickness change is defined as the amount of

variation in the velocity of the chosen guided wave mode due to a given change

in the thickness. Both the phase and group velocities vary if the thickness

changes. The variations of the group velocity can be evaluated with the time-

of-flight of the wave packet. On the other hand the variations of the phase

velocity are more subtle to measure. Intanes et al. [43] have presented a method

that uses the point of constant group velocity to evaluate the variations of

phase velocity due to corrosion and erosion in pipes. In any case the sensitivity

is directly related to the amount of dispersion at the chosen point of operation.

• Excitability and detectability
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The excitability of a particular mode is defined in [44] as the ratio of displace-

ment of that mode to applied force when both quantities are measured at the

same location and direction in the cross section. A large excitability and de-

tectability increases the ratio of the desired mode to the other excited/detected

modes.

• Attenuation due to fluid loading

This project is interested in evaluating the severity of corrosion in pipes that

may contain fluid. In this specific application, it is important to take the

leakage attenuation into account because fluid loading can severely attenuate

the chosen mode. The attenuation due to fluid loading or leakage attenuation

is defined in this study as the attenuation due to a half space of water on one

side of a plate.

In this chapter the quest for the optimum point of operation is carried out for a

10mm steel plate. However it is possible to use a similar point of operation in

other materials at a slightly different frequency-thickness product, such that results

presented here would apply.

3.2.1 Velocity Sensitivity to Thickness Change

The sensitivity to a thickness change is probably the most important criterion. In

fact time-of-flight tomography relies only on the variations of velocity through the

defect to reconstruct the thickness. Hence the dispersion of the chosen mode must

be significant. With the aim of simplifying the practical implementation only the

fundamental Lamb wave modes are considered in this investigation. Figure 3.1

presents the group velocity dispersion curves in a steel plate. The thick parts of the

curves represent the area where the sensitivity to thickness change is suitable for

time-of-flight tomography. To make sure the high order modes do not contaminate

the signals, the frequency of the point of operation needs to be limited to about 2.0

MHz.mm. Above this frequency the velocities of A0, S0 and A1 are close and the

modes overlap for short propagation distances.
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Figure 3.1: Group velocity dispersion curves in a steel plate. The vertical dashed line at

2 MHz.mm corresponds to the highest frequency thickness product to avoid contamination

from the high order modes.

A0 is significantly dispersive in the range between 0.15 and 0.75 MHz.mm. Above

this range there is virtually no dispersion of the group velocity. A major drawback

of A0 in this frequency range is that the faster S0 always arrives before A0. If S0 and

A0 are excited with the same amplitude, the fact that A0 will arrive after S0 will

make the time-of-flight measurement much harder. Moreover the two modes might

overlap if the propagation distances are short.

In terms of dispersion, S0 at a frequency between 1.25 and 2.0 MHz.mm is a much

better candidate. Moreover in the frequency range of interest it is always faster than

any other mode. However, as the frequency increases the velocity difference between

S0, A0 and A1 decreases. Consequently, if the three modes are excited with the same

amplitude at a frequency close to 2.0 MHz.mm it would take a longer distance for

the 3 wave packets to separate than at a lower frequency. In practice, though, the

modes are not going to be excited with the same amplitude. The ratios between the

amplitudes of the excited modes are given by the excitability.

3.2.2 Excitability and Detectability

The mode excitability and detectability is a very important criterion to consider

for practical implementation. The excitability corresponds to the ratio between the
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Figure 3.2: (a) Normal and (b) In-plane excitability for the first four Lamb wave modes.

surface displacement in a given direction and the surface excitation force in the same

direction and at the same location. Figure 3.2 presents (a) the normal excitability

and (b) the in-plane excitability in a 10 mm steel plate.

At low frequency a normal force excites A0 with an amplitude 40 dB above S0. Hence,

in the frequency range of interest, this ratio of excitability provides a virtually pure

A0 mode. On the other hand in the frequency range of interest of S0, an in-plane or

normal force excites high amplitude A0 and A1. Consequently if the chosen mode

of operation is S0 the accuracy of the time-of-flight measurement would rely on

the group velocity difference between S0 and the other modes. Long propagation

distances would make sure the S0 wave packet is pure and not contaminated by

other modes.

The effect of excitability on the signal is simulated in a 400 mm long 10 mm thick

steel plate. Figure 3.3 presents (a) a schematic of the 2D plane strain FE model,

(b) the normal displacement at the end of the plate when the excitation is a 5

cycle Hanning windowed toneburst normal force centered at 50 kHz and (c) the in-

plane displacement at the end of the plate when the excitation is a 5 cycle Hanning

windowed toneburst in-plane force centered at 150 kHz. An absorbing boundary

was inserted at both ends of the plate to ensure there is no reflection.

The signal recorded with the normal force at 50 kHz is a virtually pure A0 mode, as
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Figure 3.3: (a) Schematic of the FE model of a 10 mm steel plate, (b) normal dis-

placement at the end of the plate for a normal force 5 cycle Hanning windowed toneburst

centered at 50 kHz and (c) in-plane displacement at the end of the plate for an in-plane

force 5 cycle Hanning windowed toneburst centered at 150 kHz.

was predicted from the excitability curve. The S0 component theoretically arrives

slightly before the A0 wave packet but the normal displacement component is 40

dB below A0. Moreover S0 is also hardly detected because the source and sensor

are exactly the same. If A0 and S0 were propagating with the same amplitude the

detected normal displacement of A0 would be 40 dB above S0.

The signal recorded with the in-plane force at 150 kHz is much more complex. All

three possible modes are detected by the in-plane sensor. S0 is, as expected, the first

wave packet to arrive closely followed by A0 and A1. With a shorter propagation

distance all three modes would have overlapped.

The two signals presented on figure 3.3 correspond to the case where the plate has

no defect. If a defect is introduced mode conversion will modify the signals because
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the converted modes will superpose with the incoming modes. Figure 3.4 presents

(a) a schematic of the 2D plane strain FE model of a 10 mm steel plate with a

defect, (b) the normal displacement at the end of the plate when the excitation is

a 5 cycle Hanning windowed toneburst normal force centered at 50 kHz and (c)

the in-plane displacement at the end of the plate when the excitation is a 5 cycle

Hanning windowed toneburst in-plane force centered at 150 kHz. The defect on the

plate is a 20% surface thinning with square edges. The amplitude of the converted

modes is related to the sharpness of the edges of the defect in comparison with the

wavelength of the incoming mode. Square edges are thus the worst possible case in

terms of mode conversion.

On figure 3.4 (b), the normal displacement on the top surface of the plate is virtually

unaffected by the mode conversion. At this frequency the incoming A0 can only

convert to S0 and fortunately the normal surface displacement is nearly insensitive

to S0. It also appears that double mode conversion is not polluting the incoming

A0. The mode converted signal from the incoming A0 to S0 back to A0 would have

arrived slightly before the incoming A0. Each time the modes are converting, the

amplitude of the converted mode represents a fraction of the incoming mode. Hence

the double mode conversion has a negligible amplitude.

The signal on figure 3.4 (c) is much more complex. S0 is the first mode to arrive

but it is overlapping with 4 different converted modes, S0 to A0, S0 to A1, A0 to

S0 and A1 to S0. At this frequency the detectability makes the amplitude of the

converted modes significant. The time separation between the incoming S0 and the

converted modes can be increased with longer propagation distances. In order to

separate the incoming S0 from the S0 to A0 and S0 to A1 the propagation distance

before the defect needs to be increased and to separate it from the A0 to S0 and A1

to S0 the propagation distance after the defect must be increased. It was found in

the Disperse software [19] that at 150 kHz a 5 cycle Hanning windowed toneburst

S0 would be free from overlapping modes after approximately 300 mm. Hence in

order to avoid any mode overlapping a distance of approximately 300 mm is required

before and after the inspection area.
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Figure 3.4: (a) Schematic of the FE model of a 10 mm steel plate with a defect, (b) normal

displacement at the end of the plate, normal force 5 cycle Hanning windowed toneburst

centered at 50 kHz and (c) in-plane displacement at the end of the plate, in-plane force 5

cycle Hanning windowed toneburst centered at 150 kHz.

3.2.3 Attenuation Due to Fluid Loading

Fluid loading could have a disastrous effect on the propagation of guided waves

over long distances and can severely compromise long range inspection if the point

of operation is not carefully selected. Figure 3.5 presents the attenuation of the

fundamental Lamb wave modes in a 10 mm steel plate due to a semi-infinite layer

of water coupled to the top surface of the plate.

The attenuation due to fluid loading is very high at low frequency for A0. At 50

kHz the attenuation of A0 is 37 dB/m. Hence from the perspective of long range
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A0

S0

Figure 3.5: Attenuation of the fundamental Lamb wave modes in a 10 mm steel plate

with a semi-infinite water layer coupled to the top surface of the plate.

inspection, A0 would be difficult to use. Even with the 40 dB difference in excitability

and detectability, after propagation of 1 m, A0 and S0 would have approximately

the same amplitude. On the other hand S0 has an attenuation below 11 dB/m in

its frequency range of interest.

The similarities between the normal excitability curve of figure 3.2 (a) and the

leakage attenuation curve of A0 on figure 3.5 are obvious. The leakage attenua-

tion is the result of the coupling between the normal surface displacement of the

plate and the bulk waves in the semi-infinite layer of water. Correspondingly the

normal excitability is the coupling between a normal force and the normal surface

displacement. Consequently the modes with a large component of normal surface

displacement have a high normal excitability but also a high leakage attenuation,

and on the other hand the modes with a small component of normal surface dis-

placement have low normal excitability and low leakage attenuation.

If fluid loading is taken into account S0 at a frequency around 1.75 MHz.mm, where

the velocity difference between S0 and the other modes is still high, is the best choice

provided the propagation distances before and after the defect are long enough

for the wave packets to separate. However when there is no fluid loading, the 40

dB difference in normal excitability and detectability shifts the choice to A0 at a

frequency around 0.5 MHz.mm.
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scattering object

Figure 3.6: Schematic of the scattering from an object.

3.3 Ray Theory

Menke and Abbott [45] and later Červeny̌ [46] have demonstrated that the ray theory

is valid when the characteristic size of an object d is larger than the wavelength λ

and the width LF of the first Fresnel zone (hereafter called the Fresnel zone)

d � λ and d � LF (3.1)

When either of these conditions is not met the scattering from inhomogeneities

modifies the received wave packet. Figure 3.6 presents a schematic of the scattering

from an object close to the direct ray.

If the scattering object is within the Fresnel zone of the direct ray, the direct and

scattered rays superpose at the receiver with different phase and thus the arrival

time and amplitude of the time trace is modified. The Fresnel zone consists of

all the geometrical points between a source and a sensor such that the difference

between the length of the path from the source to the receiver via the scatterer and

the length of the direct ray is less than half a wavelength. According to Červeny̌ [46],

at the mid point between the source and the receiver the width of the Fresnel zone

is approximately

LF (L/2) =
√

λL (3.2)

where L is the distance between the source and the receiver. This corresponds to

the Fresnel zone in the case of a one wavelength long signal. For a signal with
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a finite length the zone of interference affecting the accuracy of the time-of-flight

measurement is larger. In this case the length of the signal and the method used

for the measurement must be taken into account in the computation of the zone of

interference. Hence approximating the zone of interference with the Fresnel zone is

an underestimation in the case of a finite length signal.

For the problem of interest (see chapter 1), imaging a 60 mm diameter thickness

reduction with a propagation distance of approximately 1 m, the ray theory is not

valid at the points of operation quoted in the previous section. The rest of the

chapter studies the possibility of relaxing the ray theory criteria for guided wave

time-of-flight tomography.

3.4 Evaluation of the Time-of-Flight

In the present study the accuracy of the time-of-flight measurement is critical. Ernst

and Herman [47] proposed the generalised travel time method for the evaluation

of the phase velocity at the frequencies contained in the input signal in seismic

wave propagation. The main limitation of this method is that each mode must be

separated in time at the receiver. In guided wave propagation mode conversion at

the defects would normally prevent this condition from being satisfied. More recently

Hou et al [48] have compared various group time-of-flight measurement techniques

for guided waves and proposed a multi-mode travel time measurement technique

called the dynamic wavelet fingerprint.

The method proposed in this chapter is the cross-correlation of the Hilbert transform

of the signal recorded by a receiver and the Hilbert transform of a simulated prop-

agation of the input signal over the distance between the source and the receiver.

The simulated propagation takes the dispersion properties of the plate into account.

In order to extract the time-of-flight accurately the Hilbert transform of the mode

of interest must be free from overlapping modes at least up to its maximum value.

Consequently the length of the plate was chosen such that even if there is mode

conversion at a defect in the area of inspection, the length of the plate after the
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Figure 3.7: Schematic of the FE model.

defect is long enough to ensure that the mode of interest separates in time from

the other propagating modes. The method proposed in this chapter was compared

with the dynamic wavelet fingerprint proposed by Hou et al [48] and both methods

showed consistent results when the mode of interest is not overlapping with other

modes up to the maximum of amplitude of the Hilbert envelope of the signal. The

cross-correlation of the Hilbert transforms was used in this chapter because of its

simpler implementation in comparison with the dynamic wavelet fingerprint.

3.5 Finite Element Simulations

3.5.1 Finite Element Model

In order to study the severity of the errors in the evaluation of the thickness due to

the invalidity of the ray theory, a FE model was designed in ABAQUS. A schematic

of the ABAQUS model is presented in figure 3.7; it was designed to calculate only

one projection. The results presented in this chapter are also valid for large diameter

pipes as the curvature has an insignificant effect on the propagation of guided waves

in that case [8].
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Figure 3.8: Schematic of a stepped defect.

Absorbing boundaries [49, 50] were introduced on all sides of the plate to avoid

reflections from its edges. The steel (E = 216.9 GPa, ν = 0.29 and ρ = 7932 kg/m3)

plate was 1600 mm long, 500 mm wide and 10 mm thick. Linear cubic-shaped 3D

brick elements were used in the model and the length of all sides was 1 mm. The

time step of the simulations was chosen in accordance with the element size. A point

source was located on the right-hand side and on the axis of symmetry of the plate.

In order to obtain a full projection in one simulation, a linear array of receivers with

a 5 mm spacing was placed on the left-hand side of the plate.

Actual corrosion patches are not like flat-bottomed holes so stepped boundaries are

a better representation. Hence in order to model realistic corrosion patches the 10

elements through the thickness were used to model a stepped defect. Figure 3.8

presents a schematic of a 50% deep stepped defect; a 10% defect was modelled in

one step and a 50% defect was modelled in five steps.

3.5.2 Finite Element Simulations with A0 at 50 kHz

In this case the excitation on the plate was a force normal to the plate so as to take

advantage of the normal excitability of the mode, and the input signal was a five

cycle toneburst. The linear array of receivers recorded the displacement normal to

the plate. A stepped defect with an outer diameter of 60 mm was introduced in the

middle of the plate. Figure 3.9 presents a schematic of the plate and the location of

the defect. The parameters for this set of simulations are summarised in table 3.1.
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Figure 3.9: Schematic of the FE model when there is one defect at the mid length centered

on the plane of symmetry.

Table 3.1: Parameters for the FE simulations using A0.

Mode A0

Frequency (kHz) 50

Wavelength (mm) 40

Width of Fresnel zone (mm) 250

Nominal group velocity (m/s) 2947

Defect diameter (mm) 60

The defect diameter corresponded to 1.5 wavelengths and the width of the Fresnel

zone corresponded to more than 6 wavelengths. Consequently the characteristic

size of the defect d (60 mm) had a size comparable to the wavelength λ but was

much smaller than the width of the Fresnel zone. Therefore the conditions of the

ray theory are not met but it is interesting to evaluate the severity of the errors

introduced. Figure 3.10 presents (a) the group velocity as computed from the FE

data across the linear array of receivers for 10%, 20%, 30%, 40% and 50% defects

and (b) a comparison between the ray theory projection and the FE projection for a

50% defect. According to the ray theory only the rays that are passing through the

defect should be affected by the defect. These rays correspond to those contained

within the black vertical lines in figure 3.10.

As shown in figure 3.10 (b), the ray theory projection and the FE simulated pro-

jection are rather different. If the simulated projection was used in a tomographic
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Figure 3.10: (a) A0 Group velocity centered at 50 kHz evaluated at all the receivers for

the cases where there is no defect, a 10% defect, a 20% defect, a 30% defect, a 40% defect

and a 50% defect. (b) Comparison between the group velocity from the ray theory and the

FE group velocity for a 50% defect.

reconstruction the diameter of the surface thinning would appear to be about twice

the actual extent; moreover instead of having the maximum depth at the centre of

the defect it would be at the edge of the reconstructed defect. Also, beyond the edge

of the reconstructed defect, there would be an area where the thickness appears to

have increased. These results show that the invalidity of the ray theory created a

significant error in the projection.
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Figure 3.11: Displacement field of the plate when (a) there is no defect and (b) when

there is a 30% defect.

Within the Fresnel zone the sensitivity to the defect is not constant [51] but varies

with the distance from the geometrical ray. Consequently the arrival time and

amplitude of the signals at the receivers vary according to the location of the defect

within the Fresnel zone. This is due to the destructive and constructive interference

between the incident and scattered fields at the receiver. Figure 3.11 presents a

snapshot of the predicted displacement field in the plate after interaction with the

defect.

In the no defect case the amplitude of the displacement field was approximately

uniform across the width of the plate; however with the 30% defect the amplitude

varies greatly across the width of the plate. The interference between the incident

and scattered fields within the Fresnel zone is also what caused the apparent velocity
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(a) (b)

Figure 3.12: Time traces simulated (a) at A (through the defect geometrical ray) in figure

3.9 and (b) at B (defect free geometrical ray) in figure 3.9. The grey line is without defect

and the black dashed line is with a 30% defect.

variation across the receiver array of figure 3.10. Figure 3.12 (a) and (b) show

respectively the time traces simulated at the receiver locations A and B in figure

3.9. With the defect the signal recorded by the receiver at location A had a larger

amplitude and was slightly delayed whereas at location B the amplitude was lower

and the wave packet was slightly advanced.

In order for the ray theory to be valid the defect needs to be larger than the width of

the Fresnel zone. The only way it is possible to achieve that with a 60 mm defect is

to reduce the width of the Fresnel zone by reducing the distance between the source

and the receiver in equation 3.2. In order to respect the Fresnel zone criterion the

propagation distance would need to be reduced to 90 mm. Such a propagation

distance is too short to be of practical interest.

In theory [52], if there is only one defect in the Fresnel zone, it is possible to calculate

the sensitivity to velocity change as a function of the distance from the geometrical

ray. Hence if there is only one defect within the Fresnel zone it would be possible

to reconstruct the thickness accurately. However in practice we are interested in

mapping the thickness over a region that might contain multiple defects and not a
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Figure 3.13: (a) Schematic of the FE model when there are three defects at the mid

length of the plate. The spacing between the defects is c. (b) Group velocity evaluated at

all the receivers for the cases where there is no defect, three 50% defects with defect spacing

over defect diameter (c/d) ratios of 1.5, 2.0 and 3.0.

single discrete defect. Hence it is impossible to ensure that the Fresnel zone contains

only one defect. Figure 3.13 (a) presents a schematic of the FE model when there are

3 defects. Three ratios of defect spacing to defect diameter (c/d) were investigated:

1.5, 2.0 and 3.0 which correspond to a separation distance of 2.3, 3.1 and 4.6 λ at

the frequency of interest. In all the cases investigated the defects were 50% deep.

Figure 3.13 (b) presents the simulated group velocity as computed from the FE data

across the receiving array for the three values of c/d. The parameters for this set of

simulations are presented in table 3.1.
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From the three projections shown in figure 3.13 (b) it is clear that it is not possible

to identify reliably the number or extent of the defects. These projections cannot be

used for tomographic reconstruction because the resulting thickness map would be

erroneous. Despite having good dispersion properties A0 at 0.5 MHz.mm cannot be

used for straight-ray tomography because it does not fulfill the conditions of validity

of the ray theory. The next section will demonstrate that the same conclusion applies

to another likely point of operation, S0 at 1.75 MHz.mm.

3.5.3 Finite Element Simulations with S0 at 175 kHz

In this case the excitation on the plate was a force in the plane of the plate in

the direction of propagation of the wave and the input signal was a fifteen cycle

toneburst. In this case a longer toneburst was required in order to reduce the

frequency content of the signal and thus avoid the frequency regime where S0 has the

same group velocity as A0 and A1. A shorter toneburst would make the evaluation of

the time-of-flight very difficult because of the mode superposition. The displacement

was simulated at the position of the array of receivers shown in figure 3.9 in the plane

of the plate in the direction of propagation of the wave. A stepped defect with an

outer diameter of 60 mm was introduced in the middle of the plate centered on the

axis of symmetry (as shown in figure 3.9). The characteristic size of the defect d

(60 mm) was twice the wavelength λ but was again much smaller than the width

of the Fresnel zone. The parameters for this set of simulations are summarised in

table 3.2.

Figure 3.14 (a) shows the group velocity as computed from the FE data across the

linear array of receivers for 10%, 20%, 30%, 40% and 50% defects and figure 3.14

(b) shows a comparison between the ray theory projection and the FE projection

for a 50% defect. The black vertical lines in figure 3.14 (a) contains the rays that

are theoretically passing through the defect.

The velocity change is not as large as with A0 because of the dispersion characteristic

of S0 at 1.75 MHz.mm. If this projection was used in a tomographic reconstruction
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Table 3.2: Parameters for the FE simulations using S0.

Mode S0

Frequency (kHz) 175

Wavelength (mm) 30

Width of Fresnel zone (mm) 220

Nominal group velocity (m/s) 4376

Defect diameter (mm) 60

the diameter of the surface thinning would appear to be about twice as large as the

real extent. As for A0 the maximum depth of the defect would be at the edge of

the reconstructed defect. Beyond the edge of the reconstructed defect there would

be an area where the thickness is increased. Therefore again this projection would

result in an incorrect thickness map.

Hence the FE simulations indicate that neither A0 nor S0 in the low frequency regime

can be used for quantitative ray theory tomography. The next section verifies that

conclusion experimentally.

3.6 Experimental Validation

In order to reproduce the FE simulations experimentally a 1200 × 1200 × 10 mm

aluminium plate was used. Aluminium was chosen instead of steel for ease of han-

dling in the laboratory and because the two materials have very similar dispersion

curves so that the wave propagation characteristics are comparable. A schematic of

the experimental setup is presented in figure 3.15.

A 10 mm diameter A0 source [53] was located on the right-hand side of plate and

the input signal was a five cycle toneburst centred at 50 kHz. The wavelength λ of

A0 at 50 kHz in a 10 mm aluminium plate is approximately 40 mm and the source

diameter is approximately a quarter of the wavelength. The point source model used
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Figure 3.14: (a) S0 Group velocity centered at 175 kHz evaluated at all the receivers for

the cases where there is no defect, a 10% defect, a 20% defect, a 30% defect, a 40% defect

and a 50% defect. (b) Comparison between the group velocity from the ray theory and the

FE group velocity for a 50% defect.

in the FE simulations is therefore a reasonable representation. On the left-hand side

a laser Doppler vibrometer Polytec OFV-505 was used to acquire the time traces.

They were obtained at the same locations as the linear array of receivers in the FE

model in figure 3.9. The profile of the circular defect machined in the plate is shown
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Figure 3.15: (a) Schematic of the experimental setup and (b) profile of the defect ma-

chined in the middle of the plate.

in figure 3.15 (b). The outer diameter of the defect was 60 mm, which corresponds

to the diameter of the defect used in the FE simulations. Figure 3.16 presents a

comparison between the FE and experimental velocity projections. The FE curve

was obtained from a model of the experimental setup on an aluminium plate and

not from the FE results on steel presented in the previous section. The velocity
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Defect extent

Figure 3.16: Comparison between FE and experiment of the percentage of variation of

the group velocity measured at all the receiver location for a 50% defect.

projections are plotted as a percentage variation of the nominal group velocity to

remove the anisotropy in the propagation velocity of the experimental plate and to

make the comparison with FE easier.

Qualitatively the FE and experimental results are similar, both showing an average

group velocity reduction extent larger than the size of the defect and having peaks

on both sides of the defect. The results at the central rays agree very well but

outside this zone the FE prediction overestimate the variations of the average group

velocity. The reasons for this are not clear but the agreement is sufficient to validate

the conclusion that the method is not suitable for quantitative determination of the

depth of corrosion patches.

3.7 Summary

Two points of operation, frequency and guided wave mode, were identified using

three criteria: the velocity sensitivity to thickness change, the mode excitability

and detectability and the attenuation due to fluid loading. If fluid loading is taken

into account S0 at a frequency around 1.75 MHz-mm, where the velocity difference

between S0 and the other modes is still high, is the best choice provided the prop-
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agation distances before and after the defect are long enough for the wave packets

to separate. However when there is no fluid loading, the 40 dB difference in nor-

mal excitability and detectability shifts the choice to A0 at a frequency around 0.5

MHz-mm.

It has been shown, with FE simulations and experiments, that low frequency guided

waves cannot be used for time-of-flight straight-ray quantitative tomography to eval-

uate the maximum depth of defects of the diameter of interest in practice due to

the invalidity of the ray theory. When the ray theory is violated the incident and

scattered signals interfere which changes the received wave packet and thus makes

the time-of-flight calculations inaccurate.

If the propagation distance is reduced, the ray theory becomes valid in the low

frequency regime, but the required reduction is too large to be of practical use. The

characteristic size of the defect can also be increased to satisfy the ray theory but

again this is not of interest in practical applications.

As the low frequency regime cannot be used for quantitative tomographic recon-

struction the obvious solution is to increase the frequency up to where the ray

theory is valid. The disadvantage of increasing the frequency is that the scattering

of the wave from generally corroded surfaces becomes larger and it is thus harder

to achieve the propagation distance required for inspection at pipe supports. This

possibility is investigated in chapter 4. However the low frequency regime can be

used with the more complex diffraction tomography algorithms. This possibility is

examined in chapter 5
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Chapter 4

Guided Wave Mode Cutoff for

Thickness Gauging

4.1 Introduction

Chapter 3 demonstrated that the ray theory is not valid when using low frequency

guided waves to detect and size defects of the dimension of interest in this project:

60 mm diameter over a propagation distance of approximately 1 m. From this

conclusion the obvious option is to increase the frequency up to the point where the

ray theory becomes valid.

However the number of modes that can propagate increases with the frequency and

the signal processing becomes more complex. Above the cutoff of the high order

modes it is difficult to excite and detect a single mode or allow for time of any

mode as required in time-of-flight tomography. It is therefore difficult to produce a

map of the thickness using high frequency guided wave modes with a time-of-flight

tomography algorithm. But ultrasonic guided waves have other features that can

be exploited to obtain the thickness of a partially accessible structure.

The aim of this chapter is to examine the possibility of using the high order modes

cutoff property mentioned in chapter 2 to obtain the minimum thickness between a
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4. Guided Wave Mode Cutoff for Thickness Gauging

source and a sensor. The petrochemical industry is particularly interested in obtain-

ing the minimum remaining thickness over a large area without necessarily having

the precise location of the various thickness reductions. The principle investigated

in this chapter is to excite a large number of guided wave modes and have a sensor

on the other side of the area of inspection to detect the guided wave modes that

propagate through the inspection area. If the guided wave modes detected by the

sensor can be identified, it is possible to obtain an approximation of the minimum

thickness between the source and the sensor. This idea, using a single guided wave

mode, has been investigated in the past [39–42]. However the limitation of this

technique using a single mode is that it is only possible to evaluate whether the

thickness is smaller or larger than a given value depending whether the mode is

detected or not. Moreover for this technique to interrogate only the path between

two transducers the ray theory needs to be valid, which was not taken into account

in the previously published studies.

This chapter investigates the possibility of using multiple guided wave modes to ob-

tain an estimation of the thickness and proposes a novel approach using the validity

of the ray theory to select the frequency of excitation. The first section details the

theoretical principle to use the cutoff property of the high order guided wave modes

as well as the principle for the excitation and detection of the guided wave modes of

interest with an array of transducers. The second section discusses details of the FE

simulations for randomly varying thickness in the area of inspection. In the third

section the issues of the experimental implementation are examined.

4.2 Theory

Figure 4.1 presents (a) the Lamb wave and (b) the SH wave phase velocity dispersion

curves in an aluminium plate (E = 70.8 GPa, ν = 0.34 and ρ = 2700 kg/m3).

Only the three fundamental modes (A0, S0 and SH0) can propagate at all frequency

thickness products. As detailed in chapter 2 the high order modes exhibit a cutoff

frequency thickness product where the phase velocity approaches infinity. For the
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Figure 4.1: (a) Lamb wave phase velocity dispersion curves in an aluminium plate (E

= 70.8 GPa, ν = 0.34 and ρ = 2700 kg/m3). The black solid lines correspond to the An

modes, the light grey solid lines correspond to the Sn modes. (b) SH wave phase velocity

dispersion curves in an aluminium plate.

Lamb wave modes these cutoffs represent the frequency thickness product at which

a standing longitudinal or shear wave is present across the thickness of the wave

guide [13]. Traditionally ultrasonic guided waves have been mainly used below the

cutoff frequency thickness product of the high order modes, the signal processing

being simpler because only the three fundamental modes can propagate. Below the

cutoff frequency thickness product of any given high order mode, no energy of this

given mode can propagate in the structure.
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Figure 4.2: (a) Source and sensor configuration to use the mode cutoff property to detect

the minimum thickness hmin and (b) the phase velocity dispersion curve for the A1 mode

in an aluminium plate. The vertical dashed lines correspond to the frequency thickness

product at h and hmin when the input signal is at 0.3 MHz in a 10 mm aluminium plate.

Fundamentally the presence of corrosion is simply a change in the waveguide thick-

ness. The significance of the high order modes cutoff property is that if a thickness

reduction is present along the propagation path such that the frequency thickness

product was shifted below the cutoff frequency thickness product of a given mode

no energy of that mode would propagate through the reduced thickness region. The

energy would be partially reflected and converted into lower order modes. If there

is a source and a sensor on either side of a reduced thickness area as shown in figure

4.2 (a) then only the guided wave modes that can propagate at the corresponding

frequency thickness product at hmin will be detected by the sensor. Therefore the
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effect of the thickness reduction in this case is similar to the effect of a low pass

filter in signal processing. For example if h was 10 mm and hmin was 5 mm in an

aluminium plate and a pure A1 mode was excited by the source at 0.3 MHz, which

corresponds to a frequency thickness product of 3 MHz.mm, then the A1 mode

would not be detected by the sensor because its cutoff frequency thickness product

is 1.56 MHz.mm and the frequency thickness product at hmin is 1.5 MHz.mm. This

phenomenon is illustrated in figure 4.2 (b). The limitation of this technique using a

single mode is that it is only possible to determine whether the thickness is smaller

or larger than a given value depending whether the mode is detected or not. How-

ever the technique becomes much more interesting if multiple guided wave modes

with different cutoff frequency thickness products are excited as it becomes possible

to get a good estimate of the minimum thickness between a source and a sensor by

identifying the guided wave modes detected by the sensor. The SH modes are par-

ticularly interesting as they appear at regular intervals on the frequency thickness

product axis (see figure 4.1 (b)). The benefit of using SH modes is that it is possible

to estimate the minimum remaining thickness at a regular interval.

For this technique to interrogate only the path between the two transducers the

ray theory must be valid. In chapter 3 the validity criteria of the ray theory were

detailed and can be expressed as

d � λ and d � LF (4.1)

where d is the characteristic size of the defect, λ is the wavelength at the frequency

of interest and LF is the width of the Fresnel zone at the mid point between the

source and the sensor which can expressed as

LF (L/2) =
√

λL (4.2)

where L is the distance between the source and the sensor. The problem of interest

is to obtain the maximum depth of a defect with a diameter of 60 mm or more

and a separation distance between the source and the sensor of approximately 1 m.

The ray theory would become valid if the wavelength λ is 3.6 mm or smaller. The

frequency required to have a wavelength of this size depends on the thickness of the
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Figure 4.3: Amplitude of excitation as a function of the wavenumber for a 16 element

array with a spacing of 2 mm between each element.

plate under inspection. The initial study will be carried out on a 10 mm aluminium

plate on which the wavelength is 3.6 mm around 1 MHz for the fundamental SH

mode.

The strategy for the excitation and detection of multiple modes is to use an array

of transducers. The main advantage of using an array for the excitation is, to some

extent, to control the modes that are excited. If all the elements of an array are fired

at the same time then the modes with a wavelength corresponding to the spacing

between each element are excited with a larger amplitude. Figure 4.3 illustrates

this principle with a 16 element array with a spacing of 2 mm between each element

where the amplitude of excitation is presented as a function of the wavenumber. This

spectrum was obtained by taking the spatial Fourier transform of the array pattern

(element size and spacing) as explained in [54]. The reason for the maximum at

zero wavenumber is that all elements of the array are firing in the same direction

at the same time which produces a DC component. This DC component is not

relevant in this case. More importantly, there is a local maximum at 0.5 mm−1

which corresponds to a wavelength of 2 mm or the spacing between each element of

the array. If such an array was used to excite multiple modes, then the modes with a

wavelength of 2 mm would be dominant. This is in accordance with the wavelength

required for the validity of the ray theory in the case of interest. For the SH modes

the wavelength is 2 mm around 2 MHz in a 10 mm aluminium plate. Figure 4.4
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Figure 4.4: SH modes phase velocity dispersion curves for a 10 mm aluminium plate.

The grey box corresponds to the area that is dominantly excited by a 16 element array when

the input signal is a 10 cycle Hanning windowed toneburst centred at 2 MHz. The vertical

dashed lines correspond to the frequencies that are 20 dB down from the amplitude at 2

MHz and the diagonal dashed lines correspond to the wavenumber that are 20 dB down

from the amplitude at 0.5 mm−1.

presents the SH mode dispersion curves in a 10 mm aluminium plate. The grey

box corresponds to the area that is dominantly excited by a 16 element array when

the input signal is a 10 cycle Hanning windowed toneburst centred at 2 MHz. The

vertical dashed lines correspond to the frequencies that are 20 dB down from the

ampltitude at 2 MHz and the diagonal dashed lines correspond to the wavenumbers

that are 20 dB down from the amplitude at 0.5 mm−1.

The modes SH0 to SH12 are contained within the grey box. These modes all have

a different cutoff frequency thickness product such that by identifying which modes

propagate through a thickness reduction it is possible to obtain the minimum re-

maining thickness in the defect. The amplitude of each mode contained within the

grey box also depends on the mode excitability. The excitability is defined in [44]

as the ratio of displacement of a mode to applied force when both quantities are

measured at the same location and direction in the cross section. Figure 4.5 shows

the excitability of the SH mode up to 3 MHz in a 10 mm aluminium plate. The SH

mode excitability was obtained from the ratio of surface displacement in the direc-
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SH1, SH2 ... -20 dB -20 dB

0.5 mm-1

Figure 4.5: SH modes excitability in a 10 mm aluminium plate. The vertical dashed

lines correspond to the frequencies product that are 20 dB below the maximum when the

input signal is a 10 cycle Hanning windowed toneburst centred at 2 MHz and the diagonal

dashed line corresponds to 0.5 mm−1, the centre wavenumber excited by the 16 element

array.

tion normal to the x− z plane in figure 4.2 (a) to surface force in the same direction

when measured at the same point on the surface. The excitability is plotted on an

arbitrary linear scale varying between 0 and 1. The vertical dashed lines correspond

to the frequencies that are 20 dB down from the amplitude at 2 MHz and the diag-

onal dashed line corresponds to the wavenumber 0.5 mm−1. The excitability of the

modes crossing the 0.5 mm−1 diagonal line in the frequency bandwidth of interest

varies between 0.3 and 0.35 or slightly more than 1 dB. Therefore in the rest of

the chapter the excitability of the SH modes excited by a 16 element array in the

frequency bandwidth of interest will be assumed constant.

Figure 4.6 presents a 2D frequency wavenumber map of the energy excited by the 16

element source array when the input signal is a 10 cycle Hanning windowed toneburst

centred at 2 MHz. This map was obtained by multiplying the wavenumber spectrum

of the 16 element array presented in figure 4.3 and the frequency spectrum of a 10

cycle Hanning windowed toneburst centred at 2 MHz.

By using this type of array most of the energy is concentrated on a vertical line

around 0.5 mm−1. The strategy for the detection of the modes is to use the same
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Figure 4.6: 2D frequency wavenumber map of the energy excited by a 16 element source

array when the input signal is a 10 cycle Hanning windowed toneburst.

array design as for the excitation. Using the same array design for excitation and

detection provides flexibility when scanning a large area as the source and sensor

arrays become interchangeable.

For the identification of the modes a 2D Fourier transform [55] is performed on the

time traces detected by the individual elements of the sensor array. The 2D Fourier

transform provides an excellent tool to identify the modes detected by the sensor

array. In this case the issue with using the same array design for excitation and

detection is that when performing the 2D Fourier transform the Nyquist wavenumber

of the sensor array is below the wavenumber bandwidth of interest. In the example

used above, a 16 element array with a spacing of 2 mm between each element, the

Nyquist wavenumber is 0.25 mm−1 whereas the wavenumber bandwidth of interest

is between 0.25 and 0.75 mm−1. Figure 4.7 shows the relationship between the true

wavenumbers and the apparent wavenumbers in the Nyquist interval (-0.25 to 0.25

mm−1).

Physically the negative wavenumber simply means that the waves are traveling in

the opposite direction in comparison with the positive wavenumber. The aliasing

means that if there are components at 0.4 mm−1 and -0.6 mm−1, then both these

wavenumbers would appear at 0.1 mm−1 in the Nyquist interval. If a plate had

infinite dimensions with no defects and a source/sensor configuration as in figure

4.2 then the waves will arrive at the sensor from only one direction such that the
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Nyquist
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Figure 4.7: Location where the true wavenumbers map in the apparent of Nyquist

wavenumber interval. True wavenumbers 0.4 mm−1 and -0.6 mm−1 would both appear

at 0.1 mm−1. The grey area corresponds to the wavenumber interval of interest.

wavenumber detected will be either positive or negative depending on the convention

used. Moreover if the 16 element array described above is used for excitation then

most of the energy is contained in the wavenumber bandwidth between 0.25 and 0.75

mm−1 (see figure 4.3 and 4.6). As there is virtually no energy propagating outside

of this wavenumber bandwidth, it is possible to use aliasing to detect wavenumbers

outside of the Nyquist interval. In this study the interval of interest is between

0.25 and 0.75 mm−1 which respectively map at 0.25 and -0.25 mm−1 in the Nyquist

interval. This implies that 0.5 mm−1 maps at 0 mm−1 and as explained earlier, 0.4

mm−1 maps at 0.1 mm−1.

When there is no thickness reduction between a source array and a sensor array the

2D Fourier transform of the time traces detected by the individual elements of the

sensor array should look very similar to figure 4.6 except that there will be gaps

on the line at 0.5 mm−1 because only a finite number of modes is excited. If there

are thickness reductions between the source and sensor arrays, then depending on

the minimum thickness, the maximum frequency where there is energy at 0.5 mm−1
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Figure 4.8: Schematic of the FE model used to simulate the propagation of SH waves.

will decrease. This phenomenon will be examined in the next section using an FE

model.

4.3 Finite Element Simulations

4.3.1 Finite Element Model

In order to accurately model wave propagation with FE, at least 10 to 15 elements

per wavelength are required [49]. When modelling high frequency wave propagation

the size of the models rapidly increases. This section is interested in modelling SH

wave propagation around 2 MHz in a 10 mm aluminium plate over a distance of

approximately 1 m. Fortunately in this range of frequency the ray theory is valid to

detect a defect of 60 mm diameter. This implies that a 2D plane strain model should

be sufficient. It is unfortunately impossible to directly model SH waves in Abaqus

because the 2D plane strain elements have no out of plane degree of freedom and a

full 3D model was deemed too computer-intensive. Figure 4.8 presents a schematic

of the method used for the modelling of SH waves in Abaqus.
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Figure 4.9: Schematic of the FE model used in the next subsection.

The method uses a single layer of 3D elements and for all nodes of the model the

degrees of freedom in x and z are blocked such that only SH waves can propagate.

Moreover each node of the x− z plane is rigidly linked to its corresponding node in

the other x− z plane such that the displacement in the y direction is the same for

all pairs of nodes as if there was only one 2D plane strain element. By using this

strategy the model is approximately twice the size of a true 2D plane strain model,

but much smaller than a full 3D model.

In all the simulations in the next subsection the plate was 1200 mm long and 10 mm

thick. A schematic of the FE model is presented in figure 4.9. The material was

aluminium (E = 70.8 GPa, ν = 0.34 and ρ = 2700 kg/m3). Linear cubic-shaped

3D brick elements were used in the model and the length of all sides was 0.1 mm.

There were therefore 100 elements in the thickness of the plate. The time step of

the simulations was chosen in accordance with the element size. Absorbing bound-

aries [49, 50] were used to avoid reflections from both ends of the plate. Thickness

reductions of various depths and lengths were introduced in the area of inspection

between the source and sensor arrays.

The source and sensor arrays were modelled with 16, 1 mm wide transducer elements

with a spacing between each transducer element of 1 mm, corresponding to 2 mm

centre to centre. As the finite element size is 0.1 mm, each transducer element

contains 10 finite elements. The reason for modelling the source and sensor arrays

like this is to facilitate the experimental comparison and implementation. For each
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Figure 4.10: (a) 2D Fourier transform of the FE simulated signals when the plate has

no defect and (b) the amplitude of the 2D Fourier transform at 0.5 mm−1 as a function of

frequency. The white lines in (a) corresponds to the dispersion curves of the modes SH3

to SH12.

node of the source array in the FE model, an out of plane force (direction y in figure

4.8) was applied with a 10 cycle Hanning windowed toneburst centred at 2 MHz as

the input signal. The sensor array monitored the displacement in the out of plane

direction (direction y in figure 4.8). In the sensor array the displacement detected

by a 1 mm transducer element corresponded to the sum of the displacement at the

11 nodes of the transducer element.

The next subsection uses this FE model to evaluate the feasibility of using the cutoff

property of the high order SH modes to evaluate the minimum remaining thickness

between a source and a sensor over a distance of 1200 mm.

4.3.2 Finite Element Results

Figure 4.10 presents the 2D Fourier transform of the FE simulated signals received

by a 16 element array when the plate under investigation has no thickness reduction.

As the excitability of the SH modes excited by a 16 element array in the frequency

bandwidth of interest is almost constant, the frequency weights of the Hanning

92



4. Guided Wave Mode Cutoff for Thickness Gauging

window were compensated for in post-processing such that the amplitude of the

excitation is approximately the same at all frequencies. The white lines in figure

4.10 (a) correspond to the dispersion curves for the modes SH3 to SH12.

As expected, when the plate has no defects all the modes excited are detected with

the same amplitude and are confined around the wavenumber 0.5 mm−1. In figure

4.10 (b) four clusters of modes can be identified in the frequency bandwidth of

interest at the wavenumber 0.5 mm−1. The maximum amplitude of all the clusters

is the same except for the last one where the amplitude is approximately 2 dB down

from the amplitude of the first cluster.

Figure 4.11 presents (a) a schematic of the FE model with a 600 mm long area where

the thickness is varying randomly. To generate the randomly varying thickness area,

a spline was passed through 20 points evenly distributed along the 600 mm area

where the thickness was a random number in a given interval. In this case the

thickness at the 20 points varied between 8 and 10 mm. The minimum remaining

thickness was 8 mm, corresponding to a 20% thickness reduction. Figure 4.11 (b) is

the corresponding 2D Fourier transform of the FE simulated signals received by a

16 element array and (c) corresponds to the amplitude of the 2D Fourier transform

at 0.5 mm−1.

The 2D Fourier transform presented in figures 4.10 (a) and 4.11 (b) are relatively

similar up to approximately 2 MHz. In figure 4.11 (c) the first cluster is almost

unaffected by the presence of a 20% thickness reduction. The maximum of the first

cluster is still 0 dB, which corresponds to the maximum value of the 2D Fourier trans-

form. The effect of the 20% thickness reduction is visible on the second, third and

fourth clusters. The maximum amplitude of these clusters respectively decreased

by approximately 2 dB, 7dB and 9 dB relative to the amplitude of the first cluster.

Moreover above 2 MHz in figure 4.11 (b) the maximum amplitude is slightly shifted

to higher wavenumber, which suggests that the modes excited in this frequency

range have converted to lower modes. This is precisely the predicted phenomenon

as the higher order modes are either reflected or converted to lower order modes

when they cannot propagate at the minimum remaining thickness. From the cutoff
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Figure 4.11: (a) Schematic of the plate with a 600 mm long area where the thickness

is varying randomly with a maximum depth of 2 mm, (b) the corresponding 2D Fourier

transform of the FE simulated signals and (c) the amplitude of the 2D Fourier transform at

0.5 mm−1 as a function of frequency. The white lines in (b) corresponds to the dispersion

curves of the modes SH3 to SH12.

frequency thickness product of each mode in the dispersion curves (figure 4.4) the

amplitude of the modes above SH8 should be attenuated or converted to lower order

modes when the minimum remaining thickness is 8 mm. The SH8 mode is excited

with a wavenumber of 0.5 mm−1 at 2 MHz. In the FE results an amplitude change

of 7 to 9 dB was observed above 2 MHz for the third and fourth clusters relative to

the amplitude of the first cluster.

Figure 4.12 presents (a) a schematic of the FE model with a 600 mm long area where

the thickness is varying randomly and the minimum remaining thickness is 7 mm

corresponding to a 30% thickness reduction. Figure 4.12 (b) is the corresponding

2D Fourier transform of the FE simulated signals received by a 16 element array

and (c) corresponds to the amplitude of the 2D Fourier transform at 0.5 mm−1.
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Figure 4.12: (a) Schematic of the plate with a 600 mm long area where the thickness

is varying randomly with a maximum depth of 3 mm, (b) the corresponding 2D Fourier

transform of the FE simulated signals and (c) the amplitude of the 2D Fourier transform at

0.5 mm−1 as a function of frequency. The white lines in (b) corresponds to the dispersion

curves of the modes SH3 to SH12.

From figure 4.11 (b) to figure 4.12 (b) the minimum remaining thickness was reduced

by 10%, from 8 mm to 7 mm and the 2D Fourier transforms have similarities. As

for the 20% thickness reduction, the maximum amplitude of the first cluster is un-

affected by the presence of a 30% thickness reduction. The maximum amplitude of

the second, third and fourth clusters is respectively -3 dB, -8 dB and approximately

-15 dB relative to the amplitude of the first cluster. In comparison with the 20%

thickness the amplitude of the fourth cluster was the most affected. Once again

above 2 MHz it can be observed that a significant part of the energy was converted

to lower order modes which created a shift to higher wavenumbers. From the cutoff

frequency thickness product of each mode in the dispersion curves (figure 4.4) the

amplitude of the modes above SH8 should once again be attenuated or converted to
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Figure 4.13: (a) Schematic of the plate with a 600 mm long area where the thickness

is varying randomly with a maximum depth of 4 mm, (b) the corresponding 2D Fourier

transform of the FE simulated signals and (c) the amplitude of the 2D Fourier transform at

0.5 mm−1 as a function of frequency. The white lines in (b) corresponds to the dispersion

curves of the modes SH3 to SH12.

lower order modes when the minimum remaining thickness is 7 mm, which corre-

sponds to what can be observed. The difference in the frequency thickness product

between a minimum remnant thickness of 7 and 8 mm is small such that the number

of modes affected by the thickness reduction remains the same.

Figure 4.13 presents (a) a schematic of the FE model with a 600 mm long area where

the thickness is varying randomly and the minimum remaining thickness is 6 mm

corresponding to a 40% thickness reduction. Figure 4.13 (b) is the corresponding

2D Fourier transform of the FE simulated signals received by a 16 element array

and (c) corresponds to the amplitude of the 2D Fourier transform at 0.5 mm−1.

From figure 4.12 (b) to figure 4.13 (b) the minimum remaining thickness was reduced

96



4. Guided Wave Mode Cutoff for Thickness Gauging

by another 10%, from 7 mm to 6 mm and some changes appeared in the 2D Fourier

transforms of the data. In this case the maximum amplitude of the first cluster

at 0.5 mm−1 dropped by approximately -4 dB relative to the maximum amplitude

of the 2D Fourier transform. Therefore the maximum amplitude is no longer on

the wavenumber line at 0.5 mm−1 but at a slightly higher wavenumber at 0.52

mm−1. All the modes in the frequency range of interest have shifted to higher

wavenumbers, which correspond to lower order modes. The maximum amplitude of

the second, third and fourth cluster is respectively -6 dB, -13 dB and -12 dB relative

to the maximum value of the 2D Fourier transform map. For the fourth cluster the

maximum is -12 dB but apart from that peak value, the amplitude was below below

-20 dB. From the cutoff frequency thickness product of each mode in the dispersion

curves (figure 4.4) the amplitude of the modes above SH6 should be attenuated or

converted to lower order and this is precisely what can be observed in figure 4.13.

Figure 4.14 presents (a) a schematic of the FE model with a 600 mm long area where

the thickness is varying randomly and the minimum remaining thickness is 5 mm

corresponding to a 50% thickness reduction. Figure 4.14 (b) is the corresponding

2D Fourier transform of the FE simulated signals received by a 16 element array

and (c) corresponds to the amplitude of the 2D Fourier transform at 0.5 mm−1.

From figure 4.13 (b) to figure 4.14 (b) the minimum remaining thickness was reduced

by 10%, from 6 mm to 5 mm. In figure 4.14 (b) all the modes have further shifted

to higher wavenumber in comparison with figure 4.13 (b). This is expected as the

minimum thickness decreased. The maximum amplitude of the first and second

clusters is respectively -4 dB and -12 dB down from the maximum amplitude of

the 2D Fourier transform at 0.55 mm−1. The maximum amplitude of the third

and fourth cluster is now below -20 dB relative to the maximum amplitude of the

2D Fourier transform. From the cutoff frequency thickness product of each mode

in the dispersion curves (figure 4.4) the amplitude of the modes above SH4 should

be attenuated or converted to lower order. It is relatively difficult to observe this

in figure 4.14 as the SH3, SH4 and SH5 are excited below 1.75 MHz at 0.5 mm−1.

However all the modes excited above 1.75 MHz have converted to lower order modes.
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Figure 4.14: (a) Schematic of the plate with a 600 mm long area where the thickness

is varying randomly with a maximum depth of 5 mm, (b) the corresponding 2D Fourier

transform of the FE simulated signals and (c) the amplitude of the 2D Fourier transform at

0.5 mm−1 as a function of frequency. The white lines in (b) corresponds to the dispersion

curves of the modes SH3 to SH12.

In the results presented above the amplitude of the clusters relative to the maximum

amplitude of the 2D Fourier transform appears to be related to the remnant thickness

between the two transducers. Figure 4.15 shows the integrated amplitude of each

cluster relative to the no defect case as a function of the cluster index at 0.5 mm−1 for

the four cases studied above. The amplitude variation of the clusters is a function of

the depth of the thickness reduction, the smallest amplitude change being observed

with the 20% deep case and the largest amplitude change for the 50% deep case.

The amplitude of the clusters relative to the no defect case is therefore related to

the remnant thickness between the two transducers.

It is interesting to note that the amplitude of the 20% and 30% deep cases are very

similar up to the second cluster but lower than the amplitude of the no defect case.
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Figure 4.15: Comparison of the integrated amplitude of each cluster relative to the am-

plitude of the no defect case for the 20%, 30%, 40% and 50% deep cases.

Even if the modes contained in the first two clusters in these cases can propagate

in the thinnest region of the plate, reflection will happen at the defects and the

amplitude of the modes contained in these clusters will necessarily be lower than

the no defect case.

The FE simulations demonstrated that the cutoff property of the high order modes

can be used to obtain an indication of the minimum remaining thickness between

a source and a sensor. When the frequency thickness product is shifted below the

cutoff of a given mode because of a thickness change, then this mode is partially

reflected and converted to lower order modes. By identifying the first mode that

was converted to a lower order mode, it is possible get an approximation of the

minimum remaining thickness. In the simulations above, the input signal was a

10 cycle Hanning windowed toneburst centred at 2 MHz. This input signal is well

suited to detect thickness reduction between 20% and 40%. To detect deeper defect

the centre frequency should be reduced. The next section investigates if the same

conclusions apply experimentally.
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Figure 4.16: Photo of the experimental setup with two arrays attached to a 1200 mm ×
1200 mm × 10 mm aluminium plate. The plate contains two thickness reductions: a 60

mm diameter 50% deep and a 100 mm diameter 30% deep.

4.4 Experiments

4.4.1 Experimental Setup

The experimental setup presented in figure 4.16 comprised a 1200 × 1200 × 10 mm

aluminium plate with two thickness reductions: a 60 mm diameter 50 % deep defect

and a 100 mm diameter 30% deep defect.

Two 16 element arrays (figure 4.17) are clamped to the plate. Each array is composed

of 16 waveguide transducers designed to excite SH waves around 2 MHz. These

arrays were developed for high temperature crack monitoring and more details can

be found in [56] and [57]. Although this project is not interested in high temperature

crack monitoring, these arrays are perfectly suited to the application investigated

in this chapter. Each waveguide transducer is 1 mm thick and the spacing between

each transducer in the array is 1 mm, corresponding to 2 mm centre to centre. The
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Array clamped to 
the plate

Figure 4.17: Zoom on one of the 16 element arrays.

size and spacing of the waveguide transducer corresponds exactly to the parameters

used in the FE simulations. The contact between the transducers and the plate

is maintained by two springs and two clamps and the coupling is assumed to be

constant across all transducers. All the experimental data was obtained using a 10

cycle Hanning windowed toneburst centred at 2 MHz. Once again the weights given

to each frequency by the Hanning window are compensated for in post-processing

such that the amplitude of excitation becomes approximately constant across the

frequency bandwidth of interest.

In the FE simulations absorbing boundaries were used to remove reflections from the

edges of the plate. The reflections from the edges would produce negative wavenum-

bers and would contaminate the wavenumber outside of the Nyquist interval (see

figure 4.7). In the processing of the data, aliasing is used to obtain wavenumber

above the Nyquist wavenumber. In experiments the idea is to carry out the mea-

surement on a diagonal across the plate such that the reflections from the edges

would be reflected away from the sensor array. This strategy is illustrated in figure

4.18 (a).
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Figure 4.18: (a) Strategy to avoid that the reflection from the edges of the plate is detected

by the sensor array and (b) location of the three different measurements presented in this

section: (1) no defect case, (2) 60 mm diamter 50% deep and (3) 100 mm diameter 30%

deep.

Three different experimental measurements were carried out. These three measure-

ments are illustrated in figure 4.18 (b). The first measurement is on a path where

there were no thickness reductions, in the second measurement there is a 60 mm

diameter 50% deep thickness reduction approximately mid way between the source

and sensor arrays and finally in the third measurement there is a 100 mm diameter

30 % deep thickness reduction also approximately mid way between the source and

sensor arrays. In the next subsection these three experimental cases are studied in

detail.

4.4.2 Experimental Results

Figure 4.19 presents the 2D Fourier transform of the experimental signals received by

a 16 element array when the ray interrogating the plate has no thickness reduction

((1) in figure 4.18). The 2D Fourier transform obtained from the experimental data

is relatively similar to the corresponding 2D Fourier transform presented in figure
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Figure 4.19: (a) 2D Fourier transform of the experimental signals when the plate has no

defect and (b) the amplitude of the 2D Fourier transform at 0.5 mm−1 as a function of

frequency. The white lines corresponds to the dispersion curves of the modes SH3 to SH12.

4.10. Most of the energy is concentrated around 0.5 mm−1 but the amplitude is not

constant across the frequency bandwidth of interest, the amplitude of the higher

frequency components is lower than the lower frequency components. The variation

in the amplitude of excitation of each transducer is slightly different which makes the

2D Fourier transform noisier. The cluster pattern observed in FE is still visible but

in contrast with FE the maximum amplitude of the clusters is decreasing relative

to the amplitude of the first cluster when the frequency increases.

Figure 4.20 presents (a) a schematic of the plate thickness when a ray travels through

the 30% deep thickness reduction with a diameter of 100 mm ((3) in figure 4.18).

The minimum remaining thickness was 7 mm. In figure 4.20 (b) is the corresponding

2D Fourier transform of the experimental signals received by a 16 element array.

The 2D Fourier transform presented in figures 4.20 (b) and 4.12 (b) are rather

different. As for the no defect case the experimental 2D Fourier transform was

noisier than the FE equivalent. All the modes above 1.75 MHz appeared to have

converted to lower order modes. In figure 4.20 (c) the cluster pattern was much

more difficult to observe. The amplitudes of the second, third and fourth clusters

seemed to have dropped below the background noise level. Therefore it would be
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Figure 4.20: (a) Schematic of the plate with a 100 mm long and 30 % deep defect, (b)

the corresponding 2D Fourier transform of the FE simulated signals and (c) the amplitude

of the 2D Fourier transform at 0.5 mm−1 as a function of frequency. The white lines in

(b) corresponds to the dispersion curves of the modes SH3 to SH12.

difficult to obtain an accurate estimation of the thickness from this measurement as

it is very different from the FE equivalent.

In order to verify the consistency of the experimental results, figure 4.21 presents (a)

a schematic of the ray interrogating the plate when it travels through a 50% deep

thickness reduction with a diameter of 60 mm ((2) in figure 4.18). In this case the

minimum remaining thickness was 5 mm. The corresponding 2D Fourier transform

of the experimental signals received by a 16 element array if shown in figure 4.21 (b).

The 2D Fourier transform presented in figures 4.21 (b) and 4.14 (b) are again rather

different. By comparing figures 4.20 (c) and 4.21 (c) the amplitude change across

the frequency bandwidth of interest is not consistent with an increase of the defect

depth of 20% as the amplitude of the first cluster should be much lower relative to

the maximum amplitude of the 2D Fourier transform. The amplitude of the high
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Figure 4.21: (a) Schematic of the plate with a 60 mm long and 50 % deep defect, (b) the

corresponding 2D Fourier transform of the FE simulated signals and (c) the amplitude of

the 2D Fourier transform at 0.5 mm−1 as a function of frequency. The white lines in (b)

corresponds to the dispersion curves of the modes SH3 to SH12.

frequencies relative to the low frequencies should be much lower as in figures 4.12

(c) and 4.14 (c).

Although the ray theory is valid in this case the experimental results obtained on

a plate were very different from the FE predictions. The validity of the ray the-

ory ensures that the signal is detected by a sensor without superposition from the

interaction of the waves with features outside of the ray path. In the results pre-

sented above the signals recorded are relatively long so as to ensure that the slowest

modes have the time to propagate to the sensor. When the time domain signal

length is long it is possible that the fastest modes interact with features outside of

the ray path e.g. other defects or plate boundaries and superpose with the slowest

modes. Therefore increasing the length of the signal increases the size of the zone

of interference of the ray for the slowest modes.
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Figure 4.22: Experimental comparison of the integrated amplitude of each cluster relative

to the amplitude of the no defect case for the 30% and 50% deep cases.

In contrast with FE, in the experimental results presented above the amplitude of

the clusters relative to the maximum amplitude of the 2D Fourier transform does

not appears to be related to the remnant thickness between the two transducers.

Figure 4.22 shows the integrated amplitude of each cluster relative to the no defect

case as a function of the cluster index at 0.5 mm−1 for the two experimental cases

studied above. In contrast with the FE results where the amplitude of the clusters

relative to the no defect case was related to the minimum remaining thickness the

experimental results does not exhibit this feature. In fact precisely the opposite can

be observed in figure 4.22, the amplitude of all the clusters relative to the no defect

case for the 50% deep case is higher than the 30% case. This is potentially due to

the fact that the surface finish at the defect is much rougher in the 30% case. In the

30% defect the roughness average i.e. the arithmetic average of the absolute vertical

distance from the mean value, is of the order 50 μm whereas in the 50% defect the

roughness average is of the order of 3 μm, which is the typical value for milling.

The difference in roughness was due to the different processes used to machine the

defects. At this stage a full understanding of the 3D interaction with thickness
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reduction of the SH wave at 2 MHz would be useful. However before going any

further, a feasibility study of the propagation of high frequency SH waves through

corrosion is essential.

4.4.3 Practical Feasibility

The idea is to evaluate if it is feasible for SH waves to propagate through corrosion

when the input signal is centred at 2 MHz. A 10 mm thick steel plate lent by Shell

Global Solutions with an accelerated corrosion patch was used for this measurement.

The maximum depth of the corrosion was approximately 50% of the original plate

thickness. Panametrics-NDT V154 shear transducers were located on either sides

of the corrosion patch and the distance between the transducers was 250 mm. The

corrosion patch was 130 mm long (a schematic of the setup is presented in figure

4.23 (a)). Figure 4.23 (b) shows a comparison of the Fourier transform of the signals

measured in a plate free from corrosion (black line) and a plate with a severe accel-

erated corrosion patch between the transducers (grey line). At 2 MHz the amplitude

of the Fourier transform of the signal propagating through the corrosion patch is 35

dB below the signal recorded in a defect free plate. This level of attenuation over a

corrosion patch of 130 mm corresponds to approximately 270 dB/m, so propagation

over 1 m would not be feasible.

The interaction of the incoming guided wave modes with corrosion creates mode

conversion and scattering leading to an overall attenuation of the transmitted signal.

The attenuation of the transmitted signal is a function of multiple parameters i.e.

length and severity of the corrosion patch as well as the properties of the guided wave

modes. Amongst other parameters, the attenuation of guided waves in the corrosion

patch largely depends on the wavelength of the incoming modes. In general it is

desirable to use long wavelength or low frequency to reduce the effect of attenuation

due to corrosion or surface roughness [58]. For this application the wavelength

cannot be increased as the ray theory would become invalid and the validity of the

ray is required for the successful implementation of this technique. Consequently

the attenuation of the SH modes around 2 MHz due to severe corrosion is too high
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Figure 4.23: (a) Schematic of the measurement through a corroded area (b) Comparison

of the Fourier transform of the signals measured in a plate free from corrosion (black line)

and a plate with an actual corrosion patch between the transducers (grey line).

to be of practical interest. The amplitude of the signal at a sensor array on the other

side of a corrosion patch would be severely attenuated if the required propagation

distance is of the order of 1 m and therefore this approach was abandoned.
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4.5 Summary

Fundamentally the presence of corrosion is simply a change in the waveguide thick-

ness. A guided wave mode will only propagate through a thickness reduction if

at the minimum thickness the corresponding frequency thickness product is above

the cutoff frequency thickness product of this mode. Therefore by exciting multiple

guided wave modes with a source it may be possible to get an approximation of

the minimum thickness along the propagation path if the modes that propagated

through the reduced thickness area are identified. A novel approach using the va-

lidity of the ray theory to select the frequency of excitation was proposed. The

investigation was carried at a frequency of 2 MHz in a 10 mm aluminium plate.

This frequency was chosen based on the validity of the ray theory to detect a 60

mm diameter defect over a propagation distance of 1 m. The validity of the ray

theory ensures that the signal is detected by a sensor without superposition from

the interaction of the waves with features outside of the ray path.

2D plane strain FE simulations have shown that it is possible to use SH waves

around 2 MHz with two 16 element arrays for excitation and detection of the signals

to obtain an estimation of the minimum remaining thickness in the path between

the two arrays. The guided wave modes are identified by performing a 2D Fourier

transform of the data received by the sensor array.

The experimental results obtained on 30% and 50% machined defects gave results

that were significantly different from the FE predictions. In the experimental results,

in contrast with the FE predictions, the amplitude of the clusters relative to the

maximum amplitude of the 2D Fourier transform does not appear to be related to

the remnant thickness between the two transducers. One likely reason for this is that

the ray theory approximation may not be valid in this case because the length of the

signals recorded is too long. Therefore the slowest excited modes superpose with

the interaction of the fastest excited modes and features outside of the ray path e.g.

other defects or plate boundaries. Moreover the integrated amplitude of the cluster

relative to the no defect case was not consistent with the depth of the defect. This is
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potentially due to the difference in surface roughness of the 2 defects studied. More

importantly it was shown that virtually no energy propagated through a 50% deep

accelerated corrosion patch at 2 MHz. Therefore the attenuation of SH waves around

2 MHz due to severe corrosion is too high to be of practical interest if the required

propagation distance is of the order of 1 m and this approach was abandoned.
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Chapter 5

Guided Wave Diffraction

Tomography

5.1 Introduction

Time-of-flight tomography is based on straight ray propagation, thus ignoring diffrac-

tion effects. Chapter 3 demonstrated that the ray theory is not valid when using

low frequency guided waves to detect and size defects of the dimension of interest

in this project: 60 mm diameter over a propagation distance of approximately 1

m. Straight ray tomography and diffraction tomography are equivalent when the

wavelength approaches zero [21]. In contrast with the time-of-flight straight ray

tomography algorithms which reconstruct the thickness from time-of-flight projec-

tions, the input to a diffraction tomography algorithm is the wave field scattered

by the defects to be imaged. In order to perform a diffraction tomography recon-

struction, an approximation of the wave equation must be used with the incident

and total fields. The incident field corresponds to the wave field when the struc-

ture has no defect whereas the total field is the superposition of the incident and

scattered fields. Obtaining the incident field on structures that have been in service

for many years can be challenging. Rohde et al [38] recently examined diffraction

tomographic imaging of flexural inhomogeneities i.e. change in thickness, density,
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Young’s modulus or shear modulus in plates within the Born approximation (see

chapter 2) for structural health monitoring applications. Using a structural health

monitoring approach greatly simplifies the implementation of diffraction tomogra-

phy because it implies that baseline measurement can be used as the incident field

in the evaluation of the scattered field. That paper presented simulation results for

a single defect within the area of inspection. A simulated incident field was used

in the evaluation of the Born approximation. Parallel linear arrays of sources and

sensors were revolved around the area of inspection to obtain the data required for

the reconstruction.

This chapter considers the practical implementation of low frequency guided wave

diffraction tomography for the reconstruction of thickness in a plate containing mul-

tiple thickness reductions using a circular array of transducers. The reconstruction

is based on the scattering due to the change in velocity of a guided wave mode during

propagation through thickness changes. This chapter describes two different possi-

bilities to deal with the incident field subtraction of the Born approximation: the

so-called structural health monitoring approach and a novel approach which does

not require the incident field subtraction. In this chapter the first section explains

the theory of diffraction tomography based on scattering due to velocity change

and its main difference compared to straight ray tomography. The second section

discusses details of the FE simulations and thickness reconstruction with multiple

defects in the area of inspection. In the third section the challenges of the experi-

mental implementation of guided wave diffraction tomography are examined. The

results presented in this chapter were recently submitted for publication in IEEE

Transactions on Ultrasonics, Ferroelectrics and Frequency Control (P5 in the list of

publications).

5.2 Theory

The principle of diffraction tomography is very different from the more conventional

straight-ray tomography approach. Schematics of the principle of diffraction and
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Figure 5.1: (a) A source excites a wave field that propagates in straight lines across

the unknown object. The array of transducers receives the projection of a parameter that

corresponds to line integrals along the rays. (b) A source excites an incident wave field

that interacts with an unknown object to produce a scattered field. The superposition of the

scattered and incident fields, the so-called total field, is received at the array of transducers.

straight-ray tomography are presented in figure 5.1 in the case of a circular array of

transducers.

In straight-ray tomography (figure 5.1 (a)) the waves are assumed to travel in

straight lines between a source and the sensors. At the sensors a parameter that

can be represented by a line integral along the propagation ray is evaluated. The

most common parameters for straight-ray tomography are the time-of-flight and

the attenuation. An array of transducers measures the changes in the value of the

parameter due to the presence of an unknown object. By backprojecting the pa-

rameter detected at the array it is possible to reconstruct the object, subject to the

validity of the ray theory. Straight-ray tomography implies that the ray theory is

valid. The ray approximation is respected when the size of the object to be imaged

is much larger than the wavelength and much larger than the width of the first

Fresnel zone [46]; this is thus a high frequency approximation.

When the ray theory is not valid, diffraction effects become dominant and one

must use wave propagation theory rather than the straight-ray approximation to
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Figure 5.2: (a) A circular array that can illuminate an unknown object from all directions

r0 and detect the scattered field from any direction r. r0 and r can only take discrete values

which correspond to the locations of the transducers. (b) Two-dimensional K space showing

the mapping of the scattered field measured in direction r from an incident direction r0.

The solid semicircular arc corresponds to all directions r in transmission and the dashed

semicircular arc corresponds to those in reflection from an incident direction r0.

achieve the reconstruction. The majority of the diffraction tomography algorithms

were developed in ultrasonic medical and geophysical imaging where the purpose is

to reconstruct objects with different propagation velocity in comparison with the

background medium. These objects are reconstructed from the phase and ampli-

tude of the scattered field. The scattered field (figure 5.1 (b)) corresponds to the

field generated by the objects when illuminated by an incident field. In a typical

measurement the array of transducers measures the total field: the superposition

of the incident and scattered fields. In order to perform a diffraction tomography

reconstruction, an approximation of the wave equation must be used to generate

the data necessary for the reconstruction. The Born and the Rytov approximations

(see chapter 2) are the most common. These two approximations will be examined

for guided wave diffraction tomography with FE simulations in the next section.

The processing of the scattered field is carried out in the spatial frequency domain.

Figure 5.2 shows how the scattered field measured with the array maps in the spatial

frequency domain. In figure 5.2 (a) a circular array is illuminating an unknown
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object from a direction r0 and the scattered field is detected in direction r. The array

can excite and detect at a discrete number of directions which corresponds to the

number of transducers in the array. The scattered field measured in direction r maps

in the K space at k(r− r0), where k is the wavenumber at the frequency of interest.

As the position of the source rotates around the array, a disk in the K space with a

radius 2k is populated. This disk is known as the Ewald limiting disk [59]. For any

source in the array the sensors can be divided into two subsets: the transmission and

reflection subsets. The scattered field measured by the transmission subset maps in

the K space on the transmission arc and the reflection subset maps on the reflection

arc. For any direction r0 the transmission subset is contained within a circle of

radius
√

2k in the K space and the reflection subset is contained between
√

2k and

2k [60]. Therefore the transmission subset contains the lower spatial frequencies and

the reflection subset the higher spatial frequencies.

The purpose of this chapter is to investigate the possibility of using low frequency

guided waves for thickness reconstruction in plates and pipes with defect size of the

order of 60 mm and propagation distance of the order of 1 m. It has been demon-

strated in chapter 3 that the ray theory in such a case is not valid and consequently

it is not possible to use the straight-ray tomography algorithms. As mentioned ear-

lier, most of the diffraction tomography algorithms are used to produce a map of

the velocity of a given area. Therefore in order to use diffraction tomography for

thickness reconstruction with guided waves the velocity of propagation of the guided

wave mode of interest must vary with the thickness. Once the map of velocity is

obtained, it is easily converted into a thickness map by using the dispersion curves

of the guided wave mode of interest. If the point of operation, guided wave mode

and frequency, is carefully selected, it is possible to have velocity dependence on the

thickness. Figure 5.3 presents the low frequency phase velocity dispersion curves

in an aluminium plate. The vertical dashed line corresponds to the maximum fre-

quency if one wants to avoid contamination from the higher order modes. Above this

frequency the signal processing becomes much more complex due to the presence

of multiple guided wave modes. The selection of the point of operation has already

been detailed in chapter 3 and is only briefly covered here. Below 2 MHz.mm there
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Figure 5.3: Phase velocity dispersion curves in an aluminium plate. The vertical dashed

line corresponds to the maximum frequency if one wants to avoid contamination from the

higher order modes.

are two likely points of operation: A0 around 0.5 MHz.mm and S0 around 1.75

MHz.mm. When A0 at 0.5 MHz.mm is used the phase velocity decreases in a thick-

ness reduction. On the other hand, due to the shape of the dispersion curve for S0

at 1.75 MHz.mm, the phase velocity increases in a thickness reduction. The rest of

this chapter will use only A0 as an example because experimentally the transduc-

tion is easier; however all the conclusions apply to S0 at 1.75 MHz.mm as well. The

frequency-thickness products of the points of operation were quoted for aluminium.

However it is possible to use the same guided wave mode in steel or other materials

at slightly different frequency-thickness product, such that results presented here

would apply.

The algorithm used in this chapter assumes that the scattered field was generated

by an unknown object with a propagation velocity different from the background

medium. All other properties of the unknown object are the same as the background

medium. This is not strictly true for thickness reconstruction with guided waves.

The local stiffness and local mass are lower in the reduced thickness area but more

importantly part of the energy of the incident wave field will convert into other

guided wave modes at the defect boundary. The severity of the reflection and mode

conversion depends on the thickness profile of the defect; a smooth variation of the

thickness in comparison with the wavelength tends to reduce the amplitude of mode
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conversion [7]. In this study the scattered field from the change in stiffness and mass

as well as the mode conversion are not taken into account and will be shown to have

little influence on the reconstruction at the selected point of operation. Simonetti

and Huang [61] demonstrated, for a circular array, the existence of a linear mapping

between beamforming and diffraction tomography which is represented by a linear

filter in the spatial frequency domain. The beamforming image is produced by phase

shifting and integrating over the aperture of the array the data set obtained with an

approximation of the wave equation for all the points (x, y) in the image space. The

focusing process allows the contribution to the scattered field of a given point (x, y)

to be separated from all the other points in the image space. The combination of

focusing in transmission and reception leads to the beamforming image at z = (x, y)

iBF (z) = 〈gz|T∞|gz〉, (5.1)

where |gz〉 is the steering function of the incident beam at the point z = (x, y) which

can be expressed as

|gz〉 = exp(−ikr0 · z) (5.2)

where r0 is the direction of propagation of the incident plane wave. T∞ is the far

field pattern of the scattered field due to a linear combination of incident plane

waves. As the far field operator T∞ is a singular system it is possible to write [61]

T∞ =
∞∑

n=−∞
μn|φn〉〈νn|, (5.3)

then

iBF (z) =
∞∑

n=−∞
μn〈gz|φn〉〈νn|gz〉. (5.4)

Once the beamforming image is obtained, it is filtered to obtain the diffraction

tomography reconstruction. The filter can be expressed as

HBP (Ω) = G(Ω)HDT (Ω) (5.5)

where HBP is the 2D Fourier transform of the point spread function associated

with beamforming, HDT is the 2D Fourier transform of the point spread function
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associated with the diffraction tomography image and

G(Ω) =
8π2Π

k|Ω|√1− |Ω|2/4k2
(5.6)

with

Π =
exp(iπ/4)√

8πk
. (5.7)

G(Ω) is the filter which directly links the point spread function of beamforming to

that of diffraction tomography. G diverges for |Ω| = 0 and |Ω| = 2k giving maximum

weight to the low spatial frequencies of the object and to a lesser extent the high

spatial frequencies close to 2k in the beamforming image. A beamforming image is

thus a distorted version of the diffraction tomography image. If IBF (Ω) is the 2D

Fourier transform of the beamforming image then the 2D Fourier transform of the

diffraction tomography image (IDT (Ω)) is obtained with

IDT (Ω) =
IBF (Ω)

G(Ω)
× C (5.8)

where C is a calibration factor used to obtain the correct thickness in the diffraction

tomography reconstruction. This factor relates the amplitude of the scattered field

to the thickness in the reconstruction. In this study the calibration factor is obtained

by calculating the factor C required to reconstruct the correct thickness at a defect

in the first finite element simulation presented in the next section.

The diffraction tomography algorithm used in this chapter is a two stage algorithm

where a beamforming image is produced in the first stage and is then filtered to give

the same weight to all spatial frequencies and produce a diffraction tomography

image in the second stage.

The performance of this diffraction tomography algorithm for guided wave thickness

reconstruction is evaluated with FE simulations in the next section.
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5.3 Finite Element Simulations

5.3.1 Comparison of the Born and Rytov Approximations

The two most common approximations of the wave equation are the Born and Rytov

approximations. The data generated with the Born or Rytov approximation can be

used with the diffraction tomography algorithm described in section 5.2. These

approximations can be expressed as

Born: Ua = Ut − Ui

Rytov: Ua = Ui log

(
Ut

Ui

)
(5.9)

where Ua is the data for the diffraction tomography algorithm when using either the

Born or the Rytov approximation, Ut is the total field and Ui is the incident field.

The implementation of the Born approximation is very simple; the estimated scat-

tered field is obtained by subtracting the incident field from the total field. The

Rytov approximation is, however, more complex to implement because a complex

logarithm needs to be evaluated and thus the phase of Ut and Ui needs to be un-

wrapped. It is relatively straightforward to unwrap the phase on simulated data,

but errors are easily introduced when using experimental data giving errors in the

resulting scattered field.

As explained in chapter 2, the two approximations have quite different validity

criteria. For the Born approximation the phase difference between the incident

field and the wave propagating through the unknown object must be less than π.

Consequently this approximation is only valid for small or low contrast objects, the

contrast being defined as the difference between the background medium velocity

and the velocity in the unknown object. For the Rytov approximation it is the

change in the scattered phase over a wavelength that is important and not the total

phase change.

In order to compare the Born and Rytov approximations an acoustic FE model was
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Figure 5.4: Comparison of the diffraction tomography reconstruction between the Born

and the Rytov approximation. The diameter of the inhomogeneity is 380 mm. The velocity

in the inhomogeneity is 1816 m/s and the background medium velocity is 1886 m/s. (a)

theoretical map, (b) diffraction tomography reconstruction with the Born data set and (c)

diffraction tomography reconstruction with the Rytov data set.

designed in Abaqus. Using the acoustic model for this comparison provides two

major advantages. In contrast with an elastic FE model, only compressional waves

can propagate in the acoustic model and there is therefore no mode conversion.

The bulk modulus of the acoustic medium was chosen such that the velocity of

propagation of the compressional wave in the acoustic medium corresponded to the

phase velocity of A0 at 50 kHz in a 10 mm aluminium plate. A 2D plane stress model

was used with 32 square-shaped elements per wavelength. Absorbing boundaries

were added to the model to avoid reflections from the edges. A circular array of 128

source/sensor nodes with diameter 800 mm was used to generate the data required

to assess the performance of the Born and Rytov approximations.

An unknown object was introduced within the array of source/sensor nodes in the

form of a velocity inhomogeneity. The inhomogeneity simply corresponds to a change

in the velocity of propagation of the compressional wave which was obtained by mod-

ifying the bulk modulus of a subset of elements. The following examples are used

to compare the Born and Rytov approximations for a large velocity inhomogene-

ity. Figure 5.4 presents a comparison of the diffraction tomography reconstruction

between the Born and the Rytov approximations for a single inhomogeneity in the

centre of the array. The diameter of the inhomogeneity is 380 mm. A large inhomo-

geneity is used to demonstrate the limit of the validity of the Born approximation.
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Figure 5.5: Comparison of the diffraction tomography reconstruction between the Born

and the Rytov approximation. The diameter of the inhomogeneity is 380 mm. The velocity

in the inhomogeneity is 1738 m/s and the background medium velocity is 1886 m/s. (a)

theoretical map, (b) diffraction tomography reconstruction with the Born data set and (c)

diffraction tomography reconstruction with the Rytov data set.

The velocity in the inhomogeneity is 1816 m/s and the background medium velocity

is 1886 m/s. This difference in velocity corresponds to a 10% defect in a 10 mm

aluminium plate at 50 kHz with the A0 mode. The theoretical map is presented in

(a), the diffraction tomography reconstruction with the Born data set in (b) and

the diffraction tomography reconstruction with the Rytov data set in (c). As there

is only a single inhomogeneity within the array, the phase is easily unwrapped for

the implementation of the Rytov approximation. In this case the reconstructions

using the Born and Rytov approximations are very similar. The shape and contrast

of the inhomogeneity is well reconstructed and is close to the theoretical map. Fig-

ure 5.5 presents the same comparison but this time the contrast is increased. The

velocity in the inhomogeneity is 1738 m/s and the background medium velocity is

again 1886 m/s. This difference in velocity corresponds to a 20% defect in a 10 mm

aluminium plate at 50 kHz with the A0 mode. The theoretical map is presented in

(a), the diffraction tomography reconstruction with the Born data set in (b) and the

diffraction tomography reconstruction with the Rytov data set in (c). In this case

the reconstructions using the Born and Rytov approximation are rather different.

The reconstructed velocity at the centre of the Born reconstruction is far from the

real velocity. On the other hand the Rytov reconstruction is again very accurate

in shape and contrast. In this case the phase change through the inhomogeneity
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Figure 5.6: Comparison of the diffraction tomography reconstruction between the Born

and the Rytov approximation. The diameter of the inhomogeneity is 380 mm. The ve-

locity in the inhomogeneity is varying randomly and the minimum is 1440 m/s and the

background medium velocity is 1886 m/s. (a) theoretical map, (b) diffraction tomography

reconstruction with the Born data set and (c) diffraction tomography reconstruction with

the Rytov data set.

is too large such that the scattering mechanism cannot be represented accurately

with the Born approximation. Figure 5.6 presents a comparison of the Born and

Rytov approximation when the velocity in the inhomogeneity is varying randomly.

Neither of the reconstructions is accurate in this case. The Born reconstruction

is not accurate because the phase change through the object is too large and the

therefore the scattering mechanism cannot be represented by the Born approxima-

tion. The problem for the Rytov reconstruction is that in this case the phase is very

difficult to unwrap because the inhomogeneity is much more complex than a single

defect. However if the phase was perfectly unwrapped, the reconstruction would be

accurate. Although the Rytov approximation is valid over a wider range of objects

the difficulties in its practical implementation ultimately made us chose the Born

approximation for this initial study. Therefore all the cases studied in this chapter

were designed to be within the validity of the Born approximation. The next sub-

section describes the FE model to simulate guided wave interaction with thickness

reductions.

122



5. Guided Wave Diffraction Tomography

800 mm

Absorbing Boundary

64 
monitoring 
points

(a)

10
 m

m

(b)

Figure 5.7: Schematic of the FE model, (a) plan view and (b) detail of defect.

5.3.2 Finite Element Model

In order to investigate the performance of diffraction tomography for thickness recon-

struction with guided waves a FE model was designed in Abaqus. The FE modeling

was carried out on a plate (a schematic of the FE model is presented in figure 5.7

(a)); the simulations are also valid for large diameter pipes as the effect of curvature

becomes negligible [8].

The FE model consisted of a 10mm plate with a circular array of 64 exciting/monitoring

points across a diameter of 800 mm. Thickness reductions were then introduced at

various locations within the array. The material was aluminium (E = 70.8 GPa, ν

= 0.34 and ρ = 2700 kg/m3), there were 10 cubic-shaped 3D linear brick elements in

the thickness and the input signal was a 5 cycle Hanning windowed toneburst cen-
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tered at 50 kHz. Actual corrosion patches are not like flat-bottomed holes so stepped

boundaries are a better representation. Hence in order to model more realistic cor-

rosion patches the elements in the thickness were used to model the part-through

defect edges in steps as shown in figure 5.7 (b). Absorbing boundaries [49, 50] were

used to remove the reflections from the edges of the plate, so simulating an infinite

plate. For a given excitation location an out of plane force excited the A0 guided

wave mode and the out of plane displacement was detected at the 63 other moni-

toring points. Using an out of plane point force at 50 kHz ensured that the ratio

of surface displacement of A0 to S0 at the excitation was approximately 40 dB, see

chapter 3. Moreover by detecting only the out of plane displacement at the mon-

itoring points the A0 mode was detected with an amplitude 40 dB higher than S0

and consequently was almost insensitive to mode conversion.

The FE model was run both with and without defects, the case without defects

being used as the incident field in the evaluation of the scattered field. The Born

data set was then processed by the diffraction tomography algorithm.

5.3.3 Finite Element Results

Figure 5.8 presents a monochromatic diffraction tomography reconstruction of the

thickness in a plate with a single defect in the centre of the array at 50 kHz. This

first simulation was used to calculate the calibration factor C of equation 5.8 and

therefore the depth of the defect corresponds exactly to the theoretical profile. The

same value of C was used in all the FE simulations. The defect has a diameter of

60 mm, which corresponds to approximately 1.5 λ at 50 kHz and is 50% deep. The

map of the reconstructed thickness is free from artefacts and the defect is easily

identified in the centre of the map. Figure 5.8 (b) shows the thickness profile across

the defect where the black line corresponds to the reconstructed profile and the

light grey line corresponds to the theoretical profile. The depth of the reconstructed

defect is slightly underestimated at the centre of the defect in comparison with

the actual thickness profile, but the location and diameter are very accurate. This

reconstruction confirms that assuming that the scattered field is only due to a change
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Figure 5.8: FE monochromatic diffraction tomography reconstruction at 50 kHz with

one thickness reduction within the array of transducers. The thickness reduction has a

diameter of 60 mm (≈ 1.5λ at 50 kHz) and is 50% deep. (a) Map of the reconstructed

thickness and (b) thickness profile across the defect. The black line corresponds to the

reconstructed thickness profile and the light grey line to the actual thickness profile.

in velocity is a reasonable assumption in this case, showing that the amplitude

reduction of the A0 mode due to mode conversion is not large enough to affect the

reconstructed thickness. Moreover the order of magnitude of the scattered field due

to the changes in stiffness and mass is much lower than the component due to the

change in velocity.

Figure 5.9 shows a monochromatic diffraction tomography reconstruction of the

thickness in a plate with two defects within the array at 50 kHz. The defect in the

centre of the array is identical to the one in figure 5.8 and the second defect has a

diameter of 100 mm, which corresponds to approximately 2.5 λ at 50 kHz and is 30%

deep. In the map of the reconstructed thickness (figure 5.9 (a)) the two defects are

once again easily identified. In the thickness profile the depth, diameter and location

of both defects are reasonably accurate, with the depth of the shallower defect being

slightly overestimated. Apart from the two defects there are two interesting features

in the reconstruction.

Firstly multiple scattering between the two defects increased the reconstructed thick-

ness in the area between the two defects on the thickness profile. The scattered field
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(a) (b)

Figure 5.9: FE monochromatic diffraction tomography reconstruction at 50 kHz with two

thickness reductions within the array. The added thickness reduction has a diameter of

100 mm (≈ 2.5λ at 50 kHz) and is 30% deep. The other thickness reduction is identical

to the one in figure 5.8. (a) Map of the reconstructed thickness and (b) thickness profile

across the defects. The black line corresponds to the reconstructed thickness profile and

the light grey line to the actual thickness profile.

generated by one of the defects interacts with the second defect and this second order

scattered field is detected by the array and appears as a modification of the thick-

ness in the area between the two defects. The effect of multiple scattering cannot be

removed by adding more transducers in the array and is inherent to the presence of

multiple defects. Although multiple scattering contains valuable information about

the defects, it is not interpreted in this chapter.

Secondly relatively large amplitude grating lobes appeared to the far right of the

length axis of the thickness profile. These grating lobes are due to the undersampling

of the wave field in the circular array. Simonetti et al [62] demonstrated that the

minimum number of transducers in a circular array in order to correctly sample a

wave field of wavelength λ can be expressed as

N � 2πD

λ
(5.10)

where D is the diameter of the image to be free from grating lobes. This relationship

is the circular array equivalent of Shannon’s sampling theorem of λ/2 spacing of the

transducers in a linear array. The second defect in figure 5.9 is located just outside
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Figure 5.10: FE polychromatic diffraction tomography reconstruction between 45 and 55

kHz with two thickness reductions within the array. The two defects are identical to figure

5.9 (a) Map of the reconstructed thickness and (b) thickness profile across the defects. The

black line corresponds to the reconstructed thickness profile and the light grey line to the

actual thickness profile.

of D for N = 64, hence the grating lobes in the reconstruction. If the diameter of the

array is kept constant, 80 transducers would be required to obtain a reconstruction

free from grating lobes. It is however unrealistic to use more than 64 transducers

because the spacing between them would become too small and impractical in a field

implementation. The location of these grating lobes is frequency dependent so that

by averaging multiple monochromatic reconstructions the amplitude of the grating

lobes should decrease. Figure 5.10 shows a polychromatic diffraction tomography

reconstruction between 45 and 55 kHz with the same parameters as figure 5.9. The

polychromatic reconstruction is almost identical to the monochromatic reconstruc-

tion but with lower amplitude grating lobes to the far right of the length axis of

the thickness profile since, as expected by taking the average of multiple frequen-

cies, their amplitude decreases. The thickness between the two defects is again

higher than expected because the multiple scattering between the two defects is not

strongly frequency dependent over a narrow range of frequencies. The rest of the

chapter will only present polychromatic reconstructions.

Figure 5.11 shows a polychromatic diffraction tomography reconstruction between
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Figure 5.11: FE polychromatic diffraction tomography reconstruction between 45 and 55

kHz with three thickness reductions within the array of transducers. The added thickness

reduction has a diameter of 50 mm (≈ 1.25λ at 50 kHz) and is 70% deep. The other two

thickness reductions are identical to the one in figure 5.9 but slightly shifted from their

original location. (a) Map of the reconstructed thickness, (b) horizontal thickness profile

and (c) diagonal thickness profile. The black line corresponds to the reconstructed thickness

profile and the light grey line to the actual thickness profile.

45 and 55 kHz of the thickness in a plate with three defects within the array. Two

of the defects are identical to those in figure 5.11 but at a slightly different location.

The defect in the centre was moved by 5 mm in the length direction and by -5 mm

in the width direction and the defect on the left hand side was moved by 16 mm in

the length direction. The third defect has a diameter of 50 mm, which corresponds
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to approximately 1.25 λ at 50 kHz and is 70% deep. Once again the map of the

reconstructed thickness is free from large artefacts and the three defects are easily

identified. In the two thickness profiles the location and diameter of the three defects

is excellent but the depth of the deepest defect is underestimated by a little over 1

mm. As expected from the previous reconstructions multiple scattering and grating

lobes are present in the reconstruction.

This section demonstrated that if the thickness reductions within the array respect

the Born approximation, a diffraction tomography algorithm can be used to locate

and accurately size them. The next section discusses the challenges of experimen-

tally implementing diffraction tomography for thickness reconstruction with guided

waves.

5.4 Experiments

5.4.1 Experimental Setup

The experimental setup presented in figure 5.12 (a) comprised a 1200 × 1200 ×
10 mm aluminium plate with 64 low frequency A0 transducers bonded across a di-

ameter 800 mm. The transducers (figure 5.12 (b)) were developed to excite the

A0 mode at low frequency with excellent mode purity. Each transducer has three

layers: a thin layer of polyoxymethylene plastic (POM) bonded on the surface of

the plate, a piezoceramic element and a brass backing mass. The POM layer and

the backing mass are used to decrease the resonance frequency and helps to ob-

tain good transduction at low frequency. The POM layer also has the advantage of

decoupling the out-of-plane and in plane displacement of the piezoceramic element

and transmitting mainly the out-of-plane displacement to the plate. Further details

on the design of these transducers are given in [53] where it is reported that the

ratio of A0 to S0 is more than 30 dB in the frequency range of interest. The diam-

eter of the transducers is 10 mm which corresponds to approximately λ/4 for A0

at 50 kHz and ensures that a point source is a reasonable approximation. For each
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Figure 5.12: (a) Photograph of the experimental setup with a single defect in the centre

of array. (b) Zoom on one of the transducer composed of three layers: a backing mass, a

piezoceramic element (PZT) and a layer of polyoxymethylene plastic (POM).

transducer the frequency response function (FRF) between the input signal and the

out-of-plane displacement was measured on top of the backing mass with a Polytec

laser vibrometer. Although all transducers were assembled and bonded on the plate

in exactly the same way, some variability was observed. Figure 5.13 presents (a) the

amplitude and (b) the phase of these FRFs between 40 and 60 kHz. At 50 kHz the

maximum amplitude difference between the transducers is approximately 15 dB and

the maximum phase difference is 30◦. These FRFs were used in the experimental

reconstruction to compensate for the phase and amplitude difference between each

transducer. This is to ensure that each transducer is exciting with the same ampli-

tude and phase. The transducers were bonded on the plate with a position error of

approximately ±2 mm. Once the transducers were bonded, their exact location was

measured with an accuracy of ±0.5 mm with a laser pointer mounted on a scanning

frame. The measured locations were then used in the backpropagation stage of the

diffraction tomography algorithm.

Experimentally the plate used was cold rolled and was therefore slightly anisotropic.
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(a) (b)

Figure 5.13: Frequency response functions between the input to the transducer and the

displacement measured on top of the transducer for the 64 transducers of the array. (a)

amplitude normalised to maximum in dB and (b) phase in degrees.

Figure 5.14: Variation of the wavelength of the A0 mode in the plate as a function

of the angle of propagation in degrees. The black line corresponds to a polynomial fit of

the wavelength measured (black dots) on the plate and light grey line corresponds to the

theoretical value of the wavelength for this type of aluminium (E = 70.8 GPa, ν = 0.34

and ρ = 2700 kg/m3).

The wavelength was measured as a function of the angle of propagation. The wave-

length was obtained by measuring the phase change between two concentric semi

circular arcs separated by 50 mm at multiple frequencies between 45 and 55 kHz.

Figure 5.14 presents a polynomial fit (black line) of the wavelength at 50 kHz mea-

sured experimentally (black dots) as a function of the direction of propagation. The

variation of the wavelength as a function of the angle of propagation is approximately
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±0.2% compared to the mean value which is 0.5% above the theoretical value for

this type of aluminium (E = 70.8 GPa, ν = 0.34 and ρ = 2700 kg/m3). In this

study the variation of the wavelength with the angle of propagation was not taken

into account but the mean of the measured wavelength was used in the algorithm.

Another major difference between the FE simulations and the experimental imple-

mentation is that the reflections from the edges of the plate were removed by using

absorbing boundaries around the plate in the simulations. It is, however, difficult

to avoid the reflections from the edges experimentally. In this experimental setup

the dimensions of the plate were chosen such that the first wave packet to arrive at

any transducer in the array does not superpose with the reflections from the edges.

During the post-processing of the experimental time traces the signals were gated to

remove the reflections from the edges.. The implication of gating the signals is that

the scattered field detected by the reflection subset (see figure 5.2) for a given source

will not be used in the experimental reconstructions because the reflection from the

defect will, in all cases, arrive after the arrival of the reflection from the edges which

corresponds to the directly transmitted signal. Consequently, for a given source,

only the data detected by the transmission subset will be used in the experimental

reconstructions. By using only the transmission subset, the transmission diffraction

tomography image produced is a low-pass filtered image with a spatial frequency

cutoff of
√

2k rather than 2k in a full diffraction tomography reconstruction. Fig-

ure 5.15 presents the FE polychromatic reconstruction between 45 kHz and 55 kHz

when only the first wave packet of the transmission subsets of the incident and total

fields are used in the reconstruction. The thickness reconstruction is very similar to

the one obtained when the full time traces of both the reflections and transmission

subsets are used (see figure 5.10); the depth, diameter and location of the defects

are again excellent. The only area that was affected by only taking into account

the first wave packet of the transmission subsets is between the two defects; this

was expected because the multiple scattering between the two defects is likely to

arrive after the first arrival and hence was gated out from the time traces. This

result indicates that most of the information regarding the defects within the array

is contained in the transmission subsets.
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Figure 5.15: FE polychromatic diffraction tomography reconstruction between 45 and 55

kHz with two thickness reductions within the array and using only the first wave packet

to arrive in the transmission subsets. The model is the same as figure 5.10. (a) Map

of the reconstructed thickness and (b) thickness profile across the defect. The black line

corresponds to the reconstructed thickness profile and the grey line to the actual thickness

profile.

As mentioned earlier, the factor C of equation 5.8 relates the amplitude of the

scattered field to the correct thickness in the reconstruction. In FE simulations

the factor C was tuned to obtain the correct thickness in a calibration case and

then all simulations used the same factor C because the amplitude of excitation was

constant. The amplitude of excitation in experiments is different from the one in FE

simulations such that a new factor C must be calculated. The experimental factor

CEXP is calculated with

CEXP = C
AFE

AEXP

(5.11)

where C is the factor obtained from the calibration simulation, AFE is the mean

amplitude of the scattering matrix in the calibration simulation and AEXP is the

mean amplitude of the scattering matrix in experiments. The scattering matrix

contains the scattered field for all source/sensor combinations.
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5.4.2 Experimental Implementation

In all the FE results presented in the previous section the incident field was simu-

lated. However obtaining the incident field on structures that have been in service

for many years could be difficult. There are consequently two possibilities: omit-

ting the incident field subtraction in the Born approximation or using diffraction

tomography in a structural health monitoring approach with transducers perma-

nently installed on the structure. In the latter case the initial measurement would

be used as the incident field and the defects would be detected from the difference

between the initial measurement and the total field measured at a later time. These

two possibilities will be explored in the following subsections.

No Incident Field Subtraction

If it was possible to omit the incident field subtraction in the evaluation of the Born

approximation it would be possible to perform a diffraction tomography reconstruc-

tion with a single measurement of the total field. Diffraction tomography is a linear

transformation that can be expressed, within the Born approximation, as

DT(uscattered) = DT(utotal − uincident) = DT(utotal)− DT(uincident). (5.12)

Figure 5.16 presents the monochromatic diffraction tomography thickness recon-

struction of a 10 mm thick uniform plate at 50 kHz obtained when using only the

incident field (DT(uincident)) (a) when considering the full incident field, i.e. the

reflection and transmission subsets (see section 5.2) and (b) when using only the

transmission subset. Figure 5.16 (c) and (d) shows the corresponding normalised

2D Fourier transforms.

The thickness reconstruction obtained when using both the reflection and transmis-

sion subsets of figure 5.16 (a) contains large amplitude oscillations. The thickness

reconstructed using the reflection and transmission subsets of the incident field is

very similar to the point spread function of diffraction tomography [63]. The thick-

ness is therefore very high in the centre of the array, several times the plate thickness,
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Figure 5.16: Monochromatic diffraction tomography reconstruction of the thickness at 50

kHz in a 10 mm thick uniform plate when using only the incident field (a) when considering

the full incident field and (b) when using only the transmission subset. (c) and (d) shows

the corresponding normalised 2D Fourier transforms.

and is heavily clipped in figure 5.16 (a). The amplitude of the oscillations decreases

away from the centre of the array. The 2D Fourier transform of this reconstruction

shown in figure 5.16 (c) mainly contains spatial frequency components around the

origin and between circles of radius
√

2k and 2k, where k is the wavenumber at

the frequency of interest. By considering only the transmission subset the spatial

frequency is limited to
√

2k as shown in figure 5.16 (d) and the oscillations in the

reconstructed thickness are much lower amplitude as shown in figure 5.16 (b). In

this case the amplitude range of the oscillations is from 7 mm to 12 mm.

As diffraction tomography is a linear transformation, the incident field subtraction
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(a) (b)

Figure 5.17: FE polychromatic diffraction tomography reconstruction between 45 and 55

kHz with two thickness reductions within the array and using only the transmission data

of the total field. The model is the same as figure 5.10. (a) Map of the reconstructed

thickness and (b) thickness profile across the defect. The black line corresponds to the

reconstructed thickness profile and the grey line to the actual thickness profile.

is equivalent to subtracting the map shown in figure 5.16 (a) and (b) from the

map obtained with the total field. As the variation of the reconstructed thickness

when both the reflection and transmission subsets are considered is large, it is not

possible to omit the incident field subtraction as it would result in large artefacts in

the reconstruction. However when only the transmission subset is considered these

oscillations are much smaller amplitude. Consequently when using only transmission

data and omitting the incident field subtraction, these oscillations appear as small

artefacts in the reconstruction. Therefore by taking only the transmission data an

approximation of diffraction tomography within the Born approximation is obtained

and the incident field subtraction can be omitted:

DT(utotal − uincident) ≈ DT(utotal). (5.13)

Figure 5.17 presents the FE polychromatic reconstruction between 45 kHz and 55

kHz when only the transmission data of the total field are used in the reconstruction.

The number and amplitude of artefacts have increased in comparison with figure

5.10, but the reconstruction is very similar to figure 5.15; the depth and location

of both defects are still reasonably accurate. This demonstrates that it is possible
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to approximate transmission diffraction tomography within the Born approximation

by taking only the transmission data of the total field into account in the process-

ing and therefore it is possible to perform a thickness reconstruction from a single

measurement of the total field. Experimental results for one and two defect cases

will be shown in the results subsection.

Structural Health Monitoring Approach

If the array of transducers is permanently attached to the structure it is possible

to use the initial measurement as the incident field in the evaluation of the Born

approximation and detect and size the defects that appear thereafter. It is important

that the array of transducers remains permanently attached to the structure as if

it is removed the location and coupling of the transducers would be modify and it

would become impossible to use the measured incident field.

Rohde et al [38] have studied diffraction tomography with a structural health moni-

toring approach in simulation. In their simulations the incident field was generated

from a plate without defects. In the next subsection the structural health monitoring

approach is briefly studied with experimental data.

5.4.3 Experimental Results

The following experimental results are separated in two subsections, firstly when

the incident field subtraction is omitted and secondly using the structural health

monitoring approach.

No Incident Field Subtraction

Figure 5.18 presents an experimental polychromatic reconstruction between 45 kHz

and 55 kHz with one thickness reduction in the centre of the array when only

the transmission data of the total field is used in the reconstruction, the thickness
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(a) (b)

Figure 5.18: Experimental polychromatic diffraction tomography reconstruction between

45 and 55 kHz with one thickness reduction at the centre of the array and using only

the transmission data of the total field. The defect has the same properties as figure 5.8.

(a) Map of the reconstructed thickness and (b) thickness profile across the defect. The

black line corresponds to the reconstructed thickness profile and the grey line to the actual

thickness profile.

reduction having a diameter of 60 mm and 50% deep. The reconstruction is not

satisfactory; there are multiple large artefacts with some of them going above 12

mm. Moreover the depth of the thickness reduction is not accurately reconstructed.

It was found that the poor reconstruction in this case is due to scattering from the

array of transducers. The incident field interacts with each individual transducer

and produce a wave field that superposes with the scattered field from the defect to

produce large artefacts in the reconstruction.

The wave field scattered by a transducer was measured by scanning an area of a

10 mm aluminium plate with a Polytec laser vibrometer. The technique used to

estimate the scattered field required two measurements. A transducer, the source,

was bonded on the plate and the wave field it generated was measured. Then a

second transducer, the scattering transducer, was bonded 100 mm from the source

and the wave field generated by the source was measured again. The difference be-

tween these two wave fields corresponds to the wave field scattered by the scattering

transducer and is presented in figure 5.19. The wave field scattered by the scattering
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Figure 5.19: Wave field scattered by a transducer bonded on a 10 mm aluminium plate.

The displacement field corresponds to the difference between the displacement field mea-

sured with and without the scattering transducer. The wave field scattered by the transducer

is only 15 dB below the incident field.

transducer is only 15 dB below the the wave field generated by the source.

In order to confirm that the large artefacts are due to the scattering of the array

of transducers, all but one of the transducers were removed from the plate. When

there is a single defect in the centre of the array of transducers the scattered field is

the same for all source locations because of symmetry. Hence all the data required

can be generated from a single source location and 32 sensor locations, as shown

in figure 5.20. The signal at the 32 sensor location was measured with a Polytec

laser vibrometer. In this case there is no variation in the coupling of the transducer

because all the data is generated from a single source location. Figure 5.21 presents

an experimental polychromatic reconstruction between 45 kHz and 55 kHz with one

thickness reduction in the centre of the array when only the transmission data of the

total field is used in the reconstruction. In the reconstruction the defect location, size

and depth are accurate. In the thickness profile the grey dotted line corresponds to

the FE reconstruction using the same parameters. The FE and experimental profile

are almost perfectly superposed. Therefore the artefacts in the reconstruction of

figure 5.18 were due to the array of transducers.
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Figure 5.20: Schematic of the measurement for a single defect in the centre of the array

taking advantage of the symmetry of this case with one source location and 32 sensor

locations measured with a Polytec laser vibrometer.

(a) (b)

Figure 5.21: Experimental polychromatic diffraction tomography reconstruction between

45 and 55 kHz with one thickness reduction at the centre of the array and using only the

transmission data of the total field. The measurement is carried out with a Polytec laser

vibrometer. The defect has the same properties as figure 5.8. (a) Map of the reconstructed

thickness and (b) thickness profile across the defect. The black line corresponds to the

experimental reconstructed thickness profile, the grey dotted line to the FE reconstructed

thickness profile and the grey line to the actual thickness profile.

A similar measurement was performed with two defects within the array. In this case

it was not possible to use symmetry to the same extent as in the single defect case and

the source had to be moved for each measurement. There was therefore a variation

in the coupling of the transducer with the plate between each measurement. From
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(a) (b)

Figure 5.22: Experimental polychromatic diffraction tomography reconstruction between

45 and 55 kHz with two thickness reductions within the array and using only the transmis-

sion data of the total field. The measurement is carried out with a Polytec laser vibrometer.

The defects have the same properties as figure 5.9. (a) Map of the reconstructed thickness

and (b) thickness profile across the defect. The black line corresponds to the experimental

reconstructed thickness profile, the grey dotted line to the FE reconstructed thickness profile

and the grey line to the actual thickness profile.

the amplitude of the recorded wave field, it was observed that this variation was up

to 8 dB. The variation in the coupling of the source was not compensated for in the

reconstruction. Figure 5.22 presents an experimental polychromatic reconstruction

between 45 kHz and 55 kHz with two thickness reductions within the array when

only the transmission data of the total field is used in the reconstruction. The

experimental reconstruction is very similar to the FE reconstruction of figure 5.17.

In the thickness profile the grey dotted line corresponds to the FE reconstruction

using the same parameters. Once again the FE and experimental profile are almost

identical. This therefore demonstrates that it is possible to reconstruct the thickness

of a plate with low frequency guided waves by using only the transmission data of

the total field when there is no scattering from the array of transducers.
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(a) (b)

Figure 5.23: Experimental polychromatic diffraction tomography reconstruction between

45 and 55 kHz with two thickness reductions within the array and using the measurement

with the single defect in the centre of the array as the incident field in the evaluation of

the Born approximation. The measurement is carried out with the array of transducers.

The reconstructed defect is 30% deep and has a diameter of 100mm. (a) Map of the recon-

structed thickness and (b) thickness profile across the defect. The black line corresponds

to the experimental reconstructed thickness profile and the grey line to the actual thickness

profile.

Structural Health Monitoring Approach

Figure 5.23 presents an experimental polychromatic reconstruction between 45 kHz

and 55 kHz with two thickness reductions within the array when the measurement

with the defect in the centre of the array is used as the incident field in the evaluation

of the Born approximation. The array of 64 bonded transducers was used for the

the two measurements required in this case.

The location, size and depth of the defect are accurate. The large artefacts next to

the reconstructed defect are due to the multiple scattering between the two defects.

As expected the scattering from the array of transducers has no effect in this case

because it is included in the measurement with the single defect in the centre of the

array. Although structural health monitoring contains many challenges such as long

term stability between measurements or transducer durability, low frequency guided
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wave tomography can potentially be used to detect and accurately size defects within

an array of transducers.

5.5 Summary

Diffraction tomography can reconstruct a map of the velocity from the scattered field

produced by the interaction of an incoming wave field and a velocity inhomogeneity.

The velocity inhomogeneity has the same properties as the background medium

except a different propagation velocity. Although a corrosion patch does not have

all the same properties as a clean plate, this concept can be applied to guided waves

if the point of operation, frequency and guided wave mode, is carefully selected.

It has been shown, with FE simulations and experiments, that low frequency guided

waves can be used for thickness reconstruction of plates or large diameter pipes

with diffraction tomography within the Born approximation. Multiple defects of

diameter as small as 50 mm were accurately detected and sized in FE simulations.

It has been demonstrated that an approximation of diffraction tomography within

the Born approximation can be obtained by using only the transmission data of

the total field. This is potentially very useful as thickness can be reconstructed

over a large area of a plate or large diameter pipe from a single measurement of

the total field. It has been shown that the scattering from the array of transducers

needs to be minimised in order to reconstruct thickness accurately. However when

the scattering from the array of transducers is large it is possible to use guided

wave diffraction tomography in a structural health monitoring approach and obtain

accurate thickness reconstruction.

Non contact transducers such as EMATs could potentially be used instead of the

bonded piezoelectric devices used here. They would generate less scattering and

should therefore improve the diffraction tomography thickness reconstruction.
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Chapter 6

Conclusions

6.1 Thesis review

In this thesis the use of ultrasonic guided waves for thickness mapping of large,

partially accessible areas was investigated. The problem of interest is to evaluate

the minimum remaining plate thickness over a large area where the defects have a

minimum diameter of 60 mm and the separation distance between the source and

the sensor is approximately 1 m. Guided waves have multiple properties that can

be used for thickness mapping over large areas.

Firstly, the dispersive nature, variation of the phase velocity as a function of the

frequency thickness product, of guided waves make them potentially suitable for

time-of-flight tomography and diffraction tomography based on the variation of the

velocity in the inhomogeneities. In time-of-flight tomography the time that the mode

of interest takes to propagate through a thickness reduction can be used to produce

a map of the velocity which can be transformed into a map of the thickness with the

dispersion curve of the mode of interest. Time-of-flight tomography will only work

when the ray theory is valid. Guided wave time-of-flight tomography was investi-

gated in chapter 3. Diffraction tomography on the other hand uses the scattered

field produced by the interaction of the incoming wave field with an inhomogeneity

in which the velocity of propagation is different from the velocity of propagation in
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the background medium to reconstruct a map of the velocity. This map can also

be transformed into a map of thickness with the dispersion curve of the mode of

interest. Diffraction tomography was examined in chapter 5.

Secondly, the cutoff property of the high order modes can potentially be used to

estimate the minimum remaining thickness between a source and a sensor. The

significance of the high order modes cutoff property is that if a thickness reduction

is present along the propagation path such that the frequency thickness product

was shifted below the cutoff frequency thickness product of a given mode, then no

energy of that mode would propagate through the thickness reduction. Therefore by

identifying which modes are detected after propagation through an area of inspection

it is possible to work out the minimum remaining thickness in the propagation path.

The cutoff property of the high order modes was studied in chapter 4

6.2 Main findings of this thesis

6.2.1 Time-of-flight Tomography

In time-of-flight tomography the idea is to use the dispersive nature of the guided

waves to generate a map of the thickness. For this technique to work, the point of

operation, frequency and guided wave mode, needs to be carefully selected. Two

points of operation were identified below the cutoff of the higher order modes using

three criteria: the velocity sensitivity to thickness change, the mode excitability

and detectability and the attenuation due to fluid loading. If fluid loading is taken

into account, S0 at a frequency around 1.75 MHz-mm, where the velocity difference

between S0 and the other modes is still high, is the best choice provided the prop-

agation distances before and after the defect are long enough for the wave packets

to separate. However when there is no fluid loading, the 40 dB difference in nor-

mal excitability and detectability shifts the choice to A0 at a frequency around 0.5

MHz-mm.
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It has been shown, with FE simulations and experiments, that these points of op-

eration cannot be used for time-of-flight straight-ray tomography to evaluate the

maximum depth of defects of the diameter of interest in practice due to the inva-

lidity of the ray theory. When the ray theory is violated the incident and scattered

signals interfere which changes the received wave packet and thus makes the time-

of-flight calculations inaccurate.

If the propagation distance is reduced, the ray theory becomes valid in the low

frequency regime, but the required reduction is too large to be of practical use. The

characteristic size of the defect can also be increased to satisfy the ray theory but

again this is not of interest in practical applications.

6.2.2 Guided Wave Mode Cutoff for Thickness Gauging

Fundamentally the presence of corrosion is simply a change in the waveguide thick-

ness. A guided wave mode will only propagate through a thickness reduction if

at the minimum thickness the corresponding frequency thickness product is above

the cutoff frequency thickness product of this mode. Therefore by exciting multiple

guided wave modes with a source it may be possible to get an approximation of

the minimum thickness along the propagation path if the modes that propagated

through the reduced thickness area are identified. A novel approach using the va-

lidity of the ray theory to select the frequency of excitation was proposed. The

investigation was carried at a frequency of 2 MHz in a 10 mm aluminium plate.

This frequency was chosen based on the validity of the ray theory to detect a 60

mm diameter defect over a propagation distance of 1 m. The validity of the ray

theory ensures that the signal is detected by a sensor without superposition from

the interaction of the waves with features outside of the ray path.

2D plane strain FE simulations have shown that it is possible to use SH waves at

around 2 MHz with two 16 element arrays for excitation and detection of the signals

to obtain an estimation of the minimum remaining thickness in the path between

the two arrays. The guided wave modes are identified by performing a 2D Fourier
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transform of the data received by the sensor array.

The experimental results obtained on 30% and 50% machined defects gave results

that were significantly different from the FE predictions. In the experimental results,

in contrast with the FE predictions, the amplitude of the guided wave mode clusters

relative to the maximum amplitude of the 2D Fourier transform does not appear to

be related to the minimum remnant thickness between the two transducers. One

likely reason for this is that the ray theory approximation may not be valid in this

case because the length of the signals recorded is too long. Therefore the slowest

excited modes superpose with the interaction of the fastest excited modes with

features outside of the ray path e.g. other defects or plate boundaries. Moreover the

integrated amplitude of the cluster relative to the no defect case was not consistent

with the depth of the defect. This is potentially due to the difference in surface

roughness of the two defects studied. More importantly it was shown that virtually

no energy is propagating through a 50% deep accelerated corrosion patch at 2 MHz.

Therefore the attenuation of SH waves around 2 MHz due to severe corrosion is too

high to be of practical interest if the required propagation distance is of the order

of 1 m and this approach was abandoned.

6.2.3 Guided Wave Diffraction Tomography

Diffraction tomography can reconstruct a map of the velocity from the scattered field

produced by the interaction of an incoming wave field and a velocity inhomogeneity.

The velocity inhomogeneity must have all the same properties as the background

medium except a different propagation velocity. Although a corrosion patch does not

have all the same properties as a clean plate, this concept can be applied to guided

waves if the point of operation is carefully selected. In the diffraction tomography

investigation the points of operation were the same as for time-of-flight tomography.

It has been shown, with FE simulations and experiments, that low frequency guided

waves can be used for thickness reconstruction of plates or large diameter pipes with

diffraction tomography within the Born approximation. Multiple defects of diameter
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as small as 50 mm were accurately detected and sized in FE simulations in a 10 mm

plate. It has been demonstrated that an approximation of diffraction tomography

within the Born approximation can be obtained by using only the transmission data

of the total field. This is potentially very useful as thickness can be reconstructed

over a large area of a plate or large diameter pipe from a single measurement of

the total field. It has been shown that the scattering from the array of transducers

needs to be minimised in order to reconstruct thickness accurately. However when

the scattering from the array of transducers is large it is possible to use guided

wave diffraction tomography in a structural health monitoring approach and obtain

accurate thickness reconstruction.

6.3 Suggestions of future work

A considerable amount of work is required before implementing diffraction tomog-

raphy in the field. In the experimental implementation of guided wave diffraction

tomography in chapter 5 the scattering from the array of transducers was shown

to generate large artefacts in the thickness reconstruction. Non contact transducers

such as EMATs could potentially be used instead of the bonded piezoelectric devices

used here. They would generate less scattering and should therefore improve the

diffraction tomography thickness reconstruction.

The algorithm used in chapter 5 was developed for circular array applications. The

circular array geometry is not suitable for pipe inspection. In a pipe inspection the

idea is to use two rings of transducers on either side of the area that needs inspec-

tion. The algorithm required for this application is very similar to the one used in

geophysical tomography with the crosshole scanning geometry as explained in chap-

ter 2. The main difference between the crosshole scanning geometry in geophysics

and its implementation on pipe is the infinite number of circumferential guided wave

modes that can propagate around the pipe. The direction of propagation of these

circumferential modes around the pipe would need to be taken into account as it

will carry the information regarding the location of the defects.
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All the FE and experimental results presented in chapter 5 were valid within the

Born approximation. The Born approximation becomes invalid when the phase

change through the defect is too large. In guided wave diffraction tomography for

thickness reconstruction the phase change in the defect is a function of the defect

depth and diameter as well as the level of dispersion at the point of operation. The

more dispersive the mode of interest is around the frequency of excitation the larger

the phase change is in a thickness reduction. It is therefore possible to choose a

less dispersive point of operation when inspecting deep corrosion. However this is

not practical. Section 5.3.1 showed that the Rytov approximation is valid over a

wider range of inhomogeneities but its implementation is more difficult. The Rytov

approximation is potentially better suited to guided wave diffraction tomography

for thickness reconstruction if a reliable phase unwrapping algorithm can be used.

However before using the Rytov approximation in industrial applications it would be

required to investigate the possibility to avoid using the incident field in the evalua-

tion of the approximation as was shown in section 5.4.2 for the Born approximation.
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