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Abstract 

Abstract 
 

This thesis presents work contributing to the development of ultrasonic guided wave 

NDE inspection systems with improved resolution. Guided waves today are well 

established in the rapid inspection of large structures.  The approach taken so far has 

been to develop screening tools to maximize coverage; the methods yield precise 

information about the exact location of defects but only an approximate estimate of the 

severity of defects. However there are many applications where the areas of concern are 

not accessible, and reaching them for a secondary accurate inspection may not be 

possible or involve considerable cost. Therefore there is much interest in improving the 

resolution of guided wave NDE towards direct defect sizing. Two possible approaches 

are being considered to achieve this, using either multiple modes at high frequency-

thickness or single mode array imaging at low frequencies. The work reported here 

concerns the understanding of the interaction of guided waves with defects so that an 

appropriate approach can be selected and implemented. A review of the basics of elastic 

wave scattering from defects is first presented in order to introduce methods used and 

effects encountered later in the work.  

 

A simple implementation of the high-frequency multimodal approach, in which the input 

consists of a single fundamental mode while the multiple-mode scattered signal permits 

separation into component modes, is then considered. Finite element simulations and 

theoretical analysis are used to study the interaction of the fundamental antisymmetric 

Lamb wave mode A0 and the fundamental torsional pipe mode T(0,1) with long but part-

thickness planar cracks, in this context. The results show that the reflection due to both 

modes is more sensitive to shallow cracks than at lower frequencies. The reflected A0 

and A1 modes in plates and T(0,1) mode in pipes emerge as the ‘best modes’ for 

discrimination between shallow and deep cracks since their amplitudes have a uniform 

relation with the crack depth. Also, knowledge of effects such as regions of little or no 

mode conversion and the extent to which the reflections of the different modes differ, 

emerge as powerful ways of obtaining useful additional information about defect 

dimensions.   
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Abstract 

In view of promising trends from parallel work at the Imperial College NDT Group using 

low-frequency array imaging methods, the rest of the thesis focuses on the interaction of 

cylindrical crested low-frequency SH0 waves with finite cracks in thin plates. Finite 

element simulations are used to obtained trends which are subject to experimental 

confirmation and analysis. Since guided SH waves in thin plates correspond to torsional 

modes in pipes, the results obtained help clarify the physics of scattering so that imaging 

methods may be better formulated and developed. The simpler case of through-thickness 

cracks is first taken up and the influence of the crack length, monitoring position and the 

angle of incidence on specular reflection as well as diffraction are studied. The insights 

obtained are then used to understand the scattering from the more general part-thickness 

crack case.  

 

The through-thickness crack studies show that low-frequency scattering of the SH0 mode 

is strongly affected by diffraction phenomena, leading to focusing of energy by the crack 

in the backscattered direction. The diffracted field itself consists of components arising 

from primary diffraction from the crack tips (or edges) and multiple reverberations of 

Rayleigh-like waves traveling along the crack length. The amplitude of the primary 

diffraction can be estimated from known solutions to canonical bulk SV wave diffraction 

problems. The angular behaviour of the reflection is highly directional, with strongest 

fields in the specular direction, while the specular reflection itself is strongest when the 

central ray of the incident beam bisects the crack face at 900. The trend of the scattering 

as observed from part-thickness crack results is identical to that from through-thickness 

cracks of the same length; the actual values differ only by a frequency dependent scale 

factor, provided the cracks are small compared to the radius of the incident wavefront. 

Thus the understanding obtained for scattering from through-thickness cracks may well 

be sufficient to deal with the part-thickness case also. 

 

From the guided wave imaging perspective, these results help obtain the far-field values 

for a given operating frequency-thickness and crack length. The directionality of the 

reflected field informs the possibilities for imaging, but imposes a limitation on the 

extent to which the resolution of inspection can be improved by low-frequency methods.  
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1. Introduction 

 

 

Chapter 1 
 

Introduction 
 
1.1 Motivation 

 
Ultrasonic guided waves are today well established in the long range inspection of large 

structures, following a significant amount of research in recent years. Guided wave based 

systems are now commercially available for inspection of structures such as pipes [1], 

and rail [2]. Developments for using them also to inspect plate structures are now 

advanced [3-6]. But current guided wave inspection techniques are limited by their 

developmental context. Historically, guided waves emerged as an attractive alternative to 

conventional point-by-point NDE for rapid inspection of large areas of structure. In 

applications where tens of meters of structure are to be scanned for defects, guided wave 

based inspection is far more efficient than the tedious and time-consuming conventional 

methods. Therefore, such applications use guided waves primarily as a screening tool. 

Sensitivity and accurate defect information are not as important as increased coverage 

and defect localization. The idea is that, an approximate estimate of the more severe 

defects along with information about their location expedites inspection. A subsequent 

investigation by complementary NDE methods (for example, thickness gauging [7, 8] or 

time of flight diffraction [9]) can quickly be carried out if more accurate defect 

information is required.  
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The NDT Group at Imperial College London (called the ‘NDT Group’ or the ‘Imperial 

College NDT Group’ henceforth in this thesis) pioneered this approach [2, 10-14] and 

past research into guided waves at the group has been based on this premise. 

Fundamental guided wave modes occurring at low frequency-thickness have been found 

to be ideal for such applications [10] [15-18] and therefore they have been the primary 

focus of past studies. A need to understand the implications of geometric features of 

waveguides on inspection procedures led to investigations of the interaction of 

fundamental modes with edges, thickness changes and features like bends, in plates and 

pipes [18-24]. In order to be able to better interpret the signals received from defects in 

waveguides as required for inspection purposes, the interaction of modes with cracks, 

notches and cylindrical holes in plates and pipes have been studied [25-29]. Guided wave 

propagation in structures with attenuative coatings [30-36] has been studied in order to 

extend the applicability of this inspection strategy. 

 

However there are many applications where the areas of concern are not directly 

accessible, for example, regions of pipelines embedded in concrete as shown in Figure 

1.1. Reaching them for a secondary accurate inspection may either not be possible or 

involve considerable cost, rendering this two-step inspection method problematic. 

Guided wave techniques with higher sensitivity, but which can still be deployed away 

from the target inspection region would be valuable in such situations. Therefore there is 

much interest in improving the resolution of guided wave NDE towards single step 

accurate defect sizing, with a reduction in the range as compared to screening 

applications being acceptable. This provides the motivation for the project to which the 

work presented in this thesis contributes. Since this is a significant step forward in guided 

wave NDE, there are several areas where research is needed. Several possible approaches 

could be taken to achieve higher resolution. The work reported here concerns the 

understanding of the interaction of guided waves with defects so that an appropriate 

approach can be selected and implemented. 

 

In the following sections of this chapter, the theory of guided ultrasonic waves is first 

introduced and their application in current inspection methods is then discussed in the 
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light of resolution issues. Finally possible approaches to improving the resolution are 

considered and the method adopted in this thesis is presented.  

 

1.2 Background: guided ultrasonic waves 
 

Guided ultrasonic waves arise out of small elastic disturbances in bounded media. The 

theory of their generation and propagation is a topic dealt with in many classical texts 

[37-39]: here we take an approach which brings physical insights useful for our later 

studies.  In doing so, we closely follow the treatment in the book by Auld [39]. 

 

In the bulk of the medium, away from boundaries, only two types of ultrasonic waves 

can exist, the longitudinal or pressure (P) waves and shear (S) waves, occurring as 

solutions to the governing wave equations in an infinite domain. We start with the 

Christoffel equation seeking plane wave solutions to the acoustic field equations, given 

for linear elasticity by [39] 

ijij uuk 22 ρω=Γ                                                 (1.1) 

 

where summation over repeated indices is assumed, k and ω  represent the wavenumber 

and circular frequency such that a plane wave propagating in a direction given by the unit 

vector l
)

 has fields proportional to )](exp[ rlkti r)
⋅−ω , u is the displacement, ρ  the 

material density and the Christoffel matrix, LjKLiKij lcl=Γ where 
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and c is the general stiffness matrix represented in Auld’s abbreviated indicial notation 

related to the conventional  notation as ijklC 111111 cC =  , etc (see page 65 

from Vol. I of Auld’s text[39]). 
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Lossless isotropic materials are of primary interest to the work presented here and 

deformations are always well within the region of linear elasticity. Isotropy imposes 

conditions such that there are only two independent elastic constants, the Lamé constants 

c12 (=λ ) and c44 (=µ ) by which the Christoffel matrix is rendered in the simple form: 
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We can make further use of the direction independence offered by isotropy and quickly 

arrive at the solutions by assuming a propagation direction which simplifies the analysis. 

So if we take the wave to be propagating along one of the coordinate axes, say the z axis, 

we will have zl ˆ=
)

 so that the Christoffel equation (1.1) yields 
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which shows that there can be two degenerate shear wave solutions with the same speed  

ρ
µ

differing only in their polarization: ux  and uy in this case and a longitudinal wave 

solution, uz with a speed
ρ
µλ 2+ .  

 

In general, for wave propagation along l
)

we will have shear (S) waves with two possible 

polarizations a)or la
))× such that 0=⋅ la

)) and a compression (P) wave polarized along l
)

.  

The two types of shear waves are called Shear Horizontal (SH) or Shear Vertical (SV) 

depending on whether their polarization is within or out of the plane of propagation.  

 

In the presence of boundaries though, additional physical conditions apply and these 

complicate the solution. For instance, at interfaces between media, it is required that 
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particle velocity and traction force remain continuous at points on the boundary. These 

conditions cannot be satisfied by the incident waves alone and a certain number of 

reflected waves in the first medium and transmitted or refracted waves in the second 

medium need to be considered. Further, the incident and scattered waves must have the 

same component of the wavevector tangential to the boundary and this is a statement of 

Snell’s law. Because elastic waves in isotropic media can have two wave velocities for 

each propagation direction, there can be two refraction directions at interfaces between 

two different media. While SH waves produce only reflected or refracted SH waves, SV 

and P wave interactions with interfaces are mutually coupled and can each produce the 

other in reflection and transmission [39]. Of importance is a stress free boundary, where 

SH waves are reflected totally and SV and P waves reflect partly into each other. In the 

vicinity of boundaries thus, there is interaction not only by way of reflection and 

refraction but also by conversion of shear and longitudinal modes into each other. By 

means of repeated reflections, boundaries have the effect of guiding waves along their 

surface, and their superposition eventually gives rise to different guided wave modes. 

 

Thus guided ultrasonic waves arise as solutions to the field equations along with some 

specified boundary conditions. In the free plate problem for instance, the tractions at the 

plate surfaces must vanish. This causes bulk SH waves to reflect totally from the two 

plate surfaces and eventually, superimpose to give guided SH modes having particle 

displacements parallel to the plate surface. The mutually coupled interactions of bulk SV 

and P waves with the plate surface give rise to Lamb modes whose particle 

displacements lie entirely along the plate cross section. A look at the simpler case of 

construction of solutions for the SH guided wave modes can be instructive on how 

different characteristic features of guided waves come about. This is illustrated in Figure 

1.2.  

 

At the free boundaries of a plate, bulk SH waves reflect totally and only into SH waves. 

Propagation along the plate length requires that the wavevector component remain 

constant along this direction. Moreover for waveguides with lossless boundaries, mode 

solutions are travelling waves along the waveguide axis and resonant standing waves in 
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the transverse direction: this is the ‘transverse resonance’ condition and this simplifies 

analysis. Transverse resonance further requires that partial waves returning to the same 

point on the plate surface, after a round trip through the plate thickness, must experience 

a phase shift that is an integral multiple of π2 . Thus if h is the plate thickness, the 

wavenumber component along the thickness is kh and the constant component along the 

plate length is β=lk  we have: 

π22 ⋅=⋅ nhkh  or 
h

nkh
π

=  where ...)3,2,1,0(=n                    (1.5) 

since the shear wave speed Vs =  
k
r
ω

 , here: 
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Equation (1.6) is the dispersion relation for SH guided waves and reveals some key 

features of guided waves in general. The characteristic wavenumber β  is frequency 

dependent and thus the group velocity, the velocity of a packet of waves, becomes  

frequency dependent  or ‘dispersive’ and also differs from the phase velocity, the 

velocity of individual waves. A graphical representation using the slowness, 1/Vs will 

throw further light on the physical meaning of this important relation. Since incident and 

reflected partial waves would have transverse wavevector components of 
h

nπ
+  and 

h
nπ

−  

respectively, the slowness curve for an isotropic material, which is just a circle, can be 

seen, as shown in Figure 1.3, in terms of the incident and reflected partial wave angles. 

At very high frequencies the angle of incidence increases and the partial waves propagate 

almost wholly along the plate length. With decreasing frequency, the angle of incidence 

decreases until it becomes zero at  sV
h

n
⎟
⎠
⎞

⎜
⎝
⎛=
πω  and below this ‘cut-off’ frequency, there 

is no propagation along the plate and β  becomes imaginary. Thus at each frequency, a 

number of modes can exist (for ...)3,2,1,0(=n etc), the exact number being determined 
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by the frequency cut-off values for the different modes. And by the transverse resonance 

principle again, each mode will have a characteristic variation of field quantities like 

displacement and stress through the waveguide structure, called the ‘mode shape’. These 

features of guided waves are captured by the different representations of the dispersion 

relation. Figure 1.4 shows the group velocity dispersion curves for Shear Horizontal (SH) 

modes in a free plate, with the different orders named 0, 1 etc. Figure 1.5 shows the 

displacement mode shapes for the nondispersive SH0 mode and the SH1 mode.  

 

Figure 1.6 shows the group velocity dispersion curves for Lamb modes in a free plate. 

The symmetric and antisymmetric Lamb modes are labeled ‘S’ and ‘A’ followed by their 

respective orders. 

 

1.3 Guided wave inspection and resolution issues 
 

Guided waves can travel without attenuation for long distances along lossless 

waveguides and this fact has been used to employ them as screening tools in structures 

such as plates and pipes. Typically, fundamental modes at low frequency-thickness are 

used and defective regions in waveguides are detected from waves scattered by them. 

The scattered waves also contain signatures of the features of the defects and this helps 

estimate their severity. At the very low frequencies used for inspection for instance, the 

strength of the reflection of the fundamental extensional or torsional mode from 

circumferential cracks is approximately proportional to the cross sectional area removed 

by them[20, 40].  

 

However, the application of guided waves for defect sizing, as compared to simple 

screening is a more challenging task. Firstly, the low frequencies of operation lead to 

long wavelengths for the interrogating signals and this imposes limits on the smallest 

defects that can be detected and sized. Further, for most industrial applications, the 

maximum through-wall depth of the defect is the critical parameter to be known. In 

current guided wave based pipe testing, the extent to which axisymmetric modes convert 

to non-axisymmetric modes relates to the circumferential extent of the defect [31, 41, 42]. 
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If the defect is known to be a crack, in theory, this can be used in conjunction with the 

cross section information to arrive at the crack depth. But the low frequency mode 

conversion of the axisymmetric modes to non-axisymmetric modes is not very sensitive 

to changes in circumferential extents less than 15% of the pipe circumference. Therefore, 

given a reflection indicating a certain cross section removal, current screening-oriented 

systems cannot, for example, distinguish a crack that runs 50% through the pipe wall but 

spans only 3% of its circumference, from a less critical one which runs only 10% through 

the pipe but spans 15% of its circumference. More generally, defects may be corrosion 

patches, whose axial extent impacts the reflection [20] and thus another unknown 

quantity enters the picture. For screening applications, a strategy for tackling this 

problem has been developed [20] but though this is helpful, it does not go far enough in 

improving the sizing accuracy.  

 

1.4 Higher resolution guided wave inspection: possible approaches 
 

The fall in sensitivity due to the long wavelengths used and the inability to discriminate 

deep defects from shallow ones in current methods is the main stumbling block on the 

path to improved resolution. Two possible approaches could be taken to improve the 

sensitivity.   

 

1.4.1 High frequency regime 
 

Working at higher frequency-thickness is an immediate idea. For a given thickness, 

higher operating frequencies provide shorter wavelengths and also present the possibility 

of using information from mode conversion. Approaches such as the reflection 

coefficient matrix method demonstrated for the case of transverse cracks in rail [2] could 

then be applicable. Different features and defect types would have a characteristic matrix 

consisting of reflection coefficients for each combination of reflected and transmitted 

modes, which could be used to identify and size defects. But higher frequencies also 

allow multiple and dispersive modes with complex mode shapes and dealing with these 

is the main issue with this approach.  
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1.4.2 Lower frequencies 
 

Alternatively, current operating frequencies could be retained, but a solution for the 

problem of resolution sought by other means such as improved array imaging. Even if 

such methods can just yield information about lateral size of the defect, then they can be 

readily used with available inspection techniques to obtain the depth information. The 

obvious advantages are the fewer modes and simpler mode shapes. 

 

1.4.3 Adopted method 
 

The overall project aims to investigate both possible approaches and propose a suitable 

solution based on the findings. The key to assessing their performance and relative merits 

is to understand the interaction of the guided wave modes existing at the respective 

frequency regimes, with defects. The work reported here concerns this part of the project 

and complements the work of other researchers in the NDT Group who are developing 

imaging procedures and defect-sizing strategies [43, 44].  In the high frequency approach, 

this will reveal how the different defect types, configurations and dimensions influence 

the reflection. This information can then be used to study mode conversion effects, select 

appropriate modes or develop multiple-mode methods. In the low frequency approach, 

this will provide data that will be processed by the different imaging algorithms. Further, 

detailed study of the mode interaction with defects, including effects such as diffraction, 

will help in enhancing the resolution limits. The method is therefore, first to understand 

this interaction by means of simulations, followed by confirmation by either analytical or 

experimental or both means. Finally, the appropriate method and strategy can be used as 

the basis on which a higher resolution inspection system is constructed.  

 

1.5 Summary and thesis outline 
 

In this chapter, the motivation for improving the resolution of guided wave inspection 

was stated and elucidated by outlining the concepts underlying current systems and their 
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limitations. Also two possible approaches to achieving higher resolution were 

highlighted and the method adopted in this thesis was introduced. The next chapter 

reviews the theory of guided wave scattering, starting from roots in bulk ultrasonic wave 

methods. Some of the principles introduced will be used through the rest of the thesis to 

provide analytical confirmation and gain physical insight into the results.  

 

Chapter 3 examines the high-frequency approach from the point of view of improving 

the resolution of inspection. Both plates and pipes are considered and only one 

fundamental mode is assumed in the incident field but a multiple mode scattered 

response is obtained by operating at relatively high frequencies. Finite Element (FE) 

analysis is used to study the interaction of the A0 mode in a plate and T(0,1) mode in a 

pipe with long planar cracks, and 2D models are sufficient because of the simple defect 

geometry. A simplified analytical treatment is used to understand the physical basis 

behind the observed reflection behavior. The correspondence between torsional modes in 

a pipe and shear horizontal modes in a plate is also presented. The implications of the 

results are then discussed in terms of sensitivity of reflection to smaller defects and 

differentiation between thickness-wise deep defects from the shallow ones.  

 

The first part of Chapter 4 (Section 4.1) serves as an introduction to the work in the rest 

of the thesis. This part presents FE simulation studies of the interaction of low-frequency 

transducer arrays with planar cracks in a thin plate. The fundamental shear horizontal 

plate mode SH0 is chosen because of its simple properties and its correspondence with 

the fundamental torsional mode T(0,1) which is used in current pipe inspection systems. 

Encouraging implications for sizing applications, arising from parallel array imaging 

work at the NDT Group using these simulation results, are then discussed. In the light of 

these developments, the next three chapters of the thesis study the low frequency 

scattering of circular-crested SH0 waves by planar cracks in some detail.  

 

The rest of Chapter 4 considers the simple case of through-thickness cracks in an 

isotropic plate and the symmetric incidence problem where a line from the wave-source 

bisects the crack face at 900. FE simulations are employed to obtain trends which are 
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validated by experiments and theoretical analysis. The influence of the crack length and 

of the location of source and measurement positions on the specular reflection from the 

crack face is first examined. These studies show that low frequency short range scattering 

is strongly affected by diffraction phenomena, leading to focusing of energy by the crack 

in the back-scatter direction. Study of the diffraction from the crack edges reveals 

contributions due to a direct diffraction at the edges and multiple reverberations across 

the crack length. A simple diffraction model is shown to adequately represent cracks up 

to moderate lengths, providing an easy means of estimating the far-field of the waves. 

The presence of multiple diffraction components is quantitatively established and surface 

waves on the crack face are identified as equivalent to low-frequency symmetric modes 

of rectangular ridge waveguides. 

 

Chapter 5 continues with through-thickness cracks, but incorporates the insights from 

Chapter 4 to study the more general problem of non-normal SH0 mode incidence. FE 

simulations are used to obtain trends which are then subject to analytical study and 

experimental confirmation. The influence of the incidence angle on reflection 

behaviour is first studied in terms of two complementary cases, that of normal 

incidence and that of specular reflection at various oblique angles. The normal 

incidence study suggests that for a given incidence angle, the peak reflection is 

concentrated around the specular direction, while the oblique incidence studies show 

that maximum specular reflection occurs in the case of normal incidence. The variation 

of diffraction with angles of incidence and monitoring is then taken up and this shows 

that when the first diffraction from the crack edges can be separated, its angular 

dependence can be obtained from bulk wave literature on similar scattering problems. 

 

Chapter 6 further extends the investigation to consider low-frequency SH0 mode 

scattering by part-thickness cracks and explores its relationship with that from through-

cracks. The symmetric incidence case is studied using FE simulations validated by 

experiments and analysis, and conclusions are inferred for general incidence angles. 

The influence of the crack length and the monitoring distance on the specular reflection 

is first examined, followed by a study of the angular profile of the reflected field. With 
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each crack length considered, the crack depth and operating frequencies are varied. For 

all crack depths studied, the trend of the results is identical to that for the corresponding 

through-thickness case and the values differ only by a frequency dependent scale factor. 

Theoretical analysis is used to interrogate the physical basis for such behaviour and 

estimates are suggested for the scale factor- exact for the high-frequency scattering 

regime and empirical for the medium and low-frequency regimes.    

 

Finally Chapter 7 summarizes the findings in the preceding chapters and discusses the 

bearing on the problem of improving the resolution of guided wave imaging. Directions 

for future work are also suggested.  
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Figure 1.1 Example of applications where the areas of concern are not directly accessible: 

regions of pipelines embedded in concrete. 
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Chapter 2 
 

Elastic wave scattering in isotropic materials 
 
2.1 Introduction 
 

Understanding the interaction of wave modes with defects in materials is of crucial 

importance for the development of ultrasonic guided wave NDE methods. By analogy 

with light waves we can picture this interaction: obstacles can cause waves to reflect 

back and also diffract or bend near their boundaries. This is illustrated in Figure 2.1.  The 

direction of mirror-like reflection from an object is called the direction of ‘specular 

reflection’. While scattering is the general term used to designate the wave-defect 

interaction, specifically, ‘diffraction’ is the term used to refer to phenomena in the off-

specular directions. Study of diffraction effects means that, as well as the specular 

reflection we also consider the detailed scattering behaviour around the defect. 

 

This chapter reviews the basic theory of elastic wave scattering in order to clarify the 

physics and introduce analytical tools which we will use in the rest of the thesis. In view 

of this, purely numerical methods are not considered and only references describing them 

will be quoted. First the basic governing equations, and the emergence of guided 

ultrasonic waves as the superposition due to repeated reflections in the presence of 

boundaries, of elastic waves in unbounded media, are presented. Methods in elastic wave 

scattering are then reviewed and the guided wave problem is discussed through the ideas 

introduced. Both the vector notation and the indicial notation for tensors are used. 
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2.2 Governing equations and their solution 
 

Ultrasonic waves arise out of small elastic disturbances in media, whose motion is 

described by the Navier equations:  

(2.1) 
iijij uf &&ρσ =+,

 

where the indicial notation has been used and the comma symbol denotes differentiation, 

ijσ are the stresses,  are the components of the body force, iff = ρ  is the material 

density, and  are the displacements.  iuu =

 

Making use of the constitutive relations in linear elasticity klijklij C εσ =  where 

 and the strain-displacement relationsijlkklijjiklijkl CCCC === )(
2
1

,, ijjiij uu +=ε , so 

that in general, lkijklij uC ,=σ  equation (2.1) becomes 
 

  (2.2) 
iijlkijkl ufuC &&ρ=+,

 

In the isotropic problem where only two independent elastic constants λ  (= C1122) and 

µ  (= C2323) exist and in the absence of body forces, this reduces to the well known form: 

 

(2.3) ijjiijj uuu &&ρµµλ =++ ,, .)(
 

In vector notation, this can be written as 
 

2

2
2)(

t
uuu

∂
∂

=∇+•∇∇+
r

rr ρµµλ (2.4) 
 

The solution to equation (2.4) is usually obtained through the Helmholtz decomposition 

of the displacement  in terms of scalar and vector potentials ur Φ  and such that  Ψ
r

 

0   and    =Ψ•∇Ψ×∇+Φ∇=
→→→

u (2.5) 
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Substitution in equation (2.4) leads to two wave equations for the two potentials 
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This reveals how in the bulk of the medium, away from boundaries, only two types of 

ultrasonic waves exist, the longitudinal or pressure (P) waves and transverse or shear (S) 

waves propagating with velocities  22

ρ
µλ +

=Pc  and 
ρ
µ

=2 Sc  respectively. 

 

In the presence of boundaries, as described in Chapter 1, additional physical conditions 

apply which cause reflection and refraction of elastic waves and also the conversion of 

shear and longitudinal waves into each other. By means of repeated reflections, 

boundaries have the effect of guiding waves along the structure, and their superposition 

eventually gives rise to different guided wave modes, as shown in Figure 2.2. Therefore 

we can expect to develop methods of studying guided wave scattering problems from 

principles developed for bulk waves. Some significant bulk wave scattering methods are 

considered in the next section. In each of the subsections, the pertinent methods are first 

discussed and then the mathematical basis behind them is presented.  

 

2.3 Bulk elastic wave scattering 

 

The scattering of waves from flaws, inhomogeneities or artefacts in media has been a 

subject of research in many fields over the past hundred years. Specifically, the studies in 

the fields of acoustics and electromagnetics laid out the foundations of scattering theory. 

Sound waves in air or non-viscous liquids and two-dimensional electromagnetic wave 

problems can be studied using a single scalar potentialΦ , while general electromagnetic 

wave problems require a single wave equation involving the vector potentialΨ
r

. The text 

by Jones (Clarendon Press, 1986) [46] provides an overview of methods in these areas, 

while the classical text by Morse and Feshbach [47] sets an excellent rigorous basis of 
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the various methods of analysis. A comprehensive review of exact and approximate 

methods in electromagnetics and acoustics can also be found in the book by Bowman et 

al (North-Holland, 1969) [48]. The more complicated elastic wave scattering involving 

the propagation of two non-degenerate particle polarizations, is built upon these 

developments. These in turn, directly set the basis for the more recent development of the 

theory of guided elastic wave scattering. The terms ‘elastic wave’ and ‘elastodynamic’ 

are used interchangeably in this chapter and through the rest of the thesis. 

 

The standard theory of elastic wave scattering has been discussed in a number of texts 

(for ex., Graff (Clarendon Press, 1975) [49] Achenbach (North-Holland, 1973) [50]). The 

structure of this chapter is based on that in Harker (IOP Publishing, 1988) [51], but the 

content is a broad synthesis from a number of sources, both research papers and texts.  
 

The elastic wave scattering problem shown in Figure 2.3 above is one of finding 

solutions to the wave equation (2.1), which also satisfy conditions at the boundaries of 

the artefacts.  In NDE applications these are usually of the types: 
 

 (i) Rigid boundary: the Dirichlet problem- particle displacement vanishes on the 

boundary. In indicial notation, 

(2.7) 0=boundary
iu

 

(ii) Cavity: the Neumann-type problem- the normal traction vanishes on the boundary, 
 

0)( =boundary
jij nσ (2.8) 

 

(iii) Continuous fields: mixed boundary conditions- normal traction and particle 

displacement are continuous across the boundary, 
 

art
jij

mat
jij

art
i

mat
i nnuu )()(; σσ ==        (2.9) 

 

In addition, the scattered fields must respect the radiation conditions which usually 

stipulate that they must be outgoing at infinity and appropriate edge conditions (for 

example, crack tip conditions) if the obstacles have sharp edges.   
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2.3.1 Exact solutions 

 
2.3.1.1 Wave function expansion method  

 

The problem of solving partial differential equations can be simplified to one of solving 

several ordinary differential equations, if solutions which are products of several 

functions each depending on only one variable can be found [52]. This is the idea behind 

the wave function expansion method (also called the ‘eigenfunction expansion’ or the 

‘variable separation’ method), which seeks variable-separable solutions to the wave 

equations in (2.6). If a defect is bounded by constant coordinate surfaces of a standard 

coordinate system in which the wave equations permit such separation, this method can 

be applied. The solutions are obtained as ‘expansions’ or linear combinations of 

eigenfunctions of the resulting ordinary differential equations, which are often special 

functions with known properties. The unknown coefficients in the expansions are then 

evaluated from the system of linear equations resulting from applying appropriate 

continuity conditions at the boundaries of defects.  

 

Mathematically, let the total displacement field totur  in the unbounded medium be 

considered as the sum of incident and scattered fields, incur and scur , 
 

scinctot uuu rrr
+=  (2.10) 

 

Through the Helmholtz decomposition of the displacement vector, we will have two 

differential equations to be satisfied in terms of scalar and vector potentials  andΦ Ψ
r

, as 

given by equation (2.5).  

 

Let us first consider the relation for the scalar potential, equation (2.6a). If we seek 

variable separable solutions in the coordinate directions Ui such that  
 

∏==Φ
j

jj UfUfUfUf )()()()( 332211                            (2.11) 
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Using the well known expression for the Laplacian operator in curvilinear coordinates 

(see for ex., [53]) and writing in the frequency domain, for (2.6a) to be valid we should 

have 
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 are scale factors of the coordinate system with a position vector 
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Lumping  with the term in coordinate direction ‘3’ without loss of generality, we find 

that equation (2.11) can be separated into ordinary differential equations only when we 

can find constants 
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which will further happen only when  are eigenfunctions of the respective differential 

operators on the left hand side of each equation in (2.13). Such eigenfunctions usually 

also need to be orthogonal to satisfy the boundary conditions and this happens only for a 

limited number of coordinate systems. For the scalar wave equation thus, this happens 

only for 11 coordinate systems, enumerated in the book by Harker (p 67, Ch 3)  [51] 

if

 

Turning to the equation for the vector potential, (2.6b), we see that actually this is a set of 

three equations for the three components ii êΨ ofΨ
r

: 
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Except for Cartesian coordinates, all three components can occur in all three equations 

and this coupling makes finding solution to the vector wave equation very difficult. But 

if the scale factors are such that one of them say  is constant and  is independent 

of , the term 

3h 12 / hh

3U Ψ×∇
r

 with 0=Ψ•∇
r

 in the Helmholtz decomposition can be written in 

terms of two scalar potentials ψ  and χ  such that [54] 
 

)ˆ()ˆ( 33 ee ⋅×∇×∇+⋅×∇=Ψ×∇ χψ
r

                             (2.15) 

 

The vector wave equations in (2.6b) then yields two scalar wave equations in  ψ  and χ : 
 

2

2
22

2

2
22  and  

t
c

t
c TT ∂

∂
=∇

∂
∂

=∇
χχψψ                                  (2.16) 

 

Of the 11 coordinate systems that allow the separation of the scalar equation as in (2.12), 

only 6 have scale factors permitting a decomposition of the type (2.15). These are the 

rectangular, circular, elliptic and parabolic cylindrical, spherical and the conical systems 

[55]. When cylindrical symmetry is satisfied, parabolic, oblate spheroidal and prolate 

spheroidal systems also join the list.  

 

When such separation is possible, incur and scur  can be written in terms of expansions of 

eigenfunctions , and  of the wave equations injf jg jw ϕ , ψ  and χ  through unknown 

coefficients , and  as  jmA jmB jmC
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The stresses can be obtained from these using the constitutive relationships and the 

strain-displacement relations. Finally, the expansion coefficients are found by applying 

suitable boundary conditions from equations (2.7) - (2.9) and the radiation conditions.  
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In theory by this method solutions to any degree of accuracy can be found by extending 

the truncation limit of the summations in (2.17). But mixing of the eigenfunctions due to 

the boundary conditions in the general elastodynamic case further restricts the choice of 

coordinate systems to the rectangular, circular cylinder and spherical coordinate systems 

[51] [55].  The early literature thus focussed on scattering from simple defects such as 

circular or cylindrical inclusions or flaws. Scattering problems involving more 

complicated defect geometries were solved under very specialized conditions of 

symmetry. The extensive review by Guz’ et al. (1978)  [56] covers many early studies on 

scattering while the monograph by Pao and Mow (Crane Russak, 1973) [55] covers the 

range of problems which are analytically solvable.  

 

2.3.1.2 Integral representations and the integral equation method  

 

As noted in the previous subsection, solutions using the wave function expansion method 

are hard to obtain for defect geometries other than spherical and circular cylindrical. 

Even in special cases (for instance, that of a spheroid studied in Oien and Pao (1973) [57] 

with axisymmetric excitation) where the symmetry allows an exact solution, the 

convergence deteriorates and the solution for limiting cases cannot be obtained (see Datta 

and Sangster (1974) [58]). Although the scattering from some types of cracks can be 

treated by this method by considering them to be limiting cases of elliptical or parabolic 

systems, the complicated eigenfunctions encountered effectively rule these out. A rare 

example of the study of scattering from cracks by this method is the work of  Harumi 

(1961, 1962)  [59, 60] using elliptically cylindrical coordinates and Mathieu function 

expansions, but even he was able to present solutions only in the long wave length 

(Rayleigh) limit. Thus for a large class of elastic wave scattering problems, other 

methods of solution must be constructed. Such methods often arrive at an integral 

equation (integro-differential equation to be more precise) as their end result, which can 

be evaluated either numerically or ‘exactly’ in terms of a set of expansions.  

 

The earliest routes to arrive at integral equations for solving scattering problems were 

using transform methods (Laplace, Fourier, Hankel etc). When symmetries in the 
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configuration – defect and incident wave- are such that the scattering problem is reduced 

to only two dimensions, transform methods are effective. The scattering of elastic waves 

from semi-infinite cracks using this method usually requires the application of techniques 

such as the Wiener-Hopf [61, 62]. Transform methods with finite-width ‘strip’ cracks or 

circular or ‘penny shaped’ cracks lead to simultaneous ‘dual integrals’. Mal, (1968, 1970) 

[63-65], Sih and Loeber (1968, 1969)  [66, 67] and others  considered  such classes of 

crack problems which allowed simplifications by way of symmetries. 

 

Physically, the scattering of elastic waves comes about from an obstacle excited by the 

incident waves acting as a secondary source, as described by Huygens’ Principle. The 

mathematical basis for this principle as applicable to acoustic (scalar) waves is given by 

Helmholtz’s integral formulas in the steady state and Kirchhoff’s generalization for 

arbitrary time-dependence [55]. Based on analogous results for elastic waves, it is 

possible to derive an alternative integral representation for the scattering problem, which 

is more direct and intuitively closer to the physics. The paper by Pao and Varatharajulu 

(1976)[68] where Helmholtz and Kirchhoff type formulas are systematically derived for 

both surface and volume scattering through the application of the divergence (Green’s) 

theorem is notable among the early work. Gubernatis et al. (1977) [69] highlighted many 

important aspects of elastodynamic scattering, arriving independently at an integral 

representation. Reciprocity theorems in conjunction with the Green’s function present 

another powerful and elegant route in arriving at such relations, becoming the standard 

conventional method over the years. Tan (1975, 1977) [70, 71], Varatharajulu (1976) 

[72], Kino (1978) [73], Auld (1979) [74], Kino and Khuri-Yakub (1992) [75], and more 

recently, Achenbach (Cambridge University Press, 2003) [76] and Achenbach (2006) [77] 

provide a comprehensive overview and highlight the significance of reciprocity relations 

in elastodynamics. The book by de Hoop [78] can be consulted for further reference in 

this regard.  

 

Through the rest of this thesis, an integral representation for the scattered displacement 

derived from reciprocity relations is used to bring physical insight to the different studies. 

For this reason, here the key results leading to the representation integrals and integral 
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equations through this method for time-harmonic waves, are viewed based on the work 

in [68], [70], [77] and [79]. The difficulties in solving the equations will be highlighted.  

Integral representations for the scattered field can also be obtained by other approaches: 

for example through conservation integrals as described by Zhang and Gross 

(Computational Mechanics, 1998) [80].  

 

Reciprocity theorems relate the displacements, tractions and body forces for two 

different loading conditions in a given medium. If these two conditions be given by 

superscripts I and II, the Navier equations for the two ‘states’ in an elastic body yield, 
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When all fields are time harmonic, (i.e., they are proportional to ) we have tie ⋅ω
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Combining 2.19a and 2.19b suitably, invoking the symmetry of the stiffness tensor and 

employing Gauss’s divergence theorem we obtain the global reciprocity theorem for 

time harmonic fields for a region V with boundary S and unit outward normal iienn ˆ=
r : 

 

∫∫ −=−
S

j
II
i
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ij
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i
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ij
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i
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i

I
i dSnuudVufuf )()( σσ (2.20) 

 

We can observe that in the absence of body forces, equation (2.20) becomes apparent as 

a consequence of the familiar principle of virtual work in static elasticity. In view of the 

principal result in elastostatics due to Betti and general extension considering 

elastodynamics due to Rayleigh, it is some times called Rayleigh-Betti reciprocity 

relation.  

 

Representation Integrals The reciprocity relation in equation (2.20) can readily be used 

to obtain an integral representation for waves scattered by an obstacle in an otherwise 
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homogenous medium. Let the obstacle of volume V bounded by a surface S with unit 

outward normal  be wholly located within a large region of volume Vnr R and outer surface 

SR. For simplicity, we assume SR to be a sphere having a large radius  and centred 

at the observation point, Q. These details are shown in Figure 2.4.  

∞→R

 

We again let the displacements and stresses { }tot
ij

tot
iu σ,  giving the total field in the 

unbounded region VR to be composed of the incident field { }inc
ij

inc
iu σ, and the scattered 

field{ }sc
ij

sc
iu σ, . The incident field is assumed to be generated by sources in VR in the 

absence of any other sources including those caused by the obstacle. In this light, the 

scattered field is equivalent to { }inc
ij

tot
ij

inc
i

tot
i uu σσ −− ,  and seen to satisfy the wave 

equation without any body force term.   

 

Let us first consider the domain V bounded by the obstacle surface S and take two 

auxiliary elastodynamic states: state I is the incident field and state II is the field at any 

position  in the free medium due to the application at position pr rr of a unit point 

force . The three-dimensional delta function  tiω ˆ)( eerpf ii
rr

−= δ )( rp rr
−δ  has the 

property: 
 

                             (2.21) 
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where  is the unbounded region outside the obstacle.  VVR −

 

The response due to such an input is the field { })|(),|( ;; rprpG ikjik
rrrr

Σ  where )|(; rpG ik
rr is 

the second rank Green’s displacement tensor giving the displacement component in the 

 direction at position  due to the force applied in  direction at kê pr iê rr and )|(; rpikj
rr

Σ  is 

the corresponding third rank Green’s stress tensor; both G and Σ  are symmetric in pr  

and rr . In the indicial notation, the displacements and stresses { })|(),|( pG
k rpru G

kj
rrr σr at pr  

relate to { })|(),|( ;; rprpG ikjik
rrrr

Σ  as iik
G
k erpGrpu ˆ)|()|( ;

rrrr
=  and iikj

G
kj errp ˆ)|p()|( ;

rrrr
Σ=σ . 
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Applying these as the values for the two states in the reciprocity relation (2.20), we find:  

 
 

  
( )[ ] ( ) ( )[ ]∫∫ ⋅−Σ=−−

S
kij

inc
ij

inc
ijkij

V

inc
kiki

I
i dSrsGnssunrsdVpuerprpGf )|()()()|()(ˆ)()|( ;;;

rrrrrrrrrrr σδ

(2.22) 

Making use of the definition in (2.21) and noting that the sources that generate the 

incident field lie outside the obstacle, we obtain for points Vr ∈r with point outward 

fromV , 

jj en ˆ
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We then turn to the domain VVR −  bounded inside by S and outside by SR (shown shaded 

in Figure 2.4) and take the two auxiliary states: state I is the scattered field in the 

medium due to (secondary) sources on the surface of the obstacle and state II again is the 

response to a point force applied at the required observation point Q. Substitution in the 

reciprocity relation (2.20) yields: 
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where the normals are directed outward from the volume , meaning that on 

the surface S of the obstacle, they point into it. 

jj en ˆ VVR −

 

Invoking (2.21) again, dropping the body force term since all secondary sources lie on or 

inside S and rearranging the terms and letting ∞→R , we have for +∈Vrr (= VVR − ): 
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The term )(rk
rη given by (2.26) above vanishes due to Sommerfeld-like radiation 

conditions for elastic waves which stipulate that when there are no sources at infinity, the 

energy flux through a sphere at infinity should be in the outward direction.  

 

Employing the p /r rr symmetry in G and Σ , we thus obtain the well known surface 

integral representation for the scattered displacement:  
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Equation (2.27) is clearly a mathematical statement of the Huygens’ Principle for steady 

state waves: the scattered field arises due to surface sources at the boundary of the 

obstacle. We can also combine equations (2.27) and (2.23) choosing a consistent 

definition for normals as outward-pointing and obtain the formula for the scattered 

displacement in terms of the total field: 
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We also obtain for the total field outside the obstacle the formula,  
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The special situation when the observation point approaches the surface of the obstacle, 

i.e. in the limit sr rr
→  is of particular interest when applying the boundary conditions. In 

this case a slightly different result follows from potential theory, which is not derived 

here, but stated from literature (See for example, [70]): 
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In (2.30) above, the surface integral is to be interpreted as a Cauchy principal value.  
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A volume formulation taking the sources as being distributed within the obstacle rather 

than on its surface is useful when the treating scattering from bulk inhomogeneities. 

Following [68] and [69], the volume integral representation equivalent to equation 

(2.30) is written for VVr R −∈
r

and Vv ∈r as:  
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where ρ and ijlmC  are the density and stiffness of the parent medium, )(vrρ∆ and 

are the differences in material properties between the medium and the obstacle, 

which can in general depend on the position v
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r give the strain field within the obstacle. 

 

The integral formulation for scattering incorporates the continuity conditions across 

boundaries implicitly while assuming the differentiability of displacement and its 

gradient along them. Analogous relations in the time domain can be obtained by 

accounting for contributions at each frequency through the Fourier transform [68].  

 

Integral equations Through the conditions prescribed on the boundary of the obstacle, 

the surface integral representation can be used to derive integral equations for the 

different field quantities. The standard procedure is to let the observation position 

approach the boundary of the obstacle and obtain the values in the limit. For example 

when the displacements at the surface of the scatterer vanish as given by equation (2.7), 

the scattered displacement is obtained from a limiting process such as that in (2.30). We 

obtain a Fredholm integral equation of the first kind for the total tractions, 
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The kernels in equation (2.32) become singular due to the behaviour of Green’s tensor 

when r approaches . s
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A more common example of a scatterer is a cavity which is described by Neumann 

conditions in (2.8). In this case since the total normal traction on the obstacle surface 

vanishes, equation (2.28) reduces to 
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The scattered tractions are then obtained from (2.33) using the general form of the 

constitutive relationships: 
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where is the normal to a fictitious surface enclosing the obstacle at position )(rnw
r rr  

 

Taking the limit sr rr
→  and recognizing that j
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we again obtain a Fredholm integral equation of the first kind for the total displacement 

but this time, the kernels are hypersingular, because of the presence of spatial derivatives 

of the stress Green’s function:  
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Integral equations identical in form to (2.35) are obtained for ideal cracks which are often 

taken to be free of normal tractions: 
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where the integral is now on one of the faces of the crack, say the insonified face  and 

 is jump in displacement across the crack faces, called the 

‘Crack Opening Displacement’ (COD). 

+
S

( ) ( )−+ −=∆=∆ uuuu sctot

 

Care must be taken in evaluating the singular integral equations (2.32) and hypersingular 

equations (2.35) and (2.36) and various procedures are known in literature [76], [80]. For  
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finite cracks, even transform methods ( for ex. Krenk and Schmidt (1982), [81] Datta 

(1979, 1980) [82, 83], Kundu (1990) [84]) yield representations equivalent to the one 

arrived above in (2.36) – thus there is a large body of literature on evaluating these 

integrals; apart from purely numerical methods, the method of moments where the COD 

is expanded in a set of basis functions taking care of edge conditions is widely applied.  

The comprehensive review paper by Bostrom (2003) [85] describes the hypersingular 

integral equation method for cracks in detail and discusses this equivalence. Further 

summaries can be found in the individual works by Martin and Wickham (1983) [54], 

Lin and Keer (1987) [86], Lewis and Wickham (1992) [87]; Lewis et al (1998) [88] 

provide a good overview of these developments. Zhang and Gross (p. 65 in [80]) have 

derived a non- hypersingular traction integral equation for cracks, based on a two-state 

conservation integral. This method shifts the derivative in equation (2.36) entirely on the 

COD, thus circumventing the hypersingularities. 

 
To summarize, the key results of this subsection are the reciprocity theorem (2.20), the 

integral formulas (2.27)-(2.31), and the integral equations (2.32), (2.35) and (2.36). 

 

2.3.2 Approximate analytical methods  
 

In order to solve for scattering problems involving more complex geometries (both 

inclusions and cracks), several approximate analytical methods were developed, and the 

integral equation representation of the scattering problem provided a convenient starting 

point for such methods. Kraut (1976) [89], Datta (1978) [82] and Hackman (1993) [90] 

review some exact and approximate analytical work on elastic wave and acoustic 

scattering. Only a significant few of the large class of such approximate methods are 

discussed here, with the guided wave case in view. The various approximate methods 

could be thought of as applying to different frequency or wavelength regimes.  
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2.3.2.1 Low frequencies 

 

In the limit of low frequency or long wavelength, the Born approximation and the quasi-

static approximation have been used successfully to solve several scattering problems: 

see Domany et al. (1978) [91], Gubernatis et al. (1977, 1979) [92-94], Kino (1978) [73], 

Coussy (1986)[95]. Jain and Kanwal (1982) [96] have provided some extensions of the 

two-dimensional Born approximation results to 3 dimensional problems. Though there 

are a number of ways of arriving at the approximate solutions proposed by these methods, 

here we will follow Gubernatis et al. (1977) [69].  

 

First, an integral representation such as that in (2.30) or (2.31) is obtained for the 

scattered field. In view of (2.10) and since the scattered displacement, ui
sc is obtained as 

a function of the displacements and strains within the scatterer as given by (2.31), we 

write in the indicial notation, 

(2.37) ),( tot
ij

tot
i

sc
i

inc
i

tot
i uuuu ε+=

 

The Born approximation then assumes the displacement field and its gradient inside the 

scatterers (volume defects) or on their surface (cavities, cracks) to be identical to those 

that would be present in the same region of the medium in the absence of the scatterer. 

Therefore in the Born approximation, 

(2.38) ),( inc
ij

inc
i

sc
i

inc
i

tot
i uuuu ε+=

 

The Quasi-static approximation uses the field values that would be due to an applied 

static load, in the long wavelength limit. If  then in this approximation, ti
i

inc
i euu ⋅= ω0

 
),( 0 σε iji

sc
i

inc
i

tot
i uuuu += (2.39) 

 

where is the strain field inside the scatterer under the action of a uniform applied static 

strain field. 

σε ij
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Since the values inside shapes such as ellipsoids, are known uniform constants and have 

been well documented in literature (see Eshelby (1957, 1959) [97, 98]), exact results are 

obtainable for the scattered field. For structures containing cracks or distributions of 

cracks, results from handbooks such as that by Tada et al. (1973) [99] could be used.  

 

In the limit of small perturbations, the static strain fields approach those of strain fields in 

the absence of the scatterer and thus these two approximations yield the same result. 

While the Born approximation gives best results in backscattering, the quasi-static 

approximation applies in general in the long wavelength limit. The long wavelength 

approximations, especially the quasistatic approximation, have been used extensively in 

the past two decades in elastic wave inverse problems (see Rose (1979) [100] Rose (1989) 

[101] Wu (1985) [102] Yamada (2003) [103]) and have also been extended to pulses and 

the time domain(see for ex.,  Rose (1982) [104]). 

 

The quasi-static approximation could also be invoked when solving the scattering 

problem starting with other formulations. Datta and co-workers (1974, 1979) [58, 83] 

presented an equivalent approximate solution using the differential equation formulation 

and a ‘matched asymptotic expansion’ method. Another line of research follows the work 

of Baik and Thompson (1984) [105] and Margetan et al. (1988) [106] who used the 

quasi-static approximation to link their representation of imperfect interfaces by 

interfacial spring models to known static solutions. 

 

2.3.2.2 High frequencies 
 

In the high-frequency limit, elastodynamic ray methods provide an excellent route to 

approximate solutions for scattering problems. Simple geometrical ray theory involving 

reflection and refraction often yields sufficiently accurate results close to the specular or 

near-specular directions. But at other angles diffraction effects can play an important role 

and the Geometric Theory of Diffraction (GTD) (Karal Jr (1959) [107], Keller (1964) 

[108]) formulated to include them within the framework of ray theory provides excellent 

approximations [109], [61].  
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Approximate solutions to the scattered field can also be obtained through the integral 

representation formulas, taking the prediction by ray methods as an estimate of the total 

scattered displacement on the obstacle. Of these the Kirchhoff approximation which 

takes the result given by simple ray theory for total scattered field on the obstacle is well 

known (see Auld (1978) [110], Kino (1978)[73 ], Chapmann (1984) [61] Schmerr et al. 

(1989) [111]); more sophisticated methods which account for diffraction are also 

reported in literature [109]. The book by Achenbach et al. [62] covers ray methods in 

detail, here they are briefly summarized.  

 

These methods are based on constructing high frequency series solutions to the 

governing equations involving terms of the type ( ) nchi −⋅ /ω   (where h is a characteristic 

dimension of the defect and c is the wave speed), which would be valid asymptotically 

as ∞→⋅ ch /ω . In practice, they are known to give useful results even at wavelengths 

comparable to ‘h’ and the results can be extended to the time-domain. Physically, such 

expansions have a simple geometric interpretation in terms of rays and the leading term 

is just what would be predicted by geometrical wave theory, while subsequent terms 

offer corrections to it.  

 

In what follows, we will first see how asymptotic series expansions to the wave field lead 

to predictions of ray behaviour. We will then consider the results for the standard ray 

theory involving reflection and refraction. Finally approximate theories which offer 

corrections and improve the scope of application of ray theory will be introduced. 

 

Standard Ray Theory In describing the ray method, the analysis presented here is 

developed using displacement potentials. For a detailed derivation from entirely 

geometrical considerations and proof of equivalence of these two approaches, the 

classical paper by Keller [112] can be consulted.  Let us consider the wave equation for 

the scalar potential  in the frequency domain, Φ

 

                                              (2.40) 
P

PP c
kk ω

==Φ+Φ∇   where0 22

 54



2. Elastic wave scattering in isotropic materials 

 
 

When we seek solutions to (2.40) of the form  
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rϕ and  are phase and amplitude functions respectively, we obtain: )(rAP
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Since (2.41) must be valid asymptotically as ∞→⋅= ck p /ω , letting , we have 00 ≠PA
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(where (n-1) has been replaced by (n) for ) 2≥n

 

Through a similar expansion for the vector wave potentialΨ
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where  are now vector quantities, we would have S
nA
r

 

[ ] 1 ,)()(2

and  0)()(2        

1                              

1
22

0
2

0

2

≥−∇=∇+∇•∇

=∇+∇•∇

=∇

− nAAA

AA
S
n

S
nS

S
nS

S
S

S
S

S

rrr

rr

ϕϕ

ϕϕ

ϕ (2.45a) 

(2.45b) 

(2.45c) 
 

 55



2. Elastic wave scattering in isotropic materials 

 
and since 0=Ψ•∇

r
, we also have 
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We can now observe from equations (2.41) and (2.44) that the assumed solutions are 

such that =)(rP
rϕ constant and =)(rS

rϕ constant define wavefronts which are surfaces of 

constant phase. The spatial behaviour of the wavefronts is then governed by the eikonal 

equations given by (2.43a) and (2.45a). Rays are given by the vectors Pϕ∇ and Sϕ∇  

which are curves normal to these wavefronts. The transport equations (2.43b-c) and 

(2.45b-d) govern the variation of wave amplitude with the position on the rays.  

 

The properties of the phase and amplitude will be clearer when we examine the solutions 

to the eikonal equations and the lowest order transport equations. Let the parametric 

definition ),( with ),( 21 vvvSvrr ==
rrr

represent a general family of wavefronts, with rays 

defined by fixed and propagating along the unit normal),( 21 vv 21)(ˆ vvvp ×= . Let 

also be the principal directions of the surfaces ),( 21 vv  ),( Svr r  and  be their 

principal radii of curvature

2,1, =kqk

† (see footnote).  Then since 1 2 =∇ϕ from the eikonal 

equation, we should have ϕ∇=p̂  and since the directional derivative of ϕ  in the 

direction of  is given by p̂ ϕϕ
∇•=

∂
∂ p

S
ˆ  , we obtain: 

 
† The radii of curvature are intrinsic properties of any two-dimensional surface embedded 

in three-dimensional space. At any point Q on the surface ),( Svr r , let Cns be the curve 

obtained from the intersection of the surface with a plane N containing the normal vector 

 and a tangent vector . Cp̂ wr ns then represents the normal section at Q and its curvature 

κ  gives the normal curvature at that point. κ  varies with the choice of the tangent vector, 

and its maximum and minimum values ),( 21 κκ are called the principal curvatures, whose 

negative reciprocals  ),()/1,/1( 2121 qq=−− κκ   are the principal radii of curvature. The 

tangent lines corresponding to these principal radii are called the principal directions. 
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S
S
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∂
∂ ϕϕ or  1 (2.46) 

 

where S is the arc length measured on a ray, starting from the wavefront corresponding to 

the wavefront at S = 0.   )(0 vr rr

 

With the help of the same set of arguments, it can also be shown that  
 

)(ˆ)(),( 00 vpSvrSvr rrrrr
+= (2.47) 

 

which shows that rays defined by fixed ),( 21 vvv =
r

 are straight lines, propagating along 

. )(ˆˆ 0 vpp r
=

 

Through Rodrigue’s formula for rotation which gives pdqrd k
rr  =  and making use of 

(2.47) we obtain,  
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with              (2.49) 2,1=+= Sq  ,  0 kqkk

 

where are the principal radii of curvature at S=0. 0
kq

 

Equation (2.49) shows that the principal radii of curvature remain constant along a ray 

and increase linearly with distance on it.  

 

Turning to the transport equations, the general lowest order transport equation is given 

by 

(2.50)   0)()(2 0
2

0 =∇+∇•∇ AA ϕϕ
 

Using (2.46) and (2.47) we obtain 
21

2 11
qq

+=∇ ϕ and noting again that 

S
A

ApA
∂
∂

=∇•=∇•∇ 0
00 ˆ)( ϕ  the above equation (2.50) reduces to: 
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The variable-separable solution can be written for (2.51) as 

 

                                               (2.52)   )(1),(
21

0 vA
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where as given by (2.49), and Sqq += 0
11   Sqq += 0

22   

 

This completes our discussion of the ray theory: we find that wavefronts propagate along 

straight lines as given by equation (2.47), with the radii of curvature preserved and 

increasing linearly along them according to (2.49). The amplitude of the waves varies 

along the rays according to equation (2.52).  

 

The standard ray theory involving reflection and refraction is well developed: the 

scattered fields are computed on reflected rays by tracing them back to the obstacle and 

applying the boundary conditions. As stated in chapter 1, these boundary conditions, of 

the nature of continuity conditions, lead to Snell’s law governing the scattering behaviour.  

Following the analysis in this subsection in the light of equations (2.41) and (2.44) giving 

the representation of a wave as a ray and equations (2.47) and (2.52) governing its spatial 

evolution, incident rays of a type A (which can be P, SV or SH) are written as:  

 

                                               (2.53) AA ϕi k
AA

AA

SAAinc  eP) v(F
qq

)q(qu ˆ
21

21 r
=

 

where the product  has been evaluated on the plane S from which reflection or 

refraction is happening and 

SAAqq )( 21

)(vF r  denotes the constant definition of the wavefront in the 

 plane; The unit vector P  gives the polarization of the wave type, with 

for incident longitudinal waves and for shear waves, if h denotes a unit vector 

in the ‘horizontal’ direction, for SH waves and for SV waves.  

),( 21 vv ˆ

pA  P̂ ϕ∇= ˆ

ĥP̂A = ph ϕ∇×= ˆ P̂A
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Reflected and refracted rays of type B (which can again be P, SV or SH) are written in 

general as 

                                            (2.54a) 
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(2.54b) 

 

(2.54c) 

 

where  are the simple ‘plane-wave’ reflection and refraction coefficients, well known 

in literature (the reflection coefficients are summarized for example on p. 50 in [62]and 

Ch5 in [50)] 

B
AR

 

The other quantities on the reflected ray are related to those on the incident ray (which 

are assumed to be fully known) through the boundary conditions. If ‘dM’ is the distance 

along a reflected ray from the point of reflection to the point of observation, by virtue of 

the Snell’s law,  

                                               (2.55) )( Ac
cdB

S

A

B
M ϕϕ +=

 

BP̂ are related to  again through Snell’s law, and the radii of curvature on the reflected 

rays obtained by invoking the rotation formula (2.48).  Further, on the plane S, the 

principal radii of curvature of the reflected/refracted rays are the same as those of 

incident rays. 

AP̂

 

For two-dimensional problems only one finite radius of curvature of the wavefront exists, 

which we call q: then (2.53) and (2.54b) further simplify to  
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Kirchhoff approximation This standard geometrical ray theory can be used directly to 

solve elastodynamic scattering problems when the obstacles considered do not have 

sharp edges. By analogy to the well known geometrical optics, the results obtained this 

way are said to constitute the geometrical elastodynamics (GE) field. The GE field is 

quite accurate in describing certain problems such as backscattering from smoothly 

curved objects with a curvature larger than then incident wavelength. But when the edges 

of the object begin to have a strong influence leading to a sharply defined ‘shadow’, edge 

diffraction becomes important and standard ray theory becomes inadequate. A simple 

way to improve the accuracy is to use the GE field as an approximation for the total 

scattered field on the obstacle in the representation integral (2.28), yielding the 

elastodynamic version of the famous Kirchhoff approximation. 

 

In the Kirchhoff approximation thus getot uu rr
= : dividing the surface of obstacle into 

‘insonified’ and ‘shadow’ regions, denoted by say S+ and S— we will then have 
 

( ) ( ) 0  ;  =+=
−+ totrinctot uuuu rrrr (2.57) 

 

Equation (2.28) then yields for the scattered field,  
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For stress-free cracks,  
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If the incident wave is given by (2.53), the reflected fields can be computed according to 

(2.54) noting that the radii of curvature of the scattered and incident rays on the 

scattering surface are the same in the GE theory. It will be useful to write the results for 

incident plane waves: 
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From the general form of these results, we can see that mode-conversion effects and 

those of phase changes on the obstacle can be included in this method. This way, the 

Kirchhoff approximation models the scattering behaviour as if at each element of the 

scattering surface, incident plane waves interact with unbounded interfaces having the 

same normal. Like the Born approximation with which it shares a number of features, the 

Kirchhoff approximation has been used widely in scattering and inverse problems 

Achenbach (1979)[113] Chapman (1981, 1984) [61, 114]  Schmerr (2002) [115]. The 

last quoted work [115] contrasts the Born and the Kirchoff approximations and 

comments on their limitations. Schmerr et al, 1989 [111] presented a framework unifying 

these two approximate methods.  

 

The Geometrical Theory of Diffraction (GTD) The GE field has its limitations- it is 

discontinuous at the boundaries of shadows (defined by Snell’s law) and vanishes totally 

in the shadow region. In reality, energy is continuously radiated into the geometrical 

shadow of the obstacle by waves which travel around its surface, causing ‘diffraction’. 

The Kirchhoff approximation recovers the first singly diffracted field, but even this 

becomes incorrect in the presence of sharp edges. The Geometrical Theory of Diffraction 

(GTD) has been formulated to include the full effects of diffraction within the general 

framework of ray theory. Keller first developed the method rigorously for scalar waves 

and the method was later extended to elastodynamics by Resende (2D case) and in 

general by Achenbach and co-workers.  
 

The GTD presents a correction to the total scattered field of the form: 
 

dgetot uuu rrr
+= (2.62) 

 

The term  representing the diffracted field, offers only an insignificant correction to 

the GE field in the backscatter and specular directions, but contributes strongly in the 

forward direction;  itself is further constructed from components consisting of 

‘primary’ or the first edge diffraction and ‘secondary’ or multiple diffraction:  

dur
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These diffracted fields are constructed analogously to the reflected fields described in 

equations (2.53)-(2.56), with the scattered amplitudes related to the incident ones through 

‘Diffraction coefficients’.  Appropriate ‘canonical’ problems (for example, for crack 

problems, the canonical problem is that of elastic wave scattering from a semi-infinite 

straight-edge crack; for scattering from convex surfaces, the canonical problem is that 

from infinite cylinders see [116]) whose solutions are known are selected and the 

Diffraction coefficients are obtained by comparing the ray solution with them. In the 

usual ray manner, the geometry and the curvature of the wave front as well as the defect 

are then incorporated through the edge conditions, which lead to the generalized Snells 

Law for diffraction.  

 

2.3.3 Numerical methods 
 

In the intermediate frequency regime, several numerical methods, including Finite 

Difference (FD) [117] [118] Finite element (FEM) [119-121] and t-matrix (see [79] for 

an excellent description of the t-matrix method) [122] [123-125] methods have been used. 

The Finite element method scores over the t-matrix method in that it can treat pulses in 

general and is not a single frequency method like the latter. Harumi and Uchida (1990) 

[126] provide a good review of various numerical studies, mainly the FEM. Numerical 

methods are very versatile in that they solve the scattering problem for any frequency 

regime and geometry and in this sense,  can be seen more as experimental simulations 

than analytical solutions. A key issue though, is that they often don’t provide generic 

results as they tend to be constructed for specific cases.  

 

2.4 Guided elastic wave scattering 
 

2.4.1 Exact solutions  
 

Much of the development in guided wave scattering applications can be viewed as 

advancements based on the bulk wave methods. Guided elastic wave scattering problems 
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pose more challenges in their treatment because of the possibility of existence of several 

propagating modes even at low frequencies with increasingly complex, frequency 

dependent mode shapes and their mutual inter-conversion on interactions with flaws.   

 

2.4.1.1 Wave function expansion method  

 

If the defect boundaries lie along constant-coordinate surfaces of the rectangular, circular 

cylinder or spherical systems, it is still possible to use the method of eigenfunction 

expansion. One possible method is to express the guided wave modes directly in terms of 

eigenfunction expansions of the scalar and vector potentials. Alternatively, closer to the 

location of the defect, the scattered field could be expanded in the eigenfunctions of the 

wave equation in a suitable coordinate system, while away from the defect region, the 

field may be thought of as a sum of the possible guided wave modes. The different 

coefficients of expansion could then be determined from the boundary conditions and by 

considering continuity of fields throughout the medium.  

 

Both these methods have been used in solving guided wave scattering problems 

occurring in different contexts. Grahn (2003) [127], Diligent (2002, 2003) [25, 26] have 

used the former method in studying the plate wave scattering from part and through 

cylindrical holes, in the context of NDE of corrosion defects. Castaings  et al (2002) [128] 

have also used this method to study the interaction of low frequency Lamb modes with 

cracks. The latter method, sometimes called the ‘mode matching’ technique, has been 

used to study the interaction of Lamb and guided SH waves with long cylindrical defects 

axially perpendicular to the plane of propagation in the context of NDE of fibre-

reinforced materials, building upon earlier work with bulk elastic waves [129, 130].  

 

2.4.1.2 Integral equation method  

 

Again, the reciprocity theorem along with the Green’s function method could be an 

alternative route to guided wave scattering solutions. Auld and co-workers [74], [131] 

first sensed this and developed a normal mode theory (incorporating the orthogonality 
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relations) and proposed a variational solution in terms of the stress Green’s function for 

an elastic plate. This method was subsequently used for a number of guided SH-wave 

scattering problems[120, 132-134] . 

 

In his classical text, Auld [39] derived a generalized formula for scattering in plates from 

both volumetric defects and cracks using the S-parameter formalism and reciprocity 

arguments. As illustrated in Figure 2.5, if a time harmonic incident wave carrying power 

P is incident upon a scatterer inside in which the displacement (u) and stress (T) fields 

are indicated by subscript 2, and if the fields in the same region of the waveguide, had 

there been no scatterer be indicated by subscripts 1, then the S-parameter formalism 

yields the scattering coefficients for a mode I to be reflected or transmitted into a 

mode R as 
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For crack-like defects, because the normal traction vanishes, this yields: 
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where again is the usual crack opening displacement (COD). u∆

 

It is possible to convert the above equation into a volume integral formulation: 
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(2.66) 
 

It is not difficult to see that these results are similar to the results for the bulk waves 

presented in equations (2.27)-(2.31). Ditri (1994) [135] later extended this derivation for 

the more complex case of guided wave scattering from circumferential cracks in hollow 

cylinders. 
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2.4.2 Approximate analytical methods 
 

Because of the limited number of problems that can be solved exactly and the larger 

difficulties posed by the guided wave case, approximate methods have played a large part 

in the analysis of guided wave scattering problems.  

 

2.4.2.1 Approximations following from the Integral Equation method  

 

Even at an early stage of development of guided wave methods, Auld and co-workers 

proposed the usage of the quasi-static approximation (described earlier for the bulk 

elastic wave case), valid in the low-frequency limit. Therefore most of the works quoted 

using the reciprocity approach (including Tan and Auld [131] Fortunko [132] and Ditri 

[135]) arrived at a quasi-static solution to the problems they considered. Tien et al [136] 

applied this method to scattering of surface waves from cracks and flaws.  

 

Following the work of Ditri (1994) [135], Lowe and co-workers applied the method to a 

number of guided elastic wave crack scattering problems and provided important insights. 

In Alleyne et al (1998) [42], they clarified the validity of the quasi-static application in 

the light of an incorrect derivation by Ditri for the variation of the reflection coefficient 

of the L (0, 2) mode with the circumferential extent of a crack.  In Lowe et al (1998) [40], 

they constructed the reflection coefficient variation with the assumption of a simple 

profile for the Crack opening displacement (COD), that agreed very well with their 

experimental and FE predictions.  

 

In Lowe and Diligent (2001) [27, 28], they used arguments based on the low-frequency 

quasi-static approximation and the high-frequency Kirchhoff approximation to conclude 

that the Lamb wave scattering problems at frequencies used for inspection purposes are 

in a regime where neither of these are strictly valid. But the transition from Low-

frequency to high-frequency behaviour could be observed extremely well in terms of the 

limiting values provided by the two approximations. It is interesting to note that in 

estimating the static COD, they considered a long crack case and used the results from 
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fracture mechanics literature and interpolations. In the light of the discussion of the 

equivalent approximation in the bulk wave case, their analysis could be extended to 

elliptical, circular and needle cracks as well, and fruitful conclusions be drawn. Also, in 

the off-specular directions, the Geometric theory could provide useful approximations. 

 

Additionally, Rokhlin (1980) [137] also proposed the use of a modified Wiener-Hopf 

technique on the lines of that of Maue (as quoted in [114]) for the bulk elastic wave case 

to study of the diffraction of Lamb modes from a class of cracks parallel to the plate 

surface.  

 

2.4.2.2 Approximations using the Wave function expansion method  

 

Other approximate methods suitable to the wave function expansion method have also 

been proposed in the literature. Typically, they seek to reduce the complexity of the 

problem by using some of the available higher order plate theories [127]. Norris and 

Vemula (1995, 1997)  [138, 139] studied the scattering of antisymmetric (flexural) 

modes from circular inclusions in plates using the Mindlin and the Kirchoff plate theories. 

Andronov and Belinskii (1993) [140] used the Kirchoff theory to study the diffraction of 

flexural waves by a crack in an elastic plate. McKeon and Hinders (1999) [141] used the 

Kane-Mindlin extensional theory to study the scattering of low frequency S0 waves from 

circular inclusions in plates. Fromme and Sayir (2002) [142] provided experimental 

confirmation for the validity of Mindlin plate theory in this regime. Chun and Chang 

(2004) [143] provide a good review of literature in this regard. Recently, Wang and Rose 

(2003) [144] have proposed to use the Mindlin plate theory as an effective model for 

damage detection in tomographic applications. 

 

2.4.3 Numerical methods 

 
In addition to the above methods, numerical methods (FEM, BEM) too have played a 

vital role in the study of guided wave scattering problems and the work of Cawley and 

co-workers  [25] [22, 27-29, 40, 145, 146] and Rose and co-workers has led to the 
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understanding of the fundamentals of low-frequency guided wave interactions with 

defects. Rose (2002) [147] provides an excellent review of guided wave scattering 

studies. Again though they serve as versatile simulation tools applicable to different 

frequency regimes and geometries, an issue with numerical methods is that they tend to 

be primarily concerned with specific rather than generic results. 

  

2.5 Conclusions 
 

This chapter reviewed the basics of the theory of guided elastic wave scattering in order 

to identify methods which can be used to illuminate the physics behind the results 

obtained through the rest of the thesis. First the well-known link between bulk and 

guided elastic wave scattering was pointed out, and this helped see how techniques in 

treating the latter originate in and developed from the former. Differential- and integral-

equation based methods in bulk wave scattering were then introduced: the integral 

equation formulation is more intuitive as it gives a direct mathematical representation of 

the Huygens’s principle.  

 

An important route to integral representations is through the elastodynamic reciprocity 

theorem which yields integral formulas for scattering. This formulation also provides a 

convenient starting point for a number of approximate analytical methods: the Born, 

quasi-static and extended quasi-static approximations at low frequencies and the 

Geometric Theory of Diffraction (GTD), Kirchhoff and uniform COD approximations at 

high frequencies are widely used. The Kirchhoff approximation is among the simplest, 

yet it is quite accurate at high frequencies and in the backscattering direction - especially 

close to the specular direction [61] and recent research [148] shows a much wider 

applicability- and can form the basis for a simple analytical treatment of the scattering of 

guided waves. Examples of such treatment can be found in the following chapters of this 

thesis.   
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Figure 2.1 Waves reflect back from obstacles and also diffract near their boundaries. 
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Chapter 3 
 

High frequency-thickness regime 
 
3.1 Introduction 
 

The discussion in Chapter 1 showed that the fall in sensitivity due to the long 

wavelengths used and the inability to discriminate deep defects from shallow ones is an 

important problem affecting the resolution achievable by current inspection techniques. 

This chapter examines the high frequency multimode approach from this perspective. 

Specifically, it seeks to answer whether the shorter wavelengths lead to higher reflections 

for small defects and if a scattered field consisting of many modes provides more 

information about the defect than a single mode response. For simplicity the defect type 

of a planar crack is taken up and only one fundamental mode is assumed in the incident 

field but relatively high frequencies are used to excite a multiple mode scattered 

response. The interaction of the fundamental antisymmetric Lamb mode A0 with long 

surface cracks in plates and that of the axially propagating fundamental Torsional mode 

T(0,1) with full-circumference surface cracks in thin pipes are considered separately. The 

interaction is studied in terms of the influence of the crack depth on the reflection 

amplitude. In the following sections, first the configuration studied is introduced and 

then the procedure for Finite Element (FE) simulations is described. The results are 

validated by comparison with those from similar problems in literature and theoretical 

analysis and then discussed in the light of resolution issues.  
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3.2 Configuration studied  
 

Figures 3.1 (a) and 3.1 (b) show the configurations studied in the plate and the pipe 

studies respectively. Treating a plate as an unwrapped pipe, an ideal circumferential 

crack of vanishing axial extent is located in the cross-sectional plane of an isotropic plate 

or thin pipe, breaking the outer surface and running through part of the thickness. Plane 

waves of the incident mode reflect into all possible propagating modes that can exist at 

the operating frequency. The frequency domain ratio RC of the displacement amplitude 

of each reflected mode measured in a given direction, to that of the incident mode in the 

same direction is calculated, and the influence of the crack depth on the modulus of this 

ratio is examined at particular frequencies. The energy carried by a reflected mode whose 

modal amplitude in the direction chosen for the calculation of RC differs from that of the 

incident mode by a ratio ξ will be given by  (see for e.x., [128]). 2)( RC⋅ξ

 

With plates, the relatively low dispersion of Lamb modes around the peaks or dips of the 

group velocity dispersion curves makes them ideal for choice of the operating frequency.  

As shown in shown in Figure 3.2, suitable regions could for instance be around 2.5 MHz-

mm, coinciding with the peak for the A1 mode, and a dip for the S0 mode, or 4.0 MHz-

mm coinciding with the group velocity peak for the S1 mode. In the present work, the 

plate studies were carried out at two frequency-thickness values: at 2 MHz-mm just after 

the A1 cut off frequency and at 2.5 MHz-mm coinciding with a group velocity peak and 

dip for the A1 and S0 modes respectively. 

 

The torsional modes in a thin pipe correspond to shear horizontal modes (SH) in a plate 

and this point will be referred to again, in a later section of the chapter. Figure 3.3 shows 

the group velocity dispersion curves for axially-propagating torsional modes in a 1 mm 

thick Aluminium pipe of 20 mm inner radius. They can be seen to be almost identical to 

those of the SH modes in an Aluminium plate shown in Figure 1.4. Figure 3.4 further 

illustrates this identity by comparing the displacement mode shapes of the first three 

Torsional and Shear Horizontal modes in these two structures.  
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As there are no peaks or dips in the dispersion curves of torsional modes, the pipe study 

was simply carried out at 4.0 MHz-mm, above the cut-off frequency of the T(0,3) mode. 

 

3.3 Procedure for Finite Element simulations 

 

3.3.1 A0 mode at high frequency-thickness  
 

Figure 3.5 depicts the procedure for the FE simulations for the plate studies along with 

the coordinate axes. The long cracks mean that fields in the plate vary only along U1-U3 

cross-sectional plane perpendicular to the crack and Lamb modes have particle 

displacement solely along this plane. This allowed the plate to be modelled in a two-

dimensional domain, with the assumption of plane strain, using standard elements 

available in the Finite Element package ABAQUS [149]. This means that in effect, a 

section perpendicular to the surface of the plate and along the propagation direction is 

modelled. 

 

Properties of aluminium were used for the model plate which was 1 mm thick and 450 

mm long. A vertical, surface breaking crack was located at 300 mm from one end of the 

plate. These values were selected to minimise the run time for the simulations. The mesh 

consisted of perfectly square elements with 20 of them through the plate thickness so that 

the different crack depths could be accurately described. This allowed around 24 

elements per wavelength at the highest frequencies used, well above the lower limit of 

spatial discretization required for accurate modelling [42, 146]. Cracks were created by 

disconnecting elements along the line defining them. A large number of models were set 

up to obtain cracks of different depths. 

 

With the time domain excitation given by a Hanning windowed toneburst of a certain 

number of cycles and centred at the required frequency, the input displacement histories 

could potentially be obtained from either the ‘Pure Mode Shape’ or the ‘Centre Mode 

Shape’ method [150]. The Pure Mode Shape method imposes the exact mode shape at all 

frequencies in the bandwidth of the signal. The Centre Mode Shape method on the other 
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hand, imposes the mode shape only at the centre frequency of the signal and if required, a 

toneburst with large number of cycles is used to confine the bandwidth around the centre 

frequency. The mode shape of the incident A0 mode varies only a small amount and very 

gradually between 2-3 MHz-mm. Thus a narrow bandwidth signal given by a 50-cycle 

Hanning windowed toneburst along with the Centre Mode Shape method was enough to 

provide the time domain excitation. The large numbers of cycles also helped to lessen the 

effect of dispersion in the reflected S0 and the A1 modes. This was applied as a 

displacement boundary condition at all nodes on one end of the plate, in both the U1 and 

U3 directions, with the amplitude scaled suitably to match the mode shape at the centre 

frequency. The two in-plane displacement components of the A0 mode differ in phase by 

π/2 (see for e.x., [27]). Without loss of generality, the U1 displacement component was 

assumed to have zero phase. Therefore the toneburst for the U3 direction was defined to 

lag behind that for the in-plane U1 direction by π/2. Explicit time integration was used, 

with a constant time increment given by the stability limit of 0.8 L/C, where L is the 

element length and C is the speed of the fastest wave present [27]. This simulates the 

propagation of a straight-crested (plane) wave along the plate. The default condition on 

the faces of the disconnected elements representing the crack is that of zero stress. Thus 

the scattering from an ideal open crack is simulated.  

 

The reflected wave packet contains the reflected A0 mode, as well as the other plane 

strain modes existing at the operating frequency-thickness, generated by mode 

conversion of the A0 mode incident at the crack. In principle, long models can be used to 

separate out the different modes in time, using differences in their group velocity, but this 

makes the models large and increases the time for completion of each simulation run. 

Therefore a two-dimensional FFT [151] was used to achieve the separation of modes 

differing in wave number. The out-of-plane U3 displacement was monitored at 128 

locations along the top surface of the plate, starting from a point 150 mm from the left 

end. The large number of monitoring points was required to obtain clear separation of the 

different modes in the wavenumber domain.  A typical monitored signal for the case of 

incidence of the A0 mode at 2.5 MHz-mm is shown in Figure 3.6: we see the incident A0 

wave and the reflected packet containing, A0, A1 and S0, the three plane strain modes 
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which can exist at 2.5 MHz-mm. Because of the small difference in the group velocities 

of A0 and A1 modes at this frequency, they arrive almost together. Figure 3.7 shows the 

two-dimensional FFT of the reflected signals for the 2.5 MHz-mm case and the different 

modes in Figure 3.6 can now be seen well separated.  

 

The signals were processed in the frequency domain to obtain the reflection coefficients. 

Since the study was carried out using signals with very narrow bandwidth, the results are 

valid only around the centre-frequency of the incident mode. Therefore different sets of 

simulations were necessary to obtain the predictions for the 2 MHz-mm and 2.5 MHz-

mm cases. 

 

3.3.2 T(0,1) mode at high frequency-thickness 

 
Figure 3.8 illustrates the procedure for the FE simulations for the pipe study along with 

the coordinate system. The torsional modes have particle displacements perpendicular to 

an axial section of the pipe, so a 2D model describing them would require axisymmetric 

elements with out-of-plate motion (twist) which ABAQUS/Explicit does not offer. In 

order to avoid a fully three-dimensional model at this stage, the Finite Element package 

FINEL [152] which offers such elements and with which the NDT Group has extensive 

experience, was used for the calculations.  

 

A 1 mm thick, 240 mm long Aluminium pipe with an inner radius of 20 mm was 

modelled to obtain the FE predictions of reflections. A surface breaking crack spanning 

the pipe’s entire circumference was located at 140 mm from one end of the model pipe. 

As with the plane strain studies, these values were selected to minimise the run time for 

the simulations. The symmetry in the system allowed the pipe to be modelled in the 

radial-axial two-dimensional domain, by using linear axisymmetric elements with twist. 

The mesh consisted of 20 perfectly square elements through the pipe thickness, allowing 

around 16 elements per wavelength at 4 MHz-mm, respecting the spatial discretization 

limit for accurate modelling. Cracks were again created by simply disconnecting the 

nodes common to elements on their adjacent faces.  
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A 50-cycle Hanning windowed toneburst was used to provide the time domain 

excitation, applied as a displacement boundary condition at all nodes on one end of the 

pipe wall, in the out-of-plane Uθ direction, with the amplitude matching the mode shape 

of the T(0,1) mode at the centre frequency. Since the T(0,1) mode is nondispersive, this 

launches a pure mode into the pipe. Explicit time integration with a constant time 

increment given by the stability limit simulates the propagation of a plane wave along the 

axis of the pipe and its scattering from the crack. 

 

Since the geometry and loading are axially symmetric, there is no mode conversion 

between modes of different circumferential orders, and only modes of the same order as 

the excitation signal can propagate. Therefore the reflected wave packet contains only 

torsional modes, the T(0,1) mode, and the T(0,2) and T(0,3) modes generated by mode 

conversion  at the crack. Processing by two-dimensional FFT was again used to achieve 

the separation of modes differing in wave number. The reflection coefficient was 

obtained by the same procedure as for the A0 case, as the frequency domain ratio of the 

peak amplitude of the respective reflected signal to that of the incident signal. 

 

3.4 Results and discussion 
 

3.4.1 A0 mode reflection studies  

 
First the modelling procedure was sought to be verified: for this purpose, the interaction 

of the A0 mode at 1.5 MHz-mm with normal cracks in a steel plate was studied, so that  

the results could be compared with those from earlier work at the NDT Group [27, 28]. 

Figure 3.9 shows the variation of the A0/A0 reflection coefficient with crack depth at 1.5 

MHz-mm, obtained from the present procedure as well as that reported in [27]. Very 

good agreement is observed between the two sets of results.  
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The variation of reflection coefficient with crack depth was then obtained separately at 2 

MHz-mm and 2.5 MHz-mm. Figures 3.10 and 3.11 show the graphs for these two cases 

respectively. 

 

These trends are known to come about from the way the crack opens in response to the 

incident mode and the stress distribution of the respective reflected modes. A simplistic 

treatment will not fully capture this complex phenomenon: in what follows, a simple 

theoretical analysis is presented to gain physical insight rather than an accurate solution. 

Following earlier studies at the NDT Group [27, 41, 153] based on the S-parameter 

technique [39], the reflection coefficient (RC) of a mode of interest from an ideal crack 

can be expressed in terms of a parameter capturing how the crack opens in response to 

the incident mode, the Crack Opening Displacement (COD), and the significant stress 

components of the reflected mode.  For the plane-strain problem studied here, the 

reflection coefficient can be expressed as  

 

                                                                                                        (3.1) ∫ ⋅+⋅= CODiRC ][ 1311 σσ
S shearaxial dSCOD

4
ω

 

where the amplitude of both the incident and the reflected modes is defined to be such 

that they transmit unit power flow per unit cross-sectional area of the wave guide,ω  is 

the circular frequency, CODaxial and CODshear stand for the displacement jump across the 

crack faces in the axial and in-plane shear directions respectively due to the incident A0 

mode, the axial stress 11σ  and the in-plane shear stress 13σ  are the significant stress 

components of the reflected Lamb mode of interest- A0, S0 or A1, and the integral is 

calculated over the whole of the surface area of both sides of the crack.  

 

We then invoke the Kirchhoff approximation, which assumes that the faces of the crack 

do not interact and therefore the COD is just the displacement on the insonified face, 

which is twice the incident displacement. Such an assumption is known to be accurate at 

high frequencies and particularly at near-specular reflection directions [61] and recent 

research [148] shows a much wider applicability. From equation (3.1) then the modulus 

of the reflection coefficient would be 
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                                                                                                        (3.2) ∫∫ +
⋅+⋅=⋅+⋅ u[]2[ 13111311 σσωσσ

+
≈

SS
dzdudSuuiRC l]

2
2

4 3131
ω

 

where  and  are incident displacements in the U1 and U3 directions on the insonified 

face of the crack , and and are dummy elements along its length and depth. 

1u 3u

+S l z

 

We can then observe the vital role of the displacement mode shapes of the incident A0 

mode and the stress mode shapes of the reflected modes in shaping the reflection 

behaviour. Figure 3.12 shows the displacement mode shapes for the A0 mode and the 

stress mode shapes for A0, A1 and S0 modes at 2 MHz-mm and 2.5 MHz-mm. The 

stress mode shapes of both the antisymmetric modes are similar at the two frequencies, 

but with the A0 mode, the 13σ  stress quickly reaches a constant value starting from a 

zero value at the plate surfaces, while with the A1 mode it only gradually reaches a peak 

value at the mid-plane, tapering off on either side. The displacement mode shapes of the 

incident A0 mode are again similar at the two frequency-thickness values, with the U1 

displacement strong near the plate surfaces but vanishing near its centre, while the U3 

displacement is nearly constant through the plate thickness. We can see from equation 

3.2 that the U1 mode shape of the incident mode modifies the reflected mode’s 11σ  

modeshape and U3 modifies 13σ . We can thus note that for these two modes, both 11σ  

and 13σ  mode shapes are important for very short and very deep cracks, but in general 

the reflection is dominated by the latter.  

 

We conclude that the reflections of  the A0 and A1 modes display similar trends at 2.0 

MHz-mm and 2.5 MHz-mm and are mutually different from each other, because of the 

likewise behaviour of their 13σ  modeshapes. The 11σ  mode shape of both modes become 

more complex and fall more quickly to zero from the surface to mid of the plate, at 2.5 

MHz-mm than at 2 MHz-mm. The smoother variation of the A0 reflection coefficient 

with depth and the flatter rise in the A1 reflection coefficient at 2.5 MHz-mm against the 

2 MHz-mm case as observed from Figures 3.10 and 3.11 seem to bear these changes out.  
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The situation with the S0 mode is much more complicated but we note that while the 

trend of its 13σ  mode shape is almost unchanged, the 11σ  mode shape at 2.5 MHz-mm 

has zero-crossings and is therefore very different from the simple convex form at 2 MHz-

mm. This strongly contributes to changing the shape of S0 reflection coefficient from the 

simple convex form at 2 MHz-mm to the cyclical pattern exhibited at 2.5 MHz-mm.  

 

In terms of expected reflection behaviour, there should be no conversion to the S0 mode 

at the trivial case of a zero-depth crack, and also at through-cracks because of the 

thickness-wise symmetry. We see from Figure 3.11 that at 2.5 MHz-mm, additional 

regions where there is minimum mode conversion to the S0 mode are also revealed in the 

shallow and deep crack regimes. Such findings are important for characterization studies, 

as we will discuss in Section 3.4.3.  

 

3.4.2 T(0,1) mode reflection studies 
 

For the pipe case, as noted in Section 3.2, the problem studied here is identical to that of 

high frequency SH0 mode interaction with long cracks in plates. This latter problem has 

been studied in the past [121, 154] and results are compared for a qualitative validation 

of the modeling procedure. Figure 3.13 presents the reflection coefficient results at 4 

MHz-mm from the present FE simulations. Figure 3.14, reproduces a sample result from 

Abduljabbar et al. (Figure 7 in [121]) for the case ksh = 9.0 corresponding approximately 

to a frequency-thickness of 4.5 MHz-mm. We observe that the trends in Figure 3.13 for 

the reflection coefficients of T(0,1) , T(0,2) and T(0,3) modes for T(0,1) incidence at 4 

MHz-mm agree very well with those of SH0, SH1 and SH2 modes for SH0 incidence 

presented in Figure 3.14 at similar frequencies. The reflection of both T(0,1) and SH0 

increases almost monotonically with crack depth, that of both T(0,2) and SH1 displays a 

convex increase-decrease with a peak occurring for a 50% deep crack and that of both 

T(0,3) and SH2 displays a more complex cyclical behaviour, with a dip occurring again 

for a 50% deep crack. 
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The explanation for this kind of reflection behaviour is again linked with the mode 

shapes of the displacement and significant stress components of the incident and 

reflected modes. Using the S-parameter formalism, the modulus of the reflection 

coefficient in this case can be written with similar notation as in Section 3.4.1, as: 

 

∫ ⋅=
S zshear dSCODiRC ][

4 θσω    (3.3) 

 

where CODshear now stands for the displacement jump across the crack faces in the out-

of-plane shear direction due to the incident T(0,1) mode and θσ z , the out-of-plane shear 

stress is the only significant stress components of the reflected torsional modes. Again, 

the amplitude of the fields in both the incident and the reflected modes are defined to be 

‘power normalized’ [135]. 

 

The Kirchhoff approximation yields a simplified expression 

 

∫∫ ++
⋅=⋅≈

S zS z dzdudSuiRC l][
2

]2[
4 θθθθ σωσω           (3.4) 

 

where  and are dummy elements along the crack’s circumferential extent and depth 

or radial extent in the pipe cross-section and  is insonified face of the crack. 

l z
+S

 

Figure 3.15 shows the  modeshape for the incident T(0,1) mode and the θU θσ z  

modeshape for the T(0,1) , T(0,2) and T(0,3) modes at 4 MHz-mm. Noting that  for 

T(0,1) mode is nearly constant along the pipe thickness, it is easy to see that nearly linear 

increase of the T(0,1) reflection coefficient comes from its nearly constant 

θU

θσ z  mode 

shape. Similarly the convex shape of the T(0,2) reflection coefficient and the more 

complex cyclical variation in that of the T(0,3) mode can be seen to originate from the 

similar behaviour of their θσ z  mode shape, whose integral over the crack depth 

determines the reflection, as observed from equation (3.4).   
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From the trend of reflections in Figure 3.14 we infer that there will be no mode 

conversion to the higher order modes at through-thickness cracks – this is confirmed 

from an examination of Figure 3.15 also. This is an important observation and its 

significance is discussed in more detail in the next section. Further, the three torsional 

modes considered do not change their mode shape at different frequencies, only their 

relative magnitudes are scaled. This means that this same reflection-crack depth 

behaviour can be expected at all frequency-thickness values up to the cut-off frequency 

of T(0,4) mode at around 4.7 MHz-mm, although the energy partition between the 3 

modes will not be the same. 

 

3.4.3 Implications for improving resolution of guided wave NDE 
 

We will now examine these findings from the perspective of resolution issues with 

practical inspection. Firstly as we noted in Section 1 of this chapter, we ask whether the 

scattering at higher frequencies is more sensitive to the crack depth for shallow cracks 

than at low frequency thickness. Figure 3.16 compares the A0 reflection coefficient 

variation with crack depth at 1.5, 2 and 2.5 MHz-mm respectively, together with the 

average reflection coefficient for all modes occurring at 2 and 2.5 MHz-mm. We observe 

that while the reflection values at both the higher frequencies are higher than at 1.5 MHz-

mm, the reflection rises much more quickly with the crack depth in the shallow crack 

region only at 2.5 MHz-mm. From the point of view of discrimination, the A0 and A1 

modes appear to be the ‘best modes’ with a uniform relation of reflection amplitude with 

the crack depth. For the pipe study, an examination of the reflection coefficient values 

from Figure 3.13 and those from earlier low-frequency studies from Demma et al. [19], 

reproduced in Figure 3.17 shows that in this case, the rise is even stronger in the shallow 

crack region. The T(0,1) mode is clearly the ‘best mode’, with a nearly linear increase of 

its reflection with the crack depth and scoring better than the average reflection.  

 

The other question we set out to answer was whether the mode-conversion patterns offers 

any additional information regarding the crack depths, so that we can distinguish deeper 

cracks from shallow ones. As discussed in Chapter 1, planar cracks in practical situations 
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would have a finite crack depth as well as length or circumferential extent and sometimes 

it becomes difficult to distinguish between shallow and deep cracks based just on 

reflection coefficient measurements. Thus it would be useful if we can obtain an 

additional parameter which varies monotonically with the crack depth over all the depth 

regimes. But even parameters which can give strong information in chosen regimes could 

prove valuable. As we can see from Figures 3.10, 3.11 and 3.13, the amplitude of the 

different modes in the reflected packet vary very differently with crack depths. In Figure 

3.10, while A0 and A1 mode reflection continually increases, the S0 reflection tends to 

flatten out with the crack depth. In Figure 3.11, again while the A0 and A1 mode 

reflection is quite similar, the S0 mode has cyclical variation with the crack depth. 

Finally in Figure 3.13 we see that the reflection behaviour of all the three torsional modes 

is mutually different.  

 

Thus a measure of the scatter between the reflection coefficients of the different modes 

could be the parameter we are seeking; the standard deviation between them is taken as 

this measure. (Studies of other variations for example, the standard deviation normalized 

to the average values did not yield better results). Figures 3.18 (a) and (b) show the 

standard deviation between the reflection coefficients of A0, S0 and A1 modes at 2 and 

2.5 MHz-mm  respectively, plotted with crack depth and 3.18 (c), shows the same for 

T(0,1) , T(0,2) and T(0,3) modes at 4 MHz-mm. From figures 3.18 (a) and (b) we note 

that the uniformly rising scatter at 2 MHz-mm, is more useful in obtaining depth 

information for most cracks, whereas the cyclical variations at 2.5 MHz-mm mean that 

the scatter is useful only in parts. This also suggests that with Lamb modes, an increase 

in the frequency of operation does not naturally lead to better discrimination between 

different crack depth regimes.  On the other hand from Figure 3.18 (c) we see that the 

scatter between the amplitudes of different torsional modes increases uniformly with the 

crack depth. Considering that similar reflection behaviour is expected with these 

torsional modes at all frequencies below the T(0,4) cut-off, operating at higher 

frequencies is in general beneficial with this family of modes.   
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Another way of distinguishing different crack depth regimes would be to make use of the 

information about regions of little or no mode-conversion. With torsional modes, this 

could be a straightforward way to distinguish middle-sized cracks where all three modes 

are present, from shallow and very deep ones, where T(0,2) and T(0,3) modes tend to 

vanish.  Similarly the different crack depth regimes in a plate can be separated from S0 

mode-conversion information. 

 

3.5 Conclusions 

 
FE analysis has been used to study the interaction of the A0 and T(0,1) modes with 

simple defects in flat plates and hollow cylinders at higher frequencies. A simplified 

analytical treatment was used to gain insight into the influence of the mode shapes of the 

dominant stress components on the reflection behavior. The correspondence of the 

torsional modes in pipes with shear horizontal modes in plates was discussed, and results 

from the T(0,1) case seem to be valid for the identical SH0 problem. The key objectives 

in shifting to higher operating frequencies are the desire to increase the sensitivity of 

reflection to smaller defects and to better distinguish thickness-wise deep defects from 

the shallow ones.  

 

From the former perspective, the reflection behaviour due to A0 and T(0,1) mode 

incidence at long cracks is beneficial, although for the A0 mode the frequency must be 

carefully chosen. Again mode conversion effects at higher frequencies do not seem to 

naturally lead to better discrimination with the A0 mode case as compared to the T(0,1) 

case. Here we have not considered the effects of dispersion and that of similar velocities 

for multiple modes- this could mean that in practice, the different modes cannot be 

separated as we have assumed in this chapter. Further the behaviour with smaller, fully 3 

dimensional cracks, will present more complications and it has to be verified if similar 

reflection behaviour is retained. These issues have to be considered when assessing the 

merits of this approach vis-à-vis the low frequency approach. 
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Figure 3.1 Configuration studied: (a) Plate cross-section, A0 mode is incident normally 

on a long surface-breaking part-depth crack (b) Pipe cross-section, T(0,1) mode is 

incident normally on a surface-breaking full-circumference part-depth crack; the pipe 

thickness ( = Outer radius - inner radius) is shown exaggerated. 
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Figure 3.4 Absolute values of the displacement mode shapes of the first three Shear 

Horizontal (SH) modes at 4 MHz-mm in a 1mm thick aluminium plate and those of the 

first three axially propagating Torsional (T(0,n)) modes at 4MHz in a 1mm thick 

Aluminium pipe of 20 mm inner radius; the Uθ  direction is indicated in Figure 3.8. 
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3. High frequency-thickness regime 

 

 

 

 
 
Figure 3.5 A schematic illustration of the spatial domains for the FE models generated to 

study the interaction of the A0 mode with long surface breaking cracks in a plate. A cross 

section of the plate is modelled using plane strain elements and the mode shape is used to 

apply appropriate time domain excitation at the through-thickness points. A part of the 

figure is taken from [150]. 
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Figure 3.6 Typical monitored signal showing the incident A0 wave and the reflected 

packet, which consists of all the modes that are reflected from the crack. 
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3. High frequency-thickness regime 

 

 

 
 
Figure 3.8 Schematic illustration of the axisymmetric models used to study the high 

frequency reflection behaviour of the T(0,1) mode. 
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3. High frequency-thickness regime 
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Figure 3.10 FE results at 2 MHz: variation of reflection coefficient with crack depth 

when A0 mode is incident on a long normal crack in a 1mm thick aluminium plate. 
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Figure 3.11 FE results at 2.5 MHz: variation of reflection coefficient with crack depth 

when A0 mode is incident on a long normal crack in a 1mm thick aluminium plate. 
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3. High frequency-thickness regime 
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3. High frequency-thickness regime 

 

 

 

 

 

 

 
 

Figure 3.14 Figure 7 from Abduljabbar et al. [121] showing the modulus of reflection 

coefficient R0n for the case ksb = 9.0  which corresponds approximately to 4.5 MHz-mm 

with n referring to the order of the guided Shear Horizontal modes and b and h are the 

crack depth and plate thickness respectively. 
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3. High frequency-thickness regime 
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3. High frequency-thickness regime 

 

 

 

 

 

  
Figure 3.17 Results from Demma et al. [29] for the T(0,1) reflection coefficient 

behaviour with the depth of axisymmetric cracks, obtained at various frequency values in 

the low frequency regime. Solid and dashed lines stand for pipes of thicknesses of 5.5 

mm and 20 mm respectively. The empty circles indicate the crack depth b for which the 

product  at each frequency, where k is the wave number. 1=⋅bk
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3. High frequency-thickness regime 
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Figure 3.18 (a) and (b) show the standard deviation between the reflection coefficients of 

A0, S0 and A1 modes at 2 and 2.5 MHz-mm  respectively, plotted with crack depth; (c) 

shows the same for T(0,1) , T(0,2) and T(0,3) modes at 4 MHz-mm.  
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Chapter 4 
 

Low frequency SH0 mode interaction with 

through-thickness cracks: normal incidence 
 
4.1 Introduction 
 

In the low frequency-thickness regime, the resolution achievable for defect dimensions in 

the sagittal plane (or the ‘in-plane’ dimensions) is lower because of the longer 

wavelengths. But operation here is simpler, because of the fewer and relatively less 

dispersive guided wave modes present. Current transduction methods can be applied 

without much modification. Therefore it would be advantageous to work in this regime, 

provided we can devise ways to improve the discrimination capability. One way of 

achieving this, currently being investigated at the NDT Group, is to use array imaging 

methods. Even if this can just yield information about lateral size of the defect, it can be 

readily used with currently available inspection techniques to estimate its depth.  

 

The practical implementation will consist of an array of transducer elements, which will 

probe the defective region as illustrated for a plate structure in figure 4.1. A particular 

chosen mode will be generated at each transducer and the signal scattered back received 

at all the elements in the array. The matrix formed out of the signals from different 

send/receive combinations will then be processed by imaging algorithms and a flaw 

outline obtained.  
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Researchers at the NDT Group are currently working on general imaging ideas and array 

methods [43, 44, 155]. The T(0,1) mode is of interest for such studies since it is the mode 

of choice in current low-frequency pipe inspection methods, but the initial work was 

performed using the corresponding SH0 waves in thin plates.  

 

4.1.1 Array imaging with the SH0 mode 
 

The interaction of an SH0 mode array with through-thickness cracks in thin plates was 

simulated using Finite Element (FE) analysis: the procedure for these simulations is 

described later on in this chapter.  A series of FE models was set up for different 

combinations of crack length, array aperture and array to crack distance. The array itself 

consisted of 33 ‘elements’ or source positions spaced at two per SH0 wavelength at the 

centre-frequency of the incident signal (denoted by λSH0). The transducers in a practical 

array are expected to behave as point sources and so their behaviour was simulated by 

applying point forces vibrating parallel to the crack length at each element of the array. 

For each source position, the signals scattered back by the crack were monitored at all the 

elements of the array. The theory behind the generation of modes due to such ‘in-plane’ 

excitation and the different components in the scattered signal are discussed in section 

4.2 of this chapter. Figure 4.2 shows a snapshot of the contour of magnitude of resultant 

displacement from an FE simulation, illustrating the typical interaction of the modes 

generated from a single point, with the crack; the result presented is for forcing applied at 

a point which is 2 λSH0 from the central array element. Figure 4.3 shows a time-trace 

recorded at the array element directly perpendicular to the crack, for forcing applied 

again at a point 2 λSH0 from the central element. It is the matrix consisting of such time-

traces from the different possible send-receive combinations which serve as the input for 

array imaging algorithms.  

 

Figure 4.4 shows an example of the results that researchers using low frequency array 

imaging methods are interested in arriving at and improving. Generated by synthetic 

post-processing of pulse-echo data [43], the input for this image was obtained from the 

simulated interaction of a transducer of aperture 8 λSH0 with a 2 λSH0  long through-

 105



  4. Low frequency SH0 mode and through-thickness cracks: normal incidence 

 
thickness crack located 10 λSH0 away. Though in this particular case the crack was fairly 

long, the image captures its position and dimensions quite well and this is an encouraging 

result.  

 

For a more complete idea of the efficacy of these methods, a single set of 3D FE 

simulations was also performed, studying the interaction of an SH0 mode array with 

part-a thickness crack. These were carried out with the help of Mr Sumeet Kale, a final 

year undergraduate student from the Indian Institute of Technology - Kanpur who 

worked at the NDT Group during summer 2007. The procedure for these 3D simulations 

is described in Chapter 6 which focuses on part-thickness cracks. Figure 4.5 shows the 

image obtained from this data,  generated again by methods [155] similar to those used 

for Figure 4.4. The simulated aperture and the transducer-crack distance in this case were 

the same as for Fig. 4.4 but the crack was 1 λSH0 long and ran only 50% through the plate 

thickness; also the excitation now consisted of in-plane line sources uniform through the 

plate thickness The length of the crack as well as its position is again captured very well 

by the image.  

 

Following such leads, the work on imaging has since been extended to and focussed on 

the T(0,1) mode in pipes, where the ‘common source method’ (or CSM) has been found 

to be effective [155].   

 

4.1.2 Low-frequency SH0 mode interaction with finite cracks 
 

In the light of these developments, there is a need to understand the performance of the 

individual elements that contribute to the total array, some key questions being how the 

transducer, defect location and defect extent impact the accuracy of such methods. Since 

as noted as noted above, the elements of the array are expected to behave as point 

sources, this involves understanding the interaction of cylindrical crested guided waves 

with defects. Also, the direction of specular or mirror-like reflection from a defect alone 

cannot account for the scattered fields captured by all the array elements: thus off-

specular and local effects, edge or tip diffraction, would need to be considered. In view 
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of the positive results from the plate array studies described above using the SH0 mode 

and its relation to torsional modes in pipes, it is ideal for such studies. 

 

General scattering studies have been carried out extensively for bulk elastic waves: 

analytical methods using eigenfunction expansion for simple defect geometries (see the 

monograph by Pao and Mow [55] for an extensive review) and approximate and 

numerical methods using the integral equation representation for cracks and complex 

defects [62, 82, 92, 94, 109, 113, 156, 157]. Studies in the guided elastic wave case have 

followed these developments, but have been more restricted because of the greater 

challenges involved: the possibility of existence of several propagating modes even at 

low frequencies, frequency dependent mode shapes and their mutual inter-conversion on 

interactions with flaws. Thus plane waves and specular reflection have mainly been 

studied [74, 120, 121, 127-129, 135, 138, 139, 143, 158-160] and numerical methods 

such as Finite and Boundary Elements have played an important role [19, 26, 27, 41, 42, 

161, 162]. Investigation of circular- (or cylindrical-) crested waves [163] or the near field 

[164-166] and diffraction effects [137, 167] are rare, especially for finite defects. 

Therefore the following chapters of this thesis focus on the general shorter range 

scattering of the cylindrical crested[163] SH0 mode by ideal (fully open and flat) but 

finite cracks in isotropic plates. The present chapter and the next study the case of 

through-thickness cracks, while Chapter 6 makes use of insights from these results to 

tackle the more general and difficult case of part-thickness cracks. 

 

4.1.3 The problem studied in this chapter: normal incidence at through-

thickness cracks 
 

This chapter considers the simple case of a through-thickness crack or slit and the 

symmetric incidence problem such that a line from the wave-source bisects the crack 

face at 900. This case is called ‘normal incidence’ in recognition of the path of the central 

‘ray’ of the incident beam. The nature of scattering is studied in terms of the specular 

reflection from the crack face as well as the diffraction at its tips. We will begin by 

examining the influence on specular reflection, of the crack length, and also of the 
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location of source and measurement positions in view of our interest in the short range. 

These then lead to the study of the diffraction phenomena. The Finite Element (FE) 

method is the tool used for this purpose, and the results for the reflection studies are 

compared with experiments. Though this is taken as general validation for our FE 

simulations, for the case of diffraction, known results from similar problems in literature 

are used to further assure us of our modeling procedure. For clarity, the term crack is 

used when describing FE simulations and the term slit, in the context of experiments.  

 

The sections of this chapter are organized as follows. First the problem studied and the 

general procedure for the FE simulations and experiments are described in Section 4.2. 

The particular strategies for the different sets of studies and the results are presented in 

Section 4.3. Section 4.4 discusses the results in the light of some qualitative and 

quantitative considerations and finally Section 4.5 presents conclusions and the 

implications of the findings for guided wave imaging.  

 

4.2 General methods 

 
4.2.1 Studied configuration 
 

Figure 4.6 shows the details of the configuration studied and also of the procedure for FE 

simulations described next in this section. A finite, fully open through-crack of vanishing 

width (shown as ‘w’ in Figure 4.6) is located in a thin isotropic plate, its length ℓ aligned 

with the U2 coordinate axis. A low-frequency excitation is applied in the U2 direction, at 

a point ‘P’ on a line bisecting the crack at 900. The excitation is assumed to be uniform 

through the plate thickness. This generates [168] circular waves of the SH0 mode 

principally in the U1 direction and those of the S0 mode, principally in the U2 direction. 

Figure 4.7 shows the group velocity dispersion curves for modes which can exist in a 

free aluminium plate at low frequencies: apart from the SH0 mode only the fundamental 

antisymmetric (A0) and symmetric (S0) Lamb modes occur. The A0 mode is not 

considered in the present problem, as the thickness-wise uniform excitation vibrating 
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parallel to the plate surface is expected to generate very little of it, and the through-

thickness symmetry of the crack ensures that it is not generated by the scattering.  The 

SH0 mode is nondispersive throughout and has constant particle vibration through the 

plate thickness which is entirely perpendicular to the direction of propagation and 

parallel to the plate surface (the U1-U2 plane in Figure 4.6). At low frequencies, the S0 

mode is also nondispersive with its particle vibration predominantly parallel to the 

direction of propagation and constant through the plate thickness. The excitation is such 

that the principal direction of the incident SH0 waves bisects the crack face at 900, 

lending symmetry to the problem. Away from their principal directions both modes 

exhibit a characteristic cosine angular decay of the displacement amplitude. Thus 

although in general, the S0 mode is also excited, we are able to study the scattering from 

the SH0 mode in isolation as the former does not propagate strongly towards the crack. 

Further, as can be seen from Figure 4.7, in the low frequency-thickness regime the S0 

mode travels much faster so that its effects can be time-gated out.  

 

We will then study the SH0 specular reflection from the crack face and the SH0 

diffraction from the crack edges. Thus we are essentially interested in the SH0 scattering 

phenomena happening in the U1-U2 plane parallel to the plate surface and assume 

uniformity through the plate thickness. If instead we could consider this plane to be the 

cross section of a solid body, this problem would be equivalent to that of bulk Shear 

Vertical (SV) wave scattering by internal cracks: along their sagittal planes, these two 

problems would share the same boundary conditions. We will touch more on this 

equivalence in Section 4.3.3. 

 

4.2.2 General procedure for Finite Element simulations 
 

A two-dimensional domain with the assumption of plane stress was used for the FE 

simulations, implemented using the programme ABAQUS [149]. The models so 

generated are representative of an arbitrarily thin plate or a section of a plate parallel to 

its surface and lying at its mid-plane; they do not support plate bending or part-through 

defects. Since the SH0 mode is nondispersive and its mode shape is constant through the 
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plate thickness, such a model will represent it accurately at any given frequency-

thickness value. But the S0 mode has similar properties only in the low frequency-

thickness region, so the model provides reasonably accurate results for values up to 0.5 

MHz-mm for this mode; the FE studies were carried out at 0.1 MHz-mm. For simplicity, 

we will assume the plate thickness to be 1 mm in the following parts of this chapter, so 

the frequency-thickness at an input frequency of say f0 MHz would simply be f0 MHz-

mm. Further, the results obtained at f0 would be valid at any other frequency f1 provided 

the dimensions are appropriately scaled by a factor of f1/f0 by which the wavelength is 

scaled: experimental verification studies have been based on this understanding and 

simulation results showing favourable agreement to this idea are also presented in 

Section 4.3.1. The models do not support the A0 mode but as observed above, this mode 

is not expected, so this does not pose a problem.  

 

Much of the past work in the two-dimensional domain has been done in the U1-U3 plane 

and consequently, focused on part-depth but infinite length defects. In contrast, the 

present study is performed in the U1-U2 plane and helps understand the impact of the 

length of a finite defect on the interaction of the incident mode with the defect.  

 

Figure 4.6 again shows the temporal and in-plane spatial details of the models and the 

coordinate system; the out-of-plane dimension (containing the U3 direction), is the 

direction of the plate thickness. Two strategies were used to prevent S0 reflections from 

the edges from arriving together with the SH0 scattering from the crack at the monitored 

locations. For simple scattering studies, the in-plane dimensions of the model were 

chosen to be large, so that the edge-reflections arrive much later and can be time-gated 

out.  The model size was restricted in such cases by simulating only half the domain and 

specifying one edge of the model to be a plane of anti-symmetry. But for the studies 

requiring a complete isolation of only the scattered SH0 mode, absorbing layers with 

increasing damping (or ALID, see Drozdz et al. [169]; see Castaings et al. [170, 171] for 

more details on the use of absorbing boundaries in FE analysis) were used around the 

edges of the plate. The mesh consisted of  perfectly square 2 mm long elements, allowing 

for around 16 elements per SH0 wavelength, respecting the spatial discretization limit 
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required for accurate modelling [146]. Cracks were created by disconnecting elements at 

the nodes defining the crack and were thus of zero width. Material properties of 

aluminium were used in all cases except for the validation of diffraction modeling 

(Section 4.3.3), where the properties of steel were chosen to match those in the literature 

consulted.  

 

A 5 cycle Hanning windowed toneburst centred at 0.1 MHz was applied as a force in the 

U2 direction, at a single point. This generates the S0 and SH0 modes, with their principal 

directions parallel and perpendicular respectively to the applied force. Explicit time 

integration with a constant time step respecting the stability limit simulates the 

propagation of the modes. The default condition on the faces of the disconnected 

elements representing the crack is that of zero stress. Thus the scattering from an ideal 

open crack is simulated.  

 

The reflection behaviour was studied in terms of a frequency domain ratio of the 

resultant displacement of the reflected signal to that of the signal incident at the centre of 

the crack face. The waves in the model decay cylindrically away from the source so the 

signals were compensated accordingly for beam-spreading such that the ratio from a straight 

edge would be unity.  Thus 

 

       Reflection ratio        =                                                            (4.1) 
I

M

dI
dDR

⋅

+⋅

)(
)(
ω

ω

 

where R(ω) and I(ω) are the frequency spectra of the resultant displacement obtained 

from reflected and incident signals respectively, D is the distance between the source and 

the centre of the crack, dM is the distance from the crack centre to the point where the 

reflection is monitored and dI is the distance from the source to the point where the 

incident signal is monitored. 

 

Here it must be mentioned that the compensation for beam-spreading was chosen to be 

based on a straight edge rather than say a point source, because the former is commonly 

realized in practice. Due to this choice, although the reflection ratio will ultimately reach 
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unity if the specular reflection for symmetric normal incidence is monitored at a single 

point while the crack length is increased, it will not remain constant if we vary the 

distance of measurement while maintaining a constant finite crack length. However since 

our interest is in understanding the physical principles rather than obtaining a rigorous 

quantitative parameter that would hold under different conditions, the convenient 

definition in equation (4.1) is sufficient.  

 

The nature of diffraction was studied in terms of a diffraction ratio, defined as the ratio of 

the spectrum of the resultant displacement of the monitored diffracted signal to that of 

the signal incident at the centre of the crack face, both compensated for beam-spreading: 

 

  Diffraction ratio       =                                                                   (4.2) 
I

M

dI
rD

⋅

⋅

)(
)(

ω

ω

 

where D(ω) and I(ω) are the frequency spectra of the resultant displacement obtained 

from the monitored diffracted and incident signals respectively, rM is the distance from 

the tip of the crack to the point where the diffracted signal is monitored and dI is  the 

distance between the source and the position where the incident SH0 wave is monitored. 

 

Figure 4.8 presents typical time snapshots of the contour of the magnitude of resultant 

displacement from FE simulations. Figure 4.8a shows an instant soon after excitation: the 

S0 mode travels faster and can be seen propagating mainly in the U2 direction away from 

the crack, while the SH0 mode travels primarily towards the crack. Figure 4.8b shows the 

mode interaction with the crack: the S0 mode has little energy in this direction so it 

causes little scattering, while the SH0 mode reflects from the crack face and is diffracted 

by the crack edges. In addition to the SH0 mode, we observe that the scattered field also 

consists of mode-converted S0. Although in general the scattered energy is distributed 

between these two modes, overall it is largely and in some directions entirely, 

concentrated in the SH0 mode. Figure 4.9 highlights this through the angular profile of 

the SH0-S0 and SH0-SH0 reflection and diffraction ratios calculated from FE 

simulations, for two special cases respectively: 4.9a presents the reflection ratios 

according to equation (4.1) for scattering of SH0 waves by a straight edge while 4.9b 
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shows the angular profile of the diffraction ratios according to equation (4.2) for 

scattering by a semi-infinite crack. This chapter studies the reflection along the specular 

direction (900 to the crack face) and the diffraction along the crack-line (1800 to the crack 

face), where only the SH0 mode is present.  

 

4.2.3 General procedure for experiments 
  

A photograph of the experimental set-up is shown in Figure 4.10. A point-like source 

excitation was achieved by means of a plane wide-band piezoelectric shear transducer 

(Panametrics V301, 0.5 MHz center frequency) coupled to the plate through a thin (0.2 

mm thickness) and small (3mm diameter, roughly 1/3 that of typical wavelength) brass 

disc. The excited signal amplitude was measured around and away from this excitation 

apparatus to confirm the expected angular behaviour of the excited SH0 mode amplitude 

and its inverse square root decay with radial distance. The excitation signal consisting of 

a 5 cycle Hanning windowed toneburst was generated by a Wavemaker (Macro Design 

Ltd., UK) instrument and centered at the required frequency.  

 

The detection was achieved using a laser interferometer with dual differential fiber optic 

lines (Polytec OFV 2700). The laser beams from the two fibers are each aligned at an 

angle of 300 to the surface of the plate, so that the difference between their signals gives 

the in-plane surface displacement. The aligner holding the two optical fiber leads is 

attached to a translatable rotary arm. This way the interferometer reads in-plane 

displacements perpendicular to the direction in which the arm points, and thus picks up 

the SH0 mode propagating along that direction. In the studies in this Chapter, the rotary 

feature of the arm is not used and it is fixed to point along the symmetric normal to the 

slit face, but it facilitates measurements in the oblique-incidence studies and is therefore 

described in more detail in Chapter 5. A thin reflective tape was attached to the surface of 

the plate to enhance the optical backscatter from the laser beam. The measured signals 

were in general quite weak and so the quality of each displacement measurement was 

enhanced by applying a band-pass filter and taking an average over 500 acquisitions.  
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Measurements were carried out on 0.5 mm wide slits of lengths 8 mm, 16 mm, 36 mm, 

and 65 mm cut in 1250 mm square standard aluminium (commercial purity, AA1050)  

plates of 1mm thickness. These slits were made using a milling machine with specially 

procured 0.5 mm diameter cutters. Since the wavelength was at least 15 times that of the 

slit width for most of the frequencies used, these slits approximate well, the cracks 

defined in FE. The transducer was positioned on the symmetric normal to the slit face 

such that the SH0 mode had its principal axis along this line; the detection was also along 

this line. For each slit length, the center frequency of excitation was swept from 200 kHz 

to 400 kHz in order to obtain results for increasing ratios of the slit-length to the 

wavelength. The excitation and detection positions were varied at each center frequency 

value, so that they were located at a certain constant number of wavelengths away from 

the slit.  

 

4.3 Specific studies and results 
 

4.3.1 Nature of specular reflection 
 

A number of simple FE models with long in-plane dimensions were set up to understand 

the dependence of the SH0 specular reflection over the length of the crack. The 

excitation was located at a distance of 16 λSH0 (SH0 wavelengths at the centre frequency 

of the toneburst). Nodal displacements in the U2 direction were monitored 5 λSH0 from 

the crack and along its symmetric normal. The generated S0 mode has nearly zero 

displacement along this line, so only the incident and reflected SH0 signals are recorded 

at the monitored points, directly giving the magnitude of I and R for substitution into 

equation (4.1). Experimental measurements were taken at the appropriate excitation and 

monitoring distances for each frequency spanning the required slit lengths. In order to 

confirm that these results are equivalent to those obtained by FE at a constant frequency 

but for varying crack lengths, we also simulated the experimental situation in FE, 

sweeping the frequency from 200 to 400 kHz in steps of 50 kHz with cracks of lengths 

5mm, 10mm, 36 mm and 65mm to obtain various crack lengths in terms of λSH0.  
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Figures 4.11 and 4.12 show typical time plots of monitored displacement including 

reflection from the crack or slit in FE and experiments respectively. The reflection ratio 

was calculated for each crack length from these monitored signals using the same 

procedure according to equation (4.1). Figure 4.13 shows measured and FE predicted 

values (for both single and swept frequency studies) of the reflection ratio for this 

monitoring location, plotted with increasing crack lengths. The crack lengths are 

expressed in terms of λSH0. We find very good agreement between FE and experiments. 

In this context and in the rest of the thesis where such comparison with experiments is 

made, it is pertinent to mention that we do not have sufficient results for each case to 

enable a statistical analysis and systematic estimation of errors. Thus since error bounds 

cannot be reliably calculated, features such as error bars are not presented and this is 

usual in these kinds of studies (see for example, [27, 172, 173]). Therefore we only 

enumerate a set of the significant ones among the possible sources of error and these 

include (a) the differences between material properties used in the FE and the actual 

properties of the experimental plate (b) misalignment of the laser from the intended 

direction (c) misalignment in the positioning of the transducer (d) limitations on the 

conditions in which the experimental notches can accurately represent zero-width cracks- 

this is relevant to the oblique-incidence study in the next chapter . 

 

Coming to the reflection behaviour, initially, for a short crack, the reflection ratio rises 

linearly with the crack length. Although we would expect the ratio to gradually approach 

unity as the crack grows large, the observed anomalous overshoot is characteristic of 

diffraction effects in the short range studied; this can be seen by examining the detailed 

behaviour at the crack. Figure 4.14 shows the interaction of the SH0 mode with cracks of 

two different lengths: again, the contour of the magnitude of resultant displacement is 

plotted, along with simplified line diagrams. We observe that for smaller cracks, the 

strength of the diffraction field is significant and it arrives together with the reflection, 

enhancing the received field. The interference between these different waves arriving 

together is borne out in the undulations seen in the reflection trend. These effects may be 

regarded as focusing of energy by the crack and we will comment further on this further 

in Section 4.4.1.  
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4.3.2 Influence of the distance of source and measurement location on 

reflection behaviour 
 

We then need to find out how the reflection behaviour evolves as we vary the source and 

measurement positions with reference to the crack and this issue is examined next. There 

are four possible combinations of source and measurement positions, depending on 

whether each is close to or far from the crack. Here two complementary cases are 

considered, to bring insight into the problem: (i) that of a measurement point close to the 

crack while the source position varies and (ii) that of source position far from the crack 

while the measurement position varies. 

 

The FE models set-up for this purpose made use of absorbing layers with increasing 

damping [169] around the edges of the plate. This ensured that only the SH0 reflection 

from the crack could be observed in preference to other unwanted reflections. For study 

(i), the measurement position was fixed at 5λSH0 from the crack while the source position 

was located successively at 16 λSH0, 20 λSH0 and 32 λSH0. For study (ii), the source was 

fixed at 32 λSH0 and the reflection was monitored at distances of 5, 10, 15, 20 and 25 λSH0 

from the crack face. Monitoring in the U2 direction directly gives the values of I and R. 

The crack length was again varied using a number of simulations and the reflection ratio 

was calculated according to equation (4.1).  

 

Figures 4.15 (a) and (b) show the plot of reflection ratio versus crack length, obtained at 

different source and monitoring positions from studies (i) and (ii).  Figure 4.16 (a) and 

(b) show the same information as in Figure 4.15 (b), but with the reflection ratio plotted 

with the monitoring distance instead of crack length, and 4.16 (c) shows a comparison of 

these FE results with experiments for three slit length values; we see that the predictions 

and measurements agree very well. 

 

From 4.15 (a), we see that though the there is a slight variation, the reflection ratio trend 

is nearly maintained: thus we can say, provided the source is far from the crack and 
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beam-spreading is compensated for, its position has a weak influence on specular 

reflection.  

 

From 4.15 (b) we learn that Figure 4.13 represents a general trend which reflections from 

finite cracks follow in the short range. The reflection ratio rises sharply with the crack 

length to an overshoot above unity and then gradually approaches unity with undulations 

due to interference phenomena. Though this behaviour is different for different 

monitoring positions, the values converge at large monitoring distances (approximately 

above 15 λSH0,) for even fairly long cracks. In understanding this, it would be useful to 

think of the crack as a secondary source and look at the similar effects observed with a 

piston source transducer. If we take the near-field of a compressive piston source as an 

approximation for the near-field of a crack given by the Fresnel parameter F= ℓ2/4λ 

(where ℓ the length of the crack will be taken as the diameter of the piston and λ is the 

wavelength λSH0) we would observe that as long as the crack length is such that the 

monitoring distance is approximately greater than F, the reflection ratio increases linearly 

with the crack length. This can be seen in Figure 4.17 (a) and (b) where the reflection 

ratio is plotted with respect to the monitoring distance normalized to the Fresnel 

parameter for small and long cracks respectively. We observe that as the monitoring 

distance begins to fall within what can be called the near-field for the crack (F ≈ 1) the 

reflection values tend to oscillate rapidly. But away from this region, the reflection 

values gradually assume smooth profiles. We will consider this ‘crack as a source’ 

suggestion in more detail in Section 4.4.1 to understand more about why the source and 

measurement positions have the kind of influence on reflection as observed in this 

section. 

 

4.3.3 Diffraction: validation 
 

A number of researchers have worked on the problem of diffraction  of bulk elastic 

waves by planar cracks [61, 62, 114, 174]. One validation of the modelling procedure is 

comparison of the present FE results with those from similar problems in literature. Here 

the theoretical calculations presented by Scruby et al. [175] (based on earlier work [61, 
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176] and confirmed with experiments by Ravenscroft et al. [177]) are used.  For the case 

of a long or ‘semi-infinite’ crack, Scruby et al. obtained the amplitude of a diffracted 

bulk Shear Vertical (SV) wave for incident continuous SV waves, in terms of a 

diffraction coefficient ),( βθsF :  

                                                                  (4.4) MS rik
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where dψ is the frequency-domain amplitude of the monitored diffracted signal and incψ , 

that of the wave incident at the crack tip, Sλ  and  are the wavelength and wavevector 

of the bulk shear wave, r

Sk

M is the distance from the crack tip to the observation point, and 

θ , β  are the angles of incidence and diffraction at the crack tip measured in a counter-

clockwise sense from the crack face. 

 

These results were obtained using a plane-strain assumption but they are valid for the 

guided SH0 wave with a plane-stress assumption: the latter is concerned with sections 

parallel to the plate surface while the former deals with the plate’s cross-section and as 

we noted in Section 4.2.1, these problems are equivalent. Examined with suitable 

coordinates in their appropriate plane, the same condition on in-plane shear stresses 

governs the propagation of both bulk SV and SH0 waves: 
 

                                                                                                                                       (4.3) 1212 εσ G=
 

where σ and ε represent the stress and strain tensor respectively and G is the shear 

modulus. Such equivalence would not hold for compression waves, for which the plane 

stress and plane strain behaviour would be different.  

 

Moreover, since the formula for ),( βθsF  is determined using the geometric theory of 

diffraction (GTD) it is frequency-independent [178] and it could be used for the present 

comparison. The FE model generated for this purpose is illustrated in Figure 4.18 (a). 

The tip or edge of a long or ‘semi-infinite’ crack was exposed to waves of the SH0 mode 

incident at angles 900, 1050, 1200, 1300 and 1350. The amplitude of the U2 displacement 

of incident SH0 waves was monitored along their principal axis, and this directly gives 
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the magnitude of incψ .The U1 amplitude of the diffracted SH0 waves DU1 is monitored at 

a range of angles Dθ  around the crack tip and the resultant amplitude obtained 

as )cos(/1 DUD D θψ = . Equation (4.3) is then used to calculate the diffraction 

coefficient ),( βθsF . The steps were repeated for the first three incidence angle cases, 

with a finer mesh of 1 mm square elements allowing around 32 elements per wavelength 

at 0.1 MHz-mm.  

 

Figures 4.18 (b) - (d) show the modulus of ),( βθsF  obtained from FE simulation results 

for different incidence angles and mesh sizes of 2mm and 1mm, compared with the 

theoretical predictions from Scruby et al. Because of the convergence of the results at the 

two mesh sizes, simulations for the incidence angles of 1300 and 1350 were performed 

with the 2mm mesh alone and these are shown in Figures 18 (e) and (f). In all cases we 

find a very good agreement between results from FE simulations and the theoretical 

method. This lends confidence to the diffraction modeling. 

 

4.3.4 Nature of diffraction  
 

A number of simple FE models were set up to isolate the diffraction due to SH0 mode 

normal incidence on cracks of increasing lengths. The details of the models are shown in 

Figure 4.19 (a). The diffraction is monitored along the crack line where the S0 diffraction 

vanishes and the diffracted SH0 has only the U1 component. The U2 component of the 

incident SH0 was also monitored along a line perpendicular to the crack. The diffraction 

ratio was then calculated according to equation (4.2). 

 

Figure 4.19 (b) shows the diffraction ratio plotted with crack length, again expressed in 

λSH0. The observed pattern of variation of the diffraction ratio can be explained by a 

closer examination of the diffracted field. Figure 4.20 (a) and (b) show diffraction at 

cracks 4 and 2 λSH0 long respectively. We observe that the diffraction field is complex 

and contains contributions from two interfering components: a ‘primary’ diffraction from 

the crack tips or edges and a ‘secondary’ diffraction due to Rayleigh-like waves 
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travelling along the crack faces and radiating into the plate at the crack tip. This will be 

clearer from the analysis later in chapter, in Section 4.4.2.  

 

4.4 Discussion 
 

4.4.1 Understanding reflection behaviour  
 

In section 4.3.2 a suggestion was offered that the crack be thought of as a secondary 

source when the source is far away from it. As described in Chapter 2, this is a well 

known idea following from the integral representation of Huygen’s principle for the 

scattered displacement in terms of sources on the surface of a scatterer. Re-stating 

equation (2.28), and dropping the superscript ‘tot’ for fields on the scatterer, we have 
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where  is the component in the direction of the scattered displacement observed 

at a position  in the medium due to a flaw of surface S and outward normal , 

and are the displacement and traction induced at a position s
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 on the flaw 

surface due to the incident wave, ),|(0
; ωspG ki

rr is the Green’s displacement tensor giving 

the displacement component in the direction at kê pr due to a point force applied at s
r

 in 

the  direction in the free medium in the absence of a flaw and is the 

traction due to the corresponding Green’s stress tensor; steady state fields with circular 

frequency ω such that the displacements and stresses at time t are given by 

iê jkij nsp ),|(0
; ωrr

Σ

( tipftpf )ωω −= exp),(),( rr
 have been assumed. The time factor ( ti )ω−exp  is omitted 

throughout. 

 

Thus the scattered displacement arises due to a superposition of secondary sources, 

and  placed on the surface of the flaw. In the case of an ideal crack with )(sui
r

jij ns)(rσ
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traction-free surfaces  and (4.5) reduces in terms of the displacement jump 

across the crack faces  and , to  
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where the integral is now only on the insonified face s+ of the crack.  

 

For an exact solution to the scattering problem,  must be accurately known along the 

crack face. But here we make use of a Kirchhoff-like approximation for the crack 

opening displacement and FE simulations, to understand how the different parameters 

affect scattering. Let a harmonic point excitation parallel to the crack face be located at 

the mid-plane of a thin plate at a distance R

iu∆

0 from a crack of length ℓ.  

 

Making use of cylindrical coordinates and placing the origin at the excitation point, the 

crack is located along the line 0)cos( Rr =θ  and has an outward normal 

zr ezeen ˆˆ)sin(ˆ)cos(ˆ ++= θφφ while the excitation is applied at (0,0,0) along the line 

2/πθ = . For points ( )φ,r  on the mid-plane far from the source, this generates [168] ,  
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r
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                               (4.7) 

where  is the wavenumber of the SH0 wave. 0SHk

 

If ℓ is small compared to R0, we can assume that a uniform displacement 

( θθ ω eRuu ˆ),0,( 0=  impinges upon the crack face. Further, for cracks of lengths such that 

  i.e. 10 >>lSHk πλ 20SH>>l  we can argue that the two faces of the crack do not 

interact very much because of which we can simply take )()( +∈=∆ ssusu ii
rr

= 
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Taking 1)cos( ≈φ , equation (4.5) now yields, 
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Equation (4.8) means that if the length of the crack is small compared to distance from 

the excitation, it should behave as if point shear sources of uniform strength are placed 

all along its insonified face: in other words, it would behave as if one face of it were a 

simple ideal shear transducer.  

 

In order to test the limits of such a model, the behaviour of a crack with one face loaded 

with parallel point forces was studied using FE simulations. Figure 4.21 shows the U2 

amplitude monitored along the symmetric normal to the crack obtained from these 

simulations, for different crack lengths. For each crack length case, the amplitudes are 

normalized to the maximum value and compared with similarly normalized results from 

the earlier full-FE studies of Figure 4.16. We observe that the results from the partial FE 

simulations assuming Kirchhoff behaviour and the full simulations agree very well for 

crack lengths up to 5 λSH0.  This means that for small cracks, the response is indeed as if a 

secondary source were placed on the insonified side, but cracks that are longer than 7 

λSH0 cannot be represented using this simple model. However the accuracy of the model 

will be improved for such longer cracks, if either the source of the incident waves is 

placed farther away, or the sources assumed along the crack also included the correct 

phase information.  

 

4.4.2 Understanding diffraction behaviour  
 

In the section 4.3.4 it was opined that the undulations observed in the diffraction ratio-

crack length plot (Figure 4.19b) were due to the interference between the primary and 

secondary diffraction. Here we will take a quantitative look at this idea, using FE 

simulations again. When the incident waves impinge on the crack, a direct diffraction 

occurs at the crack edges and surface waves are introduced along the crack faces. These 

surface waves radiate some energy into the medium upon reaching the crack edges and in 

turn are reflected back and in this way undergo multiple reverberations across the crack 

length before dying out. For cracks which are not too small, the radiation from the first 

train of surface waves is the most important and it is this that trails behind the primary 

diffraction. We can assume that these surface waves are in phase with the primary 
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diffraction, but their phase changes as they travel along the crack face and also at the 

crack tip. If  Pφ  and Sφ  represent the phase of the primary and secondary diffraction 

with respect to the excitation point, we can thus write at the crack tip: 
 

edge
SPsurf

edge
P

edge
S k −∆+−= φφφ l                                          (4.9) 

 

where  is the wavenumber of the surface wave which propagates along the crack 

face, ℓ is the length of the crack and  is the phase change at the edge. The phase 

difference between primary and secondary diffraction at the crack edge should hence be 

surfk

edge
SP−∆φ

 

edge
SPsurf

edge
SP

edge
S

edge
P k −− ∆−==− φδφφφ l                                (4.10) 

 

We should therefore expect a plot of  with ℓ to be linear with the wavenumber of 

the surface waves as its slope and the phase change at the crack edge as its intercept.  

edge
SP−δφ

 

FE models of SH0 wave interaction with long cracks (7-10 λSH0 long) were set up so that 

the primary and secondary diffraction could be separated from each other along the crack 

line. Absorbing boundaries using ALID were applied in order to study the scattering from 

the cracks in isolation.  

 

For each crack length case, the U1 component of displacement was monitored at 5 

locations along the crack line. Figure 4.22 shows a typical time trace: from such a signal, 

the primary and secondary components are extracted by time gating. The phase of the 

waves is then obtained as the value at centre frequency of the imaginary part of the 

Fourier transform of the respective signal. For each location at a distance ‘Y’ from the 

crack edge, the phase of the signal at the crack edge is given by:  
 

YkSH
edge
P

Y
P 0−= φφ and                          (4.11) YkSH

edge
S

Y
S 0−= φφ

 

where  is the wavenumber of the SH0 wave. 0SHk
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Thus  at any location directly gives for a given crack length and the values 

at the different positions will act as a cross-check.  obtained this way matched well 

for all the monitored locations and Figure 4.23 shows these values plotted with crack 

length. We observe the expected linear variation, in this case given by if ℓ 

is expressed in λ

Y
S

Y
P φφ − edge

SP−δφ

edge
SP−δφ

17 +=− ledge
SPδφ

SH0, or equivalently, if ℓ is in SI units where the 

value 223.64 directly gives the wavenumber of surface waves on the crack face in 

radians/m.  

164.223 +=− ledge
SPδφ

 

For destructive interference between primary and secondary 

diffraction, , (n =0, 1, 2…), and for constructive interference, 

. Thus the dips in an interference pattern must occur at 

ππδφ +=− nedge
SP 2

ππδφ 22 +=− nedge
SP

07
1)12(

SH
n λπ −+  or 0.3 0SHλ , 1.2 0SHλ , 2.1 0SHλ ... and the peaks, at 07

1)1(2
SH

n λπ −+  or 

0.75 0SHλ , 1.65 0SHλ .... These peak and dip positions are marked using solid and dashed 

lines respectively for comparison with FE results in Figure 4.19b: we find excellent 

agreement except for very small cracks whose behaviour cannot be captured by our 

simple models. Further, for the corresponding wavenumber value of 223.64 radians/m 

for surface waves traveling along the crack face the phase velocity at 0.1 MHz comes out 

to be 2809.5 m/s. Surface waves on the edges of thin plates have been studied in the 

literature on rectangular ridge waveguides [179, 180] and both symmetric and 

antisymmetric modes are known.  The symmetric surface waves on the edges of thin 

ridges correspond closely to Rayleigh waves (see Oliner’s review [179] for instance, for 

a description of the properties of these waves) and since only symmetric modes can exist 

in our plane stress FE models, they appear to be equivalent to the surface waves traveling 

on the crack face. Sinha [181] has shown that the velocity of these waves must be 0.985 

times that of Rayleigh waves. For the material properties used in the FE simulations here, 

the Rayleigh wave velocity is 2925 m/s and therefore the velocity of the symmetric 

surface waves must be around 2881 m/s: the value of 2809.5 m/s calculated above is 

within 3% of this value.  

 124



  4. Low frequency SH0 mode and through-thickness cracks: normal incidence 

 

4.5 Conclusions 
 

A need to understand the interaction of cylindrical crested guided waves with defects was 

felt in view of encouraging results from low-frequency array imaging methods. Because 

of the potential of the SH0 mode for application in plate arrays and its relation to 

torsional modes in pipes, it is ideal for such studies. The present chapter studied the 

problem of low frequency waves of the SH0 mode incident at through-thickness cracks 

or slits such that a line from the wave source bisects the crack face at 900. 

 

Finite element studies confirmed by experiments show that in this frequency regime, 

short range scattering is strongly affected by diffraction phenomena. Studies on the 

influence of the crack length and source and measurement position on the measured 

reflection revealed the focussing of energy by the crack in the backscattered direction. A 

study of the influence of the crack length on the diffracted field shows that it consists of 

components arising from diffraction from the crack tips and radiation from Rayleigh-like 

waves travelling along the crack faces. Theoretical analysis of the scattering phenomenon 

shows that a simple diffraction model of assuming uniform shear sources on the 

insonified face can yield very good results for cracks as long as seven times the 

wavelength considered.  Investigation of the diffracted field revealed systematically the 

interference between the primary and secondary diffraction and showed that the waves 

travelling along the crack face are indeed the symmetric surface waves of rectangular 

ridge waveguides, which correspond closely to Rayleigh waves.  

 

From the guided wave imaging perspective, these results provide a simple estimate for 

the far-field values for a given operating frequency-thickness and crack length. The 

strong presence of diffraction means that more information may be received by a 

transducer array than would be contributed by specular reflection alone. An 

understanding of the physics of the scattering such as the reverberation along the crack 

face, will aid development of imaging procedures. The next chapter continues with 

through-thickness cracks but considers the non-symmetric or oblique incidence problem.   
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Figure 4.1 The matrix of signals from the send-receive configurations from elements of a 

transducer array could be used in imaging algorithms to obtain information about the 

dimensions of the defect. 
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Figure 4.3 Time-trace recorded from FE simulations, at the array element directly 

perpendicular to the crack for forcing applied at a point two SH0 wavelengths from the 

mid-plane of the model. 
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Figure 4.4 Image obtained by processing the matrix of send-receive combinations from 

the simulated interaction of an 8 λSH0 aperture transducer with a 2 λSH0 long through-

thickness crack and a transducer-crack distance of 10 λSH0; The line has been added to the 

image to show the location of the crack. Picture source: J. Davies, NDT Group, Imperial 

College London. The width of the image when its intensity has fallen to half its peak 

value (called the ‘6dB width’ since )5.0/1(log20)/(log20 10010 =xx  = 6dB) captures the 

actual length of the crack quite well. 
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Figure 4.5 Image from simulated interaction of a 1 λSH0 long crack running 50% through 

the plate thickness with the same transducer aperture and position as for Fig. 4.4. The 

line has been added to the image to show the location of the crack. Picture Source: J. 

Davies, NDT Group, Imperial College London; simulations performed with the help of 

Mr Sumeet Kale, summer student at the NDT Group.   

 

 

 

 

 

 

 

 

 

 130



  4. Low frequency SH0 mode and through-thickness cracks: normal incidence 

 
 

 

 

 

 

 

Crack:  
Disconnected Elements  

SH0 
incident 

Symmetric 
normal to crack 

SH0 
principal 
axis 

Plate edge 

Coordinate Axes 

Operating 
Frequency 

 Frequency 

Amplitude 

Source 
motion 
at ‘P’ 

S0 principal axis 

U2 

U1 

Width w = 0 

Length ℓ 

Hanning 
windowed 
toneburst 

Plane stress 
mesh: square 
elements 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Details of the configuration studied. The SH0 mode has its principal axis 

aligned with the symmetric normal to the crack face.  
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Figure 4.7 Group velocity dispersion curves for low frequency Lamb and SH waves in 

an Aluminium plate. Since the A0 mode does not occur in our problem, it is shown by a 

dotted line. 
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Figure 4.9 (a) Shows the SH0-SH0 and SH0-S0 reflection ratios obtained for a range of 

angles around the incidence direction for scattering by a straight edge; (b) Shows the 

SH0-SH0 and SH0-S0 diffraction ratios obtained for a range of angles around the crack 

line for scattering by a semi-infinite crack 
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Figure 4.12 Typical time plots of monitored displacement from experiments showing 

reflection from the slit: values measured at 250 kHz from a 65 mm slit for excitation and 

monitoring at 200 mm and 64 mm from the slit respectively. 
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Figure 4.13 Measured and FE predicted values of the reflection ratio plotted with 

increasing crack lengths for excitation and monitoring at 16 λSH0 and 5 λSH0 from the 

crack face respectively. 
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Figure 4.15 Reflection ratio-crack length plot (a) Monitored at 5 λSH0 from the crack with 

range of source positions; (b) Source at 32 λSH0 with range of monitoring positions. 
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Figure 4.17 The reflection ratio is plotted with the monitorin

Fresnel parameter F for (a) Small cracks (b) Long cracks.
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Figure 4.19 (a) The positions for monitoring incident and diffracted waves (b) The 

diffraction ratio calculated at 0.1 MHz for a point along the monitoring line, plotted with 

increasing crack length; the solid and dashed vertical lines are located at positions where 

the analysis in Section 4.4.2 predicts the peaks and troughs would be located.  

 

 

 

 

 

 

 

 

 144



  4. Low frequency SH0 mode and through-thickness cracks: normal incidence 

 
 

 

 

 

 

 

                                                                

 

(i) (i) Radiation of Rayleigh 
waves travelling on the 
crack surface  (ii) 

(ii) 

(ii) 

(i) SH0 incident 

 (ii) SH0 diffracted  
       at crack tip 

 
 

Figure 4.20 Snapshots of the contour of magnitude of resultant

diffraction study for two different crack lengths: (a) 4 λSH0 (b) 2 λSH0. T

black to white spans the range from the minimum to the maxim

amplitudes in the result. 

(a)  

 

 

 

 

 

 

 

 

 

 

 

(ii)
 

 displacement for 

he grey-scale from 

um displacement 

(b)  

145



  4. Low frequency SH0 mode and through-thickness cracks: normal incidence 

 
 

 

 

 A
m

pl
itu

de
 a

lo
ng

 c
ra

ck
 n

or
m

al
 

(n
or

m
al

iz
ed

 to
 p

ea
k 

va
lu

es
) 

0

0.5

1

0 10 20 30

                                  

 
0

0.5

1

0 10 20 30

 A
m

pl
itu

de
 a

lo
ng

 c
ra

ck
 n

or
m

al
 

(n
or

m
al

iz
ed

 to
 p

ea
k 

va
lu

es
) 

 

 

Figure 4.21 U2 amplitude monitored along the symmetric n

from FE simulations of cracks with one face loaded with pa

the values for cracks 1, 3 and 5 λSH0 long; (b) plots those for 7 

each crack length case, the amplitudes are normalized to

compared with similarly normalized results from full-FE studi

 

 

 

 

 

 

Crack length 
(ℓ/λSH0) 
Full FE, 1
Partial FE,1
Full FE, 3
Partial FE,3 
Full FE, 5
Partial FE, 5

 

o

r

a

 

Crack length 
(ℓ/λSH0) 
Full FE, 7

Partial FE, 7

Full FE, 10

Partial FE,

 

   Distance at which monitored (λSH0) 

(b) 
                               
   Distance at which monitored (λSH0) 

(a) 
rmal to the crack obtained 

allel point forces: (a) plots 

nd 10 λSH0 long cracks. For 

the maximum value and 

es of Figure 4.16. 

146



  4. Low frequency SH0 mode and through-thickness cracks: normal incidence 

 
 

 

 

 

 

 

 
   0.12 
 
 
   0.08 
    
 
   0.04 
       
 
      0  
       
 
 - 0.04 
 
 
 - 0.08 
 
 
-  0.12 

SH0 
incident 

   
D

is
pl

ac
em

en
t A

m
pl

itu
de

 (a
.u

.) 

S0  
incident Primary 

Diffraction 

Secondary 
Diffraction 

0          0.2        0.4        0.6         0.8       1.0  

) 

 

Figure 4.22 Typical time trace of

the crack line. The primary and s

such a signal by time gating. 

 

 

 

 

 

 

 

 

 

 

 

 

        
Time (microseconds
 the U1 component of displacement monitored along 

econdary diffraction components are extracted from 

147



  4. Low frequency SH0 mode and through-thickness cracks: normal incidence 

 
 

 

 

 

 

 P
ha

se
 d

iff
er

en
ce

 b
et

w
ee

n 
pr

im
ar

y 
an

d 
se

co
nd

ar
y 

di
ffr

ac
tio

n 
(r

ad
ia

ns
) 

75 
 
70 
 
65 

 
60 

 
55 

 
50 

 
45 
 
40 

               O  Phase difference vs. crack length 
               Linear fit: y = 7x + 1 

 7                        8                        9                       10      
   Crack length (l/λSH0) 

 

Figure 4.23  from FE simulations plotted with the crack length ℓ. A linear fit yields 
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Chapter 5 
 

Low frequency SH0 mode interaction with 

through-thickness cracks: oblique incidence 
 

5.1 Introduction 

 
This is the second of the three chapters studying the general shorter range scattering of 

the fundamental shear horizontal guided wave (SH0) mode by ideal but finite surface-

breaking cracks in isotropic plates. The attractiveness of the SH0 mode, requirement of 

cylindrical wavefronts and studies focusing on the spatial behaviour of scattering from 

through-thickness cracks were presented in Chapter 4. The scattering behaviour was 

studied in terms of the influence of the crack length on the specular reflection and 

diffraction fields. The studies were carried out using Finite Element (FE) analysis and 

general results were validated with experiments, while the diffraction modeling was 

verified by comparison with similar problems in bulk wave literature.  
 

This Chapter continues with through-thickness cracks but considers general non-

symmetric or ‘oblique’ SH0 mode incidence on the crack and studies the angular profile 

of the scattering. Essentially we will study how the scattering at different angles of 

observation varies due to different angles of incidence and crack lengths. The problem is 

complex, involving a number of parameters, including the angles of incidence and 

observation, the wavelength, the length of the crack, and the distances of the source and  
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the receiver from the crack. But findings from the simpler case of normal incidence from 

Chapter 4 clarified the physics of the scattering and helped identify the minimum number 

of independent parameters required. Both the source and the receiver are thus placed in 

the far-field of the largest cracks to be studied in a given model, in order to avoid spatial 

fluctuations in the scattered field. The crack length is stated in terms of the SH0 

wavelength at the centre-frequency of the incident toneburst. The largest cracks studied 

were 5 wavelengths long so a distance of 15 wavelengths was sufficient. For the 

reflection studies, the parameters are further reduced by considering two complementary 

configurations involving the incidence and the observation angles, which together help 

understand the larger picture. For the diffraction studies only cracks that are long enough 

to allow the separation of primary and secondary diffraction from each other are 

considered. As in Chapter 4, the studies are carried out using Finite Element (FE) 

analysis and general results are validated with experiments, while the diffraction 

modeling is verified by comparison with theoretical results from bulk elastic wave 

scattering literature. 

 

In what follows, first the procedure for FE simulations and the experiments is briefly 

described. Studies examining the angular behaviour of the reflection and diffraction are 

then presented and the results are discussed in the light of the physics of scattering. 

Finally these insights are used to consider the implications for imaging applications.  

 

5.2 Methods 
 

A detailed description of the configuration studied along with Group velocity dispersion 

curves and the general procedure for FE simulations and experiments is given in Chapter 

4. For a self-contained presentation within this chapter, the key features are again quickly 

summarised here. 
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5.2.1 Studied configuration and general procedure for FE simulations 
 

Figure 5.1 illustrates the configuration studied and the procedure for FE simulations. A 

finite length planar through-thickness crack of vanishing width is located in a thin 

isotropic plate. A point excitation [168] of in-plane force vibrating along the U2 direction 

is applied uniformly through the plate thickness and along a line which bisects the crack 

face at a given incidence angle. This generates incident circular-crested waves of the SH0 

mode travelling principally in the U1 direction and those of the S0 mode, principally in 

the U2 direction. Away from their principal directions both modes exhibit a cosine 

angular decay of the displacement amplitude. At the low frequency-thickness of 0.1 

MHz-mm chosen for the study, only these two in-plane modes can be present even after 

scattering. The S0 mode travels much faster than the SH0 mode and this fact is used to 

help time-gate its effects and study the scattering due to the latter in isolation. The A0 

mode does not occur in this problem since it is not generated at the source and the 

through-thickness symmetry of the crack ensures that there is no mode conversion into it 

by the scattering. We then seek to study the angular profile of the SH0 mode reflected 

back from the crack face and diffracted around the crack tips (or edges). As shown in 

Chapter 4, this problem is equivalent to that of the scattering phenomena in the sagittal 

plane when bulk SV waves interact with strip-like internal cracks. 

 

The problem was modeled by FE simulations in the two-dimensional domain with 

assumption of plane stress, implemented using the commercial package ABAQUS[149]. 

The plate thickness is assumed to be 1 mm so the frequency-thickness at an input 

frequency of say f0 MHz would simply be f0 MHz-mm. As demonstrated in Chapter 4, 

for through-thickness cracks, the results obtained at f0 would be valid at any other 

frequency f1 provided the dimensions are appropriately scaled by a factor of f1/f0. The 

mesh consisted of perfectly square elements, allowing for around 16 elements per SH0 

wavelength, respecting the spatial discretization limit required for accurate modelling of 

wave propagation [146].Cracks of vanishing width were created by disconnecting nodes 

along adjacent elements. Material properties of aluminium were used for the reflection 

studies while those of steel were chosen for the study of diffraction so as to facilitate 
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comparison with the literature consulted, although there is only a small difference in the 

results obtained using these two properties. Absorbing layers with increasing damping 

(see Castaings et al.[170, 171] and Drozdz et al.[169] for details on the use of absorbing 

boundaries in FE analysis) were used around the edges of the plate in order to isolate the 

scattered SH0 waves. 

 

The excitation consisted of a 5 cycle Hanning windowed toneburst centred at 0.1 MHz 

applied as a force vibrating in the direction parallel to the crack face at a single node.  

This generated the S0 and SH0 modes, with their principal directions parallel and 

perpendicular respectively to the applied force. Explicit time integration with a constant 

time step respecting the stability limit simulated the propagation of the modes. The 

default condition on the faces of the disconnected elements representing the crack is that 

of zero stress. Thus, the scattering from an ideal open crack was simulated. 

 

5.2.2 General procedure for experiments 
  
A point-like excitation was achieved by means of a plane wide-band piezoelectric shear 

transducer (Panametrics V301, 0.5 MHz center frequency) coupled to the plate through a 

small, thin (0.2 mm thickness, 3 mm diameter)  brass disc. The source signal consisting 

of a 5 cycle Hanning windowed toneburst was generated by a Wavemaker (Macro 

Design Ltd., UK) instrument and centered at the required frequency.  
     
The detection was achieved using a laser interferometer with dual differential fiber optic 

lines (Polytec OFV 2700) which are aligned at an angle of 300 to the surface of the plate, 

so that the difference between their signals gives the in-plane surface displacement. The 

aligner holding the two optical fiber leads is in turn, attached to a translatable rotary arm, 

a photograph of which is shown in Figure 5.2. The interferometer reads in-plane 

displacements perpendicular to the direction in which the arm points, and thus the SH0 

mode propagating along that direction is picked up when the axis of the arm is vertically 

above the source point. A thin reflective tape was attached to the surface of the plate to 
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enhance the optical backscatter from the laser beams and the quality of measurement was 

improved by applying a band-pass filter and taking an average over 500 acquisitions.  

 

Measurements were carried out on 0.5 mm wide slits of lengths 8 mm, 16 mm, 36 mm, 

and 65 mm cut in 1250 mm square standard aluminium (commercial purity, AA1050)   

plates of 1mm thickness. The center frequency of excitation was varied in order to obtain 

different values of slit-length in terms of the wavelength. The excitation and detection 

positions were also varied at each center frequency, so that they were located at a certain 

constant number of wavelengths away from the slit.  
 

5.3 Specific studies and results 
 

5.3.1. Angular influence on reflection 
 

The angular influence on SH0 reflection is examined through two complementary sets of 

studies. First the case of normal incidence is considered and the angular profile of the 

total reflected field, both specular and diffuse, is studied as the crack length increases. In 

this context, the term ‘specular’ denotes the direction of mirror-like reflection as given by 

Snell’s law and ‘diffuse’ refers to all the directions in which the waves can be reflected in 

the backscatter direction.  Next the behaviour of just the specular reflection is studied at 

various other angles of incidence, again with increasing crack length. The overall angular 

profile of the reflected field can then be pictured by an intuitive superposition of the 

findings from these two sets of studies. For these reflection studies, the angles are 

defined in a counter-clockwise sense from the crack face symmetric normal, to a ray 

pointing to or from its centre along a required direction. For simplicity, large angles say 

 defined in this way are referred to as θα −= 0360 θ−  instead, measuring clockwise 

from the symmetric normal. These details are shown in Figure 5.3. 

 

The reflection behaviour was studied in terms of a frequency domain ratio of the 

resultant displacement of the reflected signal to that of the signal incident at the centre of 
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the crack face. The signals were compensated for beam-spreading such that the ratio from a 

straight edge would be unity.  Thus 
 

     Reflection ratio    =                                                                  (5.1) 
I

M

dI ⋅(ω
dDR +⋅

)
)(ω

 

where R(ω) and I(ω) are the frequency spectra of the reflected and incoming signals 

respectively, D is the distance between the source and the centre of the crack, dM is the 

distance from the crack centre to the point where the reflection is monitored and dI is the 

distance from the source to the point where the incident signal is monitored. (See Figure 

5.3 for an example illustration). 

 

5.3.1.1 Study of diffuse reflection due to normal incidence 

 

Figure 5.3 illustrates the geometry used for the study of reflection at various diffuse 

angles Rθ  for incidence angles . In the FE models, the excitation was located at a 

distance D = 32 λ

00=Iθ

SH0 (SH0 wavelengths at the centre frequency of the toneburst) away 

from the crack and such that the principal axis of the generated SH0 waves was aligned 

with SN, its symmetric normal. Since this is a normal incidence study, the FE time 

snapshots in Figure 4.8, Chapter 4 showing mode generation and interaction with the 

crack are illustrative of this present case as well. The U2 displacement of the incident 

waves was monitored along their principal axis at a distance dI from the source: since this 

is the only displacement component here, it directly gives the total magnitude I. 

Reflected SH0 waves were monitored along one half of a vertical line at a distance dM0 

=15 λSH0 from the crack and bisected by its symmetric normal at a point called S. Starting 

from a point along this line at a distance of 17.6 λSH0 from S, nodal displacements RU2 in 

the U2 direction were monitored at intervals of 1.6 λSH0 all the way down to S. This 

yielded monitoring angles in the range Rθ  = 00 to 500 in intervals of 30-60. The resultant 

displacement R is related to RU2 as 2)cos( UR RR =θ , so for each monitored point the 

resultant displacement values were obtained from the U2 values as )cos(/2 RURR θ= . 

The values in the range from -500 down to 00 were assumed to be identical to these due to 
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the symmetry in the configuration. The reflection ratio was then calculated using 

Equation (5.1) with )cos(/0 RMM dd θ= . 

 

Experiments were carried out on slits of length 1 λSH0 and 5 λSH0 achieved using the 

required centre-frequency values on slits of lengths 8 mm and 36 mm respectively. 

Measurements were taken at the appropriate excitation and monitoring distances in terms 

of λSH0 at the operating centre-frequency. Thus the transducer was located at a distance D 

= 32 λSH0 from the crack and along SN, while the reflected signals were monitored along 

a vertical line (i.e. perpendicular to SN) which was dM0 =15 λSH0 from the crack. 

Measurements were taken at locations along this line which were at 

distances )cos(/0 RMM dd θ= from SN while Rθ  spanned the range from -450 to 450 in 

equal intervals of 90.  At each of these positions, reflected SH0 waves were measured by 

positioning the axis of the rotary arm to be vertically above the centre of the slit face and 

then placing the arm along the required direction Rθ . This directly gives the magnitude of 

the reflected signal, R. The incident SH0 waves were monitored simply from the  

measurement position when the rotary arm is placed along the symmetric normal to the 

slit and d

00=Rθ

M0 =15 λSH0 from the crack. The reflection ratio was then calculated using 

equation (5.1) using a procedure similar to that for the FE predictions.  

  

Figure 5.4 (a) and 5.4 (b) show the plot of reflection ratio with Rθ  obtained from FE 

simulations for small and long cracks respectively and Figure 5.4 (c) and 5.4 (d) present 

comparisons with experiments for two slit length cases. There is a very good agreement 

between the FE and experimental results.  

 

The first observation is that as the crack length increases, most of the reflected energy is 

seen to be concentrated in a narrow region around the backscatter direction. An 

explanation for such behaviour follows from arguments we presented in Chapter 4, that 

in the configuration studied, the insonified face of cracks can be taken to behave like a 

simple ideal shear transducer focusing energy back. It is known that the field from a 

circular piston transducer is increasingly collimated with increasing piston radius (see for 
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instance, the text by Rose [38] pages 347-348). We do discern such a trend from Figure 

7: as the crack length increases, the reflection tends to become increasingly concentrated 

around the direction of the crack’s symmetric normal. We will discuss this idea in some 

more detail in Section 5.4.  

 

5.3.1.2 Study of specular reflection at various incidence angles 

 

Figure 5.5 illustrates the geometrical details for this study. In the FE models, excitation 

in the U2 direction was applied at a node along a vertical line at a fixed distance xI = 19 

λSH0 from the crack face and skewed from its symmetric normal by a certain distance yI. 

For each angle of incidence θI, )tan( III xy θ⋅≈  and angles in the range 00 to 550 were 

considered. Figure 5.6 shows snapshots of the contour of magnitude of resultant 

displacement from FE simulations, showing the interaction of SH0 mode with the crack 

at an oblique angle of incidence. The U2 displacement of the incident SH0 waves was 

monitored along their principal axis at a distance dI from the source, directly giving the 

total incident magnitude I. For specularly reflected waves at angles IR θθ −= , nodal 

displacements RU2 in the U2 direction were monitored along a vertical line at a distance 

xR = 16 λSH0 from the crack and a distance )tan( IRR xy θ⋅≈  from its symmetric normal. 

The resultant displacement values were then obtained as )cos(/2 RURR θ= . The values in 

the range from -550 to 00 were assumed to be identical with these due to the symmetry in 

the configuration. The reflection ratio was then calculated using Equation (5.1) with 

)cos(/ IIxD θ=  and )cos(/ IRM xd θ= . 

 

Experiments were again carried out on slits of 1 λSH0 and 5 λSH0 achieved using the 

required centre-frequency values on slits of lengths 8 mm and 36 mm respectively. 

Measurements were taken using exactly the same procedure for the FE simulations, with 

appropriate excitation and monitoring positions as in terms of λSH0. The reflection ratio 

was calculated using exactly the same procedure as that for the FE predictions.   
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Figure 5.7 (a) shows FE predicted values of the reflection ratio plotted with IR θθ −=  

and Figures 5.7 (b) and (c) present comparison with experiments for two slit length 

cases. We find a fairly good agreement between FE and experiments except at large 

angles of incidence where the crack tip diffraction contributes strongly to the reflected 

field but the tip of the experimental notch does not represent the crack tip very well. 

 

We see that as the crack length increases, the highest specular reflection occurs at normal 

incidence, while almost no reflection is observed at a constant incidence angle of around 

300 to the crack normal. In order to understand this behaviour, Figure 5.7(a) also overlays 

the reflection coefficient predicted for plane SV wave reflection from a straight edge. 

When a plane SV wave is incident on a straight edge, the reflected energy is repartitioned 

into SV and P waves traveling at angles given by Snell’s Law. As the angle of incidence 

increases, more and more energy is delivered to the reflected P-wave. This happens until 

the first critical angle θcr1 (around 290 for aluminium) at which the P-wave begins to 

graze through the surface of the edge and almost all the reflected energy goes into the P-

wave. Beyond this angle energy is again diverted to the reflected SV wave and the 

reflection coefficient rises with the incidence angle until it settles at a steady value.  What 

we see is that as the crack length increases the reflection behaviour from a finite crack 

increasingly tends towards that of the straight edge case. However, in the finite crack 

case, there is an interference characteristic of the presence of diffraction components 

which are not much separated in time. We will further discuss these findings and also 

their implications for imaging applications in Section 5.4.  

 

5.3.2 Angular influence on diffraction  
 

In the case of diffraction, attention is drawn to the validation of FE modeling in Chapter 

4: for long single-tipped cracks, it was shown that the angular behaviour of diffracted 

SH0 waves agreed with that of bulk SV waves in a similar configuration. Thus we would 

expect that even for finite cracks, if we can isolate the primary diffraction at each of the 

two crack tips, its behaviour must correspond to that of bulk SV wave values for 

appropriate angles of incidence at a semi-infinite crack. Here we will scrutinise this 
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prospect and distinguish between two regimes of crack lengths, depending on whether or 

not the primary tip diffraction can be separated from secondary multiple diffraction 

components. For these diffraction studies, the angles are defined counter-clockwise from 

the crack face to a ray pointing to or from the crack tip in the required direction as 

shown in Figure 5.8 

 

First a case is taken up the where such a separation can be achieved. From this 

perspective, using a 5 cycle Hanning windowed toneburst excitation with a 100 kHz 

centre frequency, a crack longer than 7 λSH0 is suitable and a value of 10 λSH0 was used for 

the FE studies. As in Chapter 4, the study is performed by comparing the FE results with 

those from Scruby et al.[175] for the equivalent bulk SV wave problem with the help of 

the diffraction coefficient  

                                                                  (2)  D rψ
θ ),(

S

M

I
sF

λψ
β =

 

where Dψ  is the frequency-domain amplitude of the monitored diffracted signal and Iψ  

that of the wave incident at the crack tip, Sλ  is the wavelength of bulk shear waves, rM is 

the distance from the crack tip to the observation point, and θ , β  are the angles of 

incidence and diffraction at the crack tip measured in a counter-clockwise sense from the 

crack face ( see Figure 5.8 for an illustration) 

 

The details of the model used are shown in Figure 5.8. A point source vibrating parallel 

to the crack face is located along its symmetric normal at a distance D = 32 λSH0 from it. 

This causes the incidence of SH0 waves at the two crack tips (labelled Tip 1 and Tip 2) at 

angles 1Iθ  and 2Iθ  with the crack face.  The U2 displacement of the incident waves IU2 

was monitored at a distance do from the source along their principal axis: the amplitude 

incident at each crack tip n (n = 1 or 2) situated at a distance )sin(/   nInI Dd θ=  from the 

source would then be )sin(  
 

2
nI

nI

oU
inc d

dI
θψ = . The U1 component of the diffracted signal 

DU1 was monitored at a range of angles nD θ around both the crack tips (n = 1 and 2) at 

radial positions dM, with the resultant displacement obtained as )cos(/  1 nDUnd D θψ = . 
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Equation (5.2) is then used to calculate the modulus of the diffraction coefficient and 

Figure 5.9 compares it with the results from bulk SV wave scattering literature [175, 

176]. The FE results for angles around both the crack tips are mutually identical as 

predicted by, and in good agreement, with the theoretical calculations, thus confirming 

our expectation. The deviations from the theoretical predictions two are because of the 

unavoidable presence in the FE measurements, of unwanted signals which arrive together 

with the primary diffraction. We thus note that even for finite cracks, the angular pattern 

as well as the amplitude of the primary diffraction can be estimated quite well from the 

theoretical results for bulk SV waves. 

 

In the case of shorter cracks, where the primary and secondary diffraction cannot be 

separated, the diffraction behaviour will be modulated by the presence of these additional 

components. Consistent trends may not exist in this case and due to the presence of 

multiple interfering components it would be advisable to work at a single frequency. As 

an illustration of a typically mixed signal, Figure 5.10a presents a time trace of the 

diffraction from the tip of a 5.25 λSH0 long crack, for a normally incident SH0 wave; 

5.10b shows the Fourier transform of just the mixed diffraction signal: interference due 

to multiple components can be observed.  

 

5.4 Discussion 
 

5.4.1 Understanding reflection behaviour  
 

Trends similar to those of the results for guided SH0 wave reflection from through-

cracks presented in Section 5.3 are known for the analogous problem of bulk shear wave 

scattering from strip-like cracks (see for ex. Danilov [182]  and more recently, Caleap  et 

al. [183]).). Chapter 4 employed a Kirchhoff-like approximation to demonstrate that 

cracks which are small compared to the distance from the source could be considered to 

behave as if uniform point shear sources were placed along the insonified face. Such a 

model was seen to be valid for cracks as long as 7 λSH0 for the range of distances of 
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interest to this work. The observed angular behaviour of reflection for normal incidence, 

as noted in Section 5.3.1.1, with a narrowing down of the field at increasing crack 

lengths, does conform to such a model. Here FE simulations are again used to further 

quantitatively compare the behaviour of this Kirchhoff approximation based model with 

the reflection results from earlier full-FE studies. One face of the crack was loaded with 

parallel point forces and the generated amplitude was monitored at a range of angles 

around the crack face, using the same procedure as described in 5.3.1.1.  This procedure 

was repeated for cracks of lengths 1, 3 and 5 λSH0, and for each crack length the 

monitored amplitude was normalized to the peak value:  Figure 5.11 compares these with 

similarly normalized values for the same crack lengths from the results of Figure 5.4. We 

observe a very good agreement, revealing that the angular trend of reflection at normal 

incidence noted earlier does indeed arise from the insonified crack face exhibiting an 

ideal shear-source like behaviour.  

 

The trend of reflections at other angles of incidence considered in Section 5.3.1.2 can 

also be understood from a Kirchhoff approximation framework. The main contribution to 

the reflection field can be said to be occurring from the central region of the crack, where 

there is very little interaction between the crack faces. Therefore, incident waves would 

reflect from the crack face locally as if it were an infinite straight edge and thus the 

reflection ratio would approach that from such an edge for increasing crack lengths.  We 

indeed discern such a trend in Figure 5.7.  

 

5.4.2 Implications for Imaging 
 

We infer from the results of the normal incidence study that SH0 mode reflection from 

planar through-cracks is likely to be concentrated in a narrow angular band around the 

specular direction. The oblique incidence studies show that the specular reflection itself 

is strongest at normal incidence, but drops rapidly at other angles, reaching a distinct 

minimum around the material’s first critical angle. These factors are likely to play a key 

role when defining the limits for the spatial resolution achievable by different imaging 

methods. 
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Provided that the crack and signal length are appropriate to allow the primary component 

to be isolated, the variation of diffraction with the angular position can be predicted from 

known solutions from bulk SV wave scattering literature. This can potentially yield 

important additional information such as the crack size and orientation which could be 

useful for more precise imaging. For smaller cracks, the presence of multiple interfering 

components means that a single frequency for calculations would be important. 
 

5.5 Conclusions 
 

This Chapter studied the interaction of low frequency SH0 waves with through-thickness 

cracks at non-normal angles of incidence. The interaction was studied in terms of both 

the reflection from the crack face and the diffraction at the crack tips. From two 

complementary sets of studies, it is seen that the reflection is mainly concentrated in a 

narrow angular band around the specular direction and that it approaches that from a 

straight edge for large cracks. The specular reflection itself varies quite rapidly with the 

incidence angle, and is strongest at normal incidence. If the crack is long enough to allow 

isolation of the tip diffraction at the operating frequency, an estimate of its amplitude and 

angular variation can be obtained from known solutions of bulk SV wave canonical 

scattering problems. The next Chapter will further extend this line of investigation and 

consider part-through instead of through-thickness cracks. 
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Figure 5.1 Details of the configuration studied. The SH0 mode is generated such that  

a line from the wave source bisects the crack face at a required angle. 
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Figure 5.2 Close-up photograph of the translatable rotary arm which holds the aligner for 

the optical fiber leads.  

 

 

 

 

 

 

 

 

Aligner 

Translatable rotary arm 

Axis of the arm 

Possible translation 

Possible rotation 

 163



5. Low frequency SH0 mode interaction with through-thickness cracks: oblique incidence 

 
 

 

 

 

D 

dM0
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Figure 5.5 Geometrical details for the study of specular reflection for oblique incidence 

angles. 
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F re 5.6 Snapshots of the contour of magnitude of resultant displacement from FE 

simulations: oblique angle of incidence. Absorbing boundaries present all around the 

actual plate isolate the interaction of the waves with the crack. (a) Shows the generation 

of the waves (b) shows the weak interaction of the S0 mode with the crack while (c) and 

(d) show the interaction of the SH0 mode with the crack. 
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Figure 5.8 Details of the model used for diffraction study (see text for definition of the 

different terms). 
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Chapter 6 
 

Low frequency SH0 mode interaction with 

part-thickness cracks 
 
6.1 Introduction 
 

This is the last Chapter studying the interaction of cylindrical crested fundamental shear 

horizontal (SH0) guided waves with finite cracks in an isotropic plate, in the context of 

array imaging using ultrasonic guided waves [43, 155]. The background to this work and 

studies on the scattering by through-thickness cracks were presented in Chapters 4 and 5. 

The interaction was studied in terms of both the reflection from the crack face and the 

diffraction at the crack tips or edges. Finite Element (FE) analysis was used to obtain 

results which were verified by experiments and comparison with those from similar 

problems in bulk elastic wave scattering literature.  

 

This Chapter further extends the investigation to consider part-through instead of 

through-thickness cracks. Although only the symmetric incidence case and the reflection 

behaviour are studied, general conclusions are drawn for the scattering of the SH0 mode 

based on the relationship of the results with those for through-cracks. In doing so, the 

general method in Chapters 4 and 5 is again adopted: first the influence of crack length 

and the monitoring distance on the specular reflection is examined and then the angular 

profile of the diffuse reflection is studied. Here ‘specular’ refers to the direction of 
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mirror-like reflection as given by Snell’s law and ‘diffuse’ to all the directions in which 

the waves can be reflected in the backscatter direction. To facilitate comparison of 

results, the same excitation and monitoring distances from the crack as those used for 

similar studies in the through-thickness case are maintained. For each crack length, 

different crack depths and operating frequencies are considered, to gain an understanding 

of the reflection behaviour. Studies on the relation of the scattering from part-thickness 

cracks and notches have shown [19] that notches of extremely small axial extent or width 

(< 0.01% of the wavelength) are necessary to approximate the behaviour of cracks. 

Instead of attempting to create such small-width notches, separate FE studies with finite-

width notches were performed for experimental validation of the modeling.  

 

In the following, Section 6.2 describes the configuration studied and the general 

procedure for FE simulations and experiments. Section 6.3 deals with specific studies, 

taking up in order, the influence of the crack length and measurement location on the 

specular reflection, the angular profile of the reflected field and finally the validation of 

FE modeling with experiments. In Section 6.4 the results are analyzed and an empirical 

formula for the scattering of the SH0 mode by part-thickness cracks is sought. Finally the 

findings are discussed and conclusions are drawn in Section 6.5.   

 

6.2 Methods 
 

6.2.1 Configuration studied  
 

Figure 6.1 shows the details of the configuration studied and those for the FE simulations 

described in the next part of this section. A finite length ideal (planar, zero-width) 

surface-breaking part-thickness crack is located in a thin isotropic plate. A line excitation 

consisting of in-plane point forces vibrating in the U2 direction applied uniformly 

through the plate thickness generates [168] incident circular-crested waves of the SH0 

mode principally along U1 and those of the S0 principally along U2. The operating 

frequency-thickness values are always low enough so that only fundamental modes can 

be present even after scattering. Due to the through-thickness symmetry of the excitation, 
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the fundamental antisymmetric Lamb mode (A0) is not generated at the source. The SH0 

mode is generated such that it propagates principally along the crack’s symmetric 

normal. The fact that the S0 mode travels much faster than the SH0 mode at these 

frequencies is used to time-gate its effects and although some A0 will be generated by 

mode conversion at the scattering, its modal properties are exploited so that it is not 

picked up at the monitored positions. Thus the SH0 reflection from the crack face solely 

due to the SH0 mode incident at it is studied in isolation. 

 

We will then examine successively, the influence of the crack length, depth and 

measurement position on the reflection using FE simulations validated with experiments. 

We observed in Chapter 4 that SH0 mode scattering from through-thickness cracks 

which are not too small (cracks of length ℓ such that kSH0.ℓ > 1 where kSH0 is the 

wavenumber) can be described well by the Kirchhoff approximation. This means that the 

faces of the crack do not interact and reflection would be governed by the secondary 

sources placed on the insonified face. Thus the results at a frequency f0 would be valid at 

another frequency f1 provided the crack length and the other dimensions are scaled 

appropriately by a factor of f1/f0 by which the wavelength is scaled. But such simple 

scaling will not work with part-thickness cracks since their faces interact in a more 

complex frequency-dependent manner and so the Kirchhoff-approximation does not hold 

except at high frequencies: therefore the influence of the operating frequency on each of 

these cases is also studied.  

 

The cracks that occur in practice will be more complex, with features such as roughness, 

curving and closure of the faces, branching at tips etc, but we wish to obtain trends which 

might still be valid.  Also, uniform width notches were created for experimental 

validation of FE simulations. Mention must be made here of the analysis on the 

relationship between cracks and notches in Demma et al. [19], which brings out an 

important difference in the scattering behaviour of a through-thickness notch from that of 

a part-thickness one must be. Only the insonified face of the through-thickness notch 

participates directly in the scattering process. But with a part-thickness notch both faces 

contribute and the scattered packet consists of reflections from the first face followed by 
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multiple reverberations across the width of the notch. Because of this, the scattering from 

a part-thickness notch is strongly influenced by the operating frequency. 

 

Thus a through-thickness crack can be well represented in its scattering by a through-

thickness rectangular notch or slit with suitably small axial extent (width). But a part-

thickness notch fails to represent a part-through crack unless it has width less than 0.01% 

of the operating wavelength. Since it is difficult to create such a small uniform notch, we 

decided to perform separate FE studies with notches for comparison with experiments. 

The configuration studied in this case remains the same, except that the crack is now 

replaced by a finite width notch. The dimensions of the notch and the operating 

frequency will all have a combined influence in this study. 

 

6.2.2 General procedure for Finite Element simulations 
 

The problem was simulated by FE analysis in the general three-dimensional domain 

implemented using the commercial package ABAQUS [149]. The model plate was 

assumed to be 2 mm thick and material properties of aluminium were used, simply in 

order to match the experimental plate dimensions and properties. The mesh consisted of 

perfectly cubic 8 noded linear continuum elements and four elements were used to 

represent the thickness. This allowed for around 16 elements per SH0 wavelength at the 

highest centre-frequencies used, thus respecting well the spatial discretization limit 

required for accurate modelling of wave propagation [146]. Cracks of vanishing width 

were created by disconnecting nodes on elements representing the adjacent faces. 

Notches of 0.5 mm width (equal to the size of an element) were created by removing 

columns of elements from the mesh. Absorbing layers with increasing damping (or 

ALID, see Drozdz et al. [169]; see Castaings et al. [170, 171] for details on the use of 

absorbing boundaries in FE analysis) were used around the edges of the plate in order to 

isolate the scattered SH0 waves.  

 

The excitation consisted of a 5 cycle Hanning windowed toneburst centred at the 

required frequency and applied as a force in the direction parallel to the crack face at a 
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single line formed by all nodes through the thickness.  This generates the S0 and SH0 

modes, with their principal directions parallel and perpendicular respectively to the 

applied force and ensures that no A0 mode is generated. Explicit time integration with a 

constant time step respecting the stability limit [146] simulates the propagation of the 

modes. The default condition on the faces of the disconnected elements representing the 

defect is that of zero stress. Thus the scattering from an ideal open crack or uniform 

rectangular notch is simulated. 

 

As in Chapters 4 and 5, the reflection behaviour was studied in terms of the frequency 

domain ratio of the beam-compensated reflected and incident signals, given as 

 

       Reflection ratio     =                                                               (6.1) 
I

M

dI
dDR

⋅

+⋅

)(
)(
ω

ω

 

where R(ω) and I(ω) are the frequency spectra of the resultant displacement obtained 

from the reflected and incident signals, D is the distance between the source and the 

centre of the crack, dM is the distance from the crack centre to the point where the 

reflection is monitored and dI is the distance from the source to the point where the 

incident signal is monitored. (See for instance, Figure 6.4 for an illustration).  

 

The reflection ratio for a fully through-thickness crack was obtained at 0.4 MHz-mm and 

the results agreed very well with the previous plane-stress studies obtained at 0.1 MHz-

mm, thus assuring us of the integrity of the definition of the crack. As expected, the 

results for the through-thickness crack were identical for different frequencies, with the 

dimensions suitably scaled.  

 

6.2.3 General procedure for experiments 
  

The experimental set-up was identical to the one described in detail in Chapters 4 and 5. 

A point-like excitation was achieved by means of a plane wide-band piezoelectric shear 

transducer (Panametrics V301, 0.5 MHz center frequency) coupled to the plate through a 

small, thin brass disc. The source signal consisting of a 5 cycle Hanning windowed 
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toneburst was generated by a Wavemaker (Macro Design Ltd., UK) instrument and 

centered at the required frequency. The detection was achieved using a laser 

interferometer (Polytec OFV 2700, with dual differential fiber optic lines) measuring the 

displacement component parallel to the surface of the plate through a reflective tape to 

enhance the optical backscatter. The quality of each displacement measurement was 

enhanced by applying a band-pass filter and taking an average over 500 acquisitions.  

 

Measurements were carried out on two 0.5 mm wide, 10 mm long notches of depths 1 

mm and 1.5 mm respectively, cut in 1250 mm square standard aluminium plates of 2 mm 

thickness.  The center frequency of excitation was varied in order to obtain different 

values of frequency-thickness and notch-length in terms of the wavelength. The 

excitation and detection positions were also varied at each center frequency, so that they 

were located at the same number of wavelengths away from the notch as in the FE 

simulations.  

 

6.3 Specific studies and results 
 

6.3.1 Study of specular reflection 
 

First the influence of the crack length and measurement position on the specular 

reflection is studied, as the crack depth and the operating frequency are varied. Since this 

is a symmetric incidence problem, the direction of specular reflection lies along the 

symmetric normal to the crack face. In this direction the scattered waves of the A0 mode 

have displacements entirely in the U1-U3 plane, while those of the SH0 mode have 

displacements entirely in the U2 direction. Thus it was enough to monitor the U2 

displacements on the surface of the model plate, in order to measure the reflected SH0 

waves without contamination by the A0 mode. As mentioned earlier, the S0 mode travels 

much faster than the other two modes so that its effects can be time-gated out and thus 

SH0 mode scattering is studied exclusively.  
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6.3.1.1 Influence of crack length 

 

A number of models with cracks of lengths up to 5 λSH0 (SH0 wavelengths at the centre 

frequency of the toneburst) were set up to understand the dependence of the SH0 

reflection over the length of the crack. For each crack length, models with three different 

crack depths, 25%, 50% and 75% of the plate thickness were created. Further, in order to 

study the influence of the frequency-thickness, the simulations were performed with 

centre-frequencies of 200 kHz, 300 kHz and 400 kHz for each crack depth. The 

excitation was located at a distance of 16 λSH0, while nodal displacements in the U2 

direction were monitored 5 λSH0 from the crack and along its symmetric normal. The 

generated S0 mode has nearly zero displacement along this line, so only the incident and 

reflected SH0 signals are recorded at the monitored points.  

 

The reflection ratio was calculated according to equation (6.1) for each centre-frequency 

value; Figure 6.2 (a)-(c) shows it plotted with crack length (expressed in λSH0) for each of 

the three crack depths studied. Each plot shows the ratio at the three different frequency-

thickness values and also the expected results if the Kirchhoff approximation was valid 

(obtained simply as 0.25, 0.5 and 0.75 times the results from the through-thickness crack 

case, reproduced in Figure 6.2 (e) from figure 4.13, Chapter 4).  

 

The observed trend of the reflection ratio, rising almost linearly with crack length 

initially and then falling, agrees very well with that for through-thickness cracks where it 

later continues into an oscillatory regime. This trend is consistent with the understanding 

obtained from earlier studies: diffraction effects are important in the short range, leading 

to focusing of energy in the backscatter direction. The actual reflection ratio values 

though, fall short of the Kirchhoff prediction even for 75% deep cracks at low frequency-

thickness; but the ratio rises sharply and can be seen to approach it asymptotically as the 

frequency is increased. For shallow cracks 25% deep, the ratio is well below the 

approximate estimate even at 400 kHz and there is not much variation from that at 200 

kHz. We will discuss this in some more detail with the analysis in Section 6.4. 
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6.3.1.2 Influence of distance of measurement 

 

The source was fixed at a distance of 32 λSH0 from the crack face, while the reflection 

was monitored at distances of 3, 4, 5, 10, 15, 20 and 25 λSH0 from it. Results were 

obtained for two crack lengths, 1 and 5 λSH0, representing small and large cracks 

respectively. For each crack length two crack depths 25% and 75% of the plate thickness, 

representing shallow and deep cracks, were studied, and simulations were performed at a 

centre-frequency of 400 kHz spanning the low to high-frequency regimes.  

 

The reflection ratio was calculated at this centre-frequency, again using equation (6.1). 

Figures 6.3 (a) and (b) show the reflection ratio plotted with the distance at which the 

reflected signal is monitored (expressed in λSH0) for the two crack length cases and each 

of the two crack depths studied. Figures 6.3 (c) and (d) reproduce the results for 1 and 5 

λSH0 long cracks from through-thickness crack results of Figure 4.16, Chapter 4. We 

notice that at both crack depths the trend is identical with that for the through-thickness 

crack case of the same length except for a scale factor associated with the part-through 

cracks. The reflection ratio rises and falls before stabilizing at farther distances from the 

crack. For through-thickness cracks, this behaviour could be explained by a simple model 

assuming the insonified face to behave like a uniform ideal shear transducer. The present 

study shows that such an explanation holds even for part-thickness cracks and the results 

differ only in their magnitude by a frequency dependent factor. We will examine why 

this happens and study the nature of this factor in Section 6.4.  

 

6.3.2 Angular profile of the reflected field 
 

Next we examine the reflection at various angles Rθ  for an incidence angle  (the 

angles are defined counter-clockwise from the crack’s symmetric normal). At these 

diffuse angles the reflected A0 mode will have displacements in all the three directions at 

the surface of the plate, but its mode shape is such that the in-plane components vanish 

entirely at the mid-plane. Therefore for this set of studies, the SH0 mode reflection is 

isolated by monitoring at the mid-plane of the model plate. 

00=Iθ
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The geometrical details on the mid-plane of the model are shown in Figure 6.4. The 

excitation was located at a distance D = 32 λSH0 (SH0 wavelengths at the centre 

frequency of the toneburst) away from the crack and such that the principal axis PA of 

the generated SH0 waves coincides with SN, the symmetric normal to the crack. The 

incident signal I was monitored at a distance dI from the source, along PA. Reflected SH0 

waves were monitored along one half of a vertical line intersecting SN at a point S and a 

distance dM0 = 12 λSH0 from the crack. Starting from a point along this line at a distance 

of 12.5 λSH0 from S, nodal displacements RU2 in the U2 direction were monitored at 

intervals of around 1 λSH0 all the way down to S. This yielded monitoring angles in the 

range Rθ  = 00 to 450 in intervals of 60-100. The resultant displacement R is related to RU2 

by 2)cos( UR RR =θ  so the resultant displacement values were obtained from the U2 

values for each monitored point as )cos(/2 RURR θ= ). The values in the range from -450 

down to 00 were assumed to be identical with these due to the symmetry in the 

configuration. The reflection ratio was then calculated using equation (6.1) with 

)cos(/0 RMM dd θ= . Cracks of two lengths 1 and 5 λSH0, and three different depths 25%, 

50% and 75% of the plate thickness for each crack length were studied, and simulations 

were performed at a centre-frequency of 400 kHz.  

 

Figures 6.5 (a)-(c) shows the reflection ratio plotted with the angle at which the reflection 

is monitored for the two crack length cases and each of three crack depths studied, while 

6.5 (d) reproduces that for through-thickness cracks from Figure 5.2, Chapter 5. We 

again observe excellent agreement of the angular profile of the reflected field with that 

for the through-thickness crack case for all the three crack depths. The reflected energy is 

concentrated in a narrow beam around the specular direction and this focusing increases 

with the length of the crack, just as an ideal transducer would tend to generate a more 

collimated beam at larger diameters.  
 

6.3.3 Experimental validation of FE modeling 
 

The reflection ratio-crack length study in Section 6.3.1.1 was repeated with the crack 

replaced by a notch, for the validation studies. 10 mm long, 0.5 mm wide notches at two 
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depths, 50% and 75% of the plate thickness were created in the FE models, matching the 

details of the notches cut in the experimental plates. In both simulations and experiments, 

the same procedure was followed regarding the excitation and monitoring of scattered 

signals and the frequency sweep. SH0 waves were excited from a distance of 16 λSH0 

from the notch face so that a symmetric incidence problem is realized. Nodal 

displacements in the U2 direction were monitored 5 λSH0 from the notch, along its 

symmetric normal. As in the crack case, the incident and reflected SH0 signals are 

expected almost exclusively at the monitored points. Starting from 200 kHz, the 

operating frequency was swept in steps of 50 kHz up to 400 kHz so that different notch 

lengths with respect to λSH0 were obtained. The reflection ratio was again calculated 

using equation (6.1), and Figure 6.6 shows the results obtained at different frequency-

thickness (and hence different ℓ/λSH0) values for the two notch depths, from FE 

simulations and experiments. We find excellent agreement between the measurements 

and predictions. 

 

6.4 Analysis 
 

The studies in the previous sections show that the reflection of the SH0 mode from part-

thickness cracks is related to that from through-thickness cracks of the same length 

through a frequency dependent scale factor. This factor as it were, seems to account for 

the change in the crack depth. Through the following parts of the present section, we 

seek to systematically understand the physical basis for and conditions underpinning 

such behaviour.  Continuing with the analytical approach of Chapter 4, in the first part 

6.4.1, we derive a formula for the beam-compensated reflection ratio for our problem. 

Consideration of the relationship between the reflection ratio for through- and part-

thickness cracks in 6.4.2 using insights from Chapters 4 and 5 reveals the conditions 

when a scale factor-like behaviour manifests. Finally, 6.4.3 helps understand the nature 

of the scale factor by arriving at and testing the limits of estimates for it in the different 

frequency regimes.   
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6.4.1 Formula for reflection ratio 

 

Following on from the analysis in Chapter 4, the scattered displacement field )( pu sc
k

r  in 

the direction at a position kê pr  in the medium due to a crack of length ℓ, depth b and 

outward normal , is written as a superposition of elemental sources placed on its 

insonified face s

jn
+ as[68, 69]:  

 

∫
+

Σ∆=
s

jkiji
sc
k dSnspsupu  ]),|()[,(),( 0

; ωωω rrrr
                         (6.2) 

where  is the displacement jump across the crack faces, is the 

traction Green’s function giving the traction force in the direction at a position

)(sui
r

∆ jkij nsp ),|(0
; ωrr

Σ

kê pr due 

to a point force applied in the  direction at the position iê sr in the free medium in the 

absence of the crack and dS is an area element and the integral is on the insonified face 

s+ of the crack. As usual, the frequency term is suppressed here and throughout this 

presentation. 

tje ω

 

In the following, we will adapt equation (6.2) to our problem. A harmonic point 

excitation vibrating parallel to the crack face and uniform through the thickness of the 

thin plate is assumed to be located at a distance D from the crack. We introduce 

cylindrical coordinates as shown in Figure 6.7, with the origin at the excitation point and 

the negative ‘z’ axis pointing into the plate thickness.  Thus the excitation consists of a 

line force vibrating along 2/πθ =  and uniform through the plate thickness, while the 

crack is located along the line Dr =)cos(θ  with normals zr ezeen ˆˆ)sin(ˆ)cos(ˆ ++= θφφ .  

 

Introducing θrdd =l  as a length element and taking 1)cos( ≈φ , the scattered 

displacement due to the incident SH0 mode having displacements only in the  

direction can then be given as 

θu

 

( )∫∫
+
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s

kr
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rrrr  ),|(,),( 0
; ωωω θθ                            (6.3) 
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At the low frequencies considered, displacements and stresses will be uniform in the ‘z’ 

or the depth direction, so we can take ),|(0
; ωθ spkr

rr
Σ  as depth invariant; assuming further 

that the displacement jump ( )ωθ ,su sc r
∆  does not vary in the length direction of the crack 

and changing the order of integration yields 
 

( ) ∫∫ Σ∆=
l

l
rrrr dspdzsupu kr

b
sc
k  ),|(,),( 0

;
0

ωωω θθ                          (6.4) 

 

The reflection ratio according to equation (6.1) for a crack of depth b and length ℓ would 

then be  

( )

( )

( ) ∫
∫

Σ
∆

+
=

+
=

l
l

rr
r

r

r

r

l dsp
su

dzsu

D
dD

Dsu
dDpu

bR krinc

b

M
inc

M
sc

 ),|(
,

,

,
),(

),( 0
;

0 ω
ω

ω

ω
ω

θ
θ

θ

θ

θ      (6.5) 

 

where  is the incident SH0 displacement on the insonified crack face. ( ωθ ,su inc r )
 

6.4.2 Formula for the scale factor 
 

If the Kirchhoff approximation in the depth direction is valid, then 

( ) ( ) ( )ωωω θθθ ,2,, sussusu inc rrr
=∈=∆ +  so that the first integral in equation (6.5) is easily 

evaluated: ( ) ( )bsudzsu
b inc∫ =∆
0

 ,2, ωω θθ
rr

. The reflection ratio would simply be 
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=
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l
rr

l dspb
D

dDbR kr
M  ),|(2),( 0

; ωθ                             (6.6) 

 

As observed earlier this approximation holds for through-thickness cracks which are not 

too small (i.e. of length ℓ such that ) and we can take the reflection ratio  

for this case to be given by equation (6.6) with reasonable accuracy.  

10 >lSHk ),( lbR
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Thus for part-thickness cracks which can exhibit a Kirchhoff-like behaviour, the 

reflection ratio for a crack at a given depth b and length ℓ can be obtained from the value 

for a through-thickness crack of the same length simply as 
 

),(.),( ll hRbR α= , with h
b=α                                    (6.7) 

where ‘h’ is the thickness of the thin plate. 

 

In general though, the reflection ratio for a part-thickness crack would be related to that 

for the through-thickness case as  
 

( ) ),(,),( ll hRkbR ωα=                                         (6.8a) 

( )
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b sc
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r
∫ ∆=                                  (6.8b) 

 

Engineering intuition would tell us that we should be able to obtain the reflection from a 

part-thickness crack by knowing that from a through-crack of the same length and 

accounting for the difference in the crack depth. But such thinking implicitly assumes 

that the effects of the length and the depth of the crack on the scattering process are 

uncoupled. The assumptions made in arriving at 6.8 uncover the conditions in which this 

uncoupling can happen: the frequency must be low enough such that the stresses are 

constant through the plate thickness, and the crack must be small compared to the 

incident wavefront, so that the COD is constant along the crack length. Equation 6.8b 

reveals that the frequency dependence of the scale factor ( )ωα ,k  comes about from that 

of the amplitude of the incident wave and how the crack opens in response. Also we see 

that the difference in the reflection from part- and through-thickness cracks is due to the 

difference in the way they respond to the incident wave.  

 

6.4.3 Estimates  
 

Specific knowledge of how the crack opens is necessary to evaluate the factor ( )ωα ,k  by 

which the part- and through-thickness crack cases are related. However, here 
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approximate estimates for the different scattering regimes are suggested. For the high-

frequency regime we can deduce from equation (6.7) that ( ) αωα =,k . From past studies 

on the scattering of fundamental guided waves by long cracks [27, 28], at low 

frequencies  would appear to be of the order of  or : therefore, we 

can take . This seems valid for the low-frequency scattering of SH0 waves 

by long cracks, reproduced from the paper by Demma et al [29] in Figure 3.17, Chapter 

3. Finally, through an examination of the results presented in Section 6.3, a suggested 

empirical first-estimate for medium frequencies is

( ωθ ,su sc∆ ) 2)/( hb 2α

( ) 3, αωα ≈k

( ) 2, αωα ≈k . 

 

We will next examine the limits of these estimates with the help of the results from 

section 6.3.1.1. Table 6.1 classifies cracks of different depths h considered in that study 

into the low, medium or high frequency regimes based on whether the product  is 

less than, approximately equal to or greater than unity. . This helps identify the estimates 

for 

hkSH 0

( )ωα ,k  in the frequency regime appropriate for each crack depth. Equation (8a) is 

then invoked and the reflection ratio for the different part-thickness cracks is calculated 

from results for through-thickness cracks of the same length from Chapter 4. The 

estimated values of the reflection ratio so obtained are compared with the actual FE 

results of Section 6.3.1.1 in Figure 6.8 (a)-(c) for different crack depths and frequency-

thickness values, while Figure 6.8 (d) shows the same comparison but with the reflection 

ratio plotted with the crack depth instead of length, for the case of a 3 λSH0 long crack. 

We find very good agreement for the 75 % crack depth case where the three frequencies 

studied nearly fall into the three different scattering regimes, whereas for the other two 

crack depths, the estimates are not that accurate. For the 25% deep crack, Table 6.1 

would suggest that all the 3 frequencies studied lie within the low-frequency regime, but 

the actual FE results lie somewhere between the low- and medium-frequency estimates. 

For the 50% deep crack, even though the full FE results lie around the low- to medium- 

frequency regimes, the estimates cannot distinguish between 300 and 400 kHz. Arguably 

the low-frequency estimates suggested here are very rough, but the results show that 

often we can obtain a fair hint of the order of the reflection amplitude. With better 

 186



6. Low frequency SH0 mode interaction with part-thickness cracks 

 
approximations for ( )ωα ,k  and knowledge of the crack length and the frequency used, 

this approach can provide an alternative prognosis for the crack depth.  

 

6.5 Discussion and conclusions 
  

This chapter studied the interaction of low frequency SH0 waves with part-thickness 

cracks for the symmetric incidence problem. The interaction was studied in terms of the 

influence on the specular reflection, of the crack length and the spatial and angular 

measurement positions at different crack depths and operating frequencies. The FE 

modeling was validated by comparison with experiments for the case of scattering by a 

finite part-depth rectangular notch. The results from all the studies are similar to those 

obtained for the corresponding through-thickness case with the trend being identical and 

actual values differing only by a frequency dependent scale factor. Theoretical analysis is 

used to reveal the physical basis for such behaviour and helps obtain estimates for the 

scale factor, exactly derived for the high-frequency scattering regime, and empirical for 

the medium and low-frequency regimes.  

 

From the perspective of guided wave imaging, the finding that the effects of the length 

and depth of cracks on the reflection uncouple provided the incident wavefront is larger 

than the crack and the stresses are depth-independent, means that the understanding 

obtained for scattering of the SH0 mode from through-thickness cracks is often sufficient 

to deal with the part-thickness case as well. Although only the symmetric incidence 

problem and the reflected field were studied here, the generality of the results helps infer 

that the reflection at oblique or non-symmetric incidence as well as the diffraction from 

part-cracks would be related to that for the through-thickness case through an appropriate 

factor. Estimates of the scaling and thus of the scattered amplitudes at different scattering 

regimes will help when studying the influence of the crack dimensions on the image 

intensity. Finally, the influence of the width of a finite notch on the scattering as 

highlighted here again brings up the importance of the difference between notches and 

cracks and the frequency-related limit when they would be equivalent.  
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Figure 6.1 Details of the configuration studied in this Chapter and those for the FE 

simulations. 
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Figure 6.2 (a)-(c) Reflection ratio plotted with crack length (expressed in λSH0) for 25%, 

50% and 75% deep cracks respectively. Each plot shows results at different incident 

frequencies; the lines with filled circles indicate estimates using Kirchhoff 

approximation; (d) shows the results for all 3 crack depths for just the 400 kHz case; (e) 

reproduces Figure 4.13 from Chapter 4. 

 

 

 189



6. Low frequency SH0 mode interaction with part-thickness cracks 

 
 

 

 

 

0

0.05

0.1

0

1
%Crack length =5 λSH0 tio

 

 R
ef

le
ct

io
n 

ra
tio

 

% 

           

 

Figure

monito

for two

thickne

 

 

 

 

 

 

 

 

 

25
16 32
         

0

0.5

0

 R
ef

le
ct

io
n 

ra

Crack length = 1 λSH0

 
                            
   Distance at which monitored (λSH0) 

(a) 

               

0

0.5

1

1.5

0 16

Through-
crack 

R
ef

le
ct

io
n 

ra
tio

 

   Distance at which monitore
(c) 

 6.3 Reflection ratio plotted with the distanc

red (expressed in λSH0) for two crack lengths 1

 crack depths, 25% and 75% of the plate t

ss crack cases of the same lengths, reproduced 
75
16 32

Crack length = 1 λSH0

   Distance at which monitored (λSH0) 
(b) 

32

d (λSH0) 

e at whic

 λSH0 and 5

hickness; 

from Figu
Crack length 
(ℓ/λSH0) 
h th

 λSH

(c):

re 4
Crack length =5 λSH0
FE, 1
Exp, 1

FE, 5 
Exp, 5

 

e reflected signal is 

0; (a) and (b): results 

 results for through-

.16 (c), Chapter 4. 

190



6. Low frequency SH0 mode interaction with part-thickness cracks 

 
 

 

D 

dM0

 
Figure 6.4 Geometry for the study of reflection at angles Rθ  for an incidence angle 

 (defined with respect to the crack’s symmetric normal).00=Iθ

 

 

 

 

 

 

 

 

 

 

 

 

 

SN

dI

12.5 λSH0  

 Crack

S 

1 λSH0  

00=Iθ
Rθ

Rθ−PA 
Source 

U2 

U1 

Monitor line 

 191



6. Low frequency SH0 mode interaction with part-thickness cracks 

 
 

 

 

   

0

0.05

0.1

0 25 50
         

0

0.3

0.6

50

% %

 R
ef

le
ct

io
n 

ra
tio

 

 R
ef

le
ct

io
n 

ra
tio

 

 
                                     (a)                                         

   Angle at which monitored (degrees)

     

0

0.6

1.2

             

%

 R
ef

le
ct

io
n 

ra
tio

 

 R
ef

le
ct

io
n 

ra
tio

 

        (c)                                         

Figure 6.5 Reflection ratio plotted with 

lengths 1 λ

θ−090

SH0 and 5 λSH0 studied for each of three 

and (c) 75% of the plate thickness; (d) through-

lengths from Figure 5.2, Chapter 5. 

 

 

 

 

 

 

 

 

 

 

0 25
 Angle at which monitored (degrees) 
                            (b) 

0

0.7

1.4

- 4

FE, 1 λSH0

Exp, 1
FE, 5
Exp, 5

λSH0

λSH0

λSH0

 

0 25 50
   Angle at which monitored (degrees)
  

R

c

c

54 -27 0 27 5

 Angle at which monitored (degrees) 
25
1 λSH0
 

r

1 λSH0
1 λSH0
5 λSH0
 

r

5 λSH0
5 λSH0
                        (d) 

: results are shown for tw

ack depths cases (a) 25%,

ack results for cracks of 
50
75
o crack 

 (b) 50% 

the same 

192



6. Low frequency SH0 mode interaction with part-thickness cracks 

 
 

 

 

 

 

   

0

0.25

0.5

0.6 0.95 1.3
     

0

0.45

0.9

0.6 0.95 1.3
 

  

 R
ef

le
ct

io
n 

ra
tio

 

 R
ef

le
ct

io
n 

ra
tio

 

   Crack length (ℓ/λSH0)                      
                      

Figure 6.6 R

(empty circles

notch depth ca

 

   Crack length (ℓ /λSH0)
50 % deep notch
                 (a)                                              
 

eflection results from FE simulations 

) obtained using a frequency sweep (an

ses (a) 50% and (b) 75% of the plate thick

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

75 % deep notch
                      (b) 

(filled circles) and experiments 

d hence different ℓ/λSH0) for two 

ness. 

193



6. Low frequency SH0 mode interaction with part-thickness cracks 

 
 

 

 

 

 

 
Figure 6.7 Cylindrical coordinates with origin at the excitation point and the negative ‘z’ 

axis pointing into the plate thickness: a line force vibrating along 2/πθ =  and uniform 

through the plate thickness provides the excitation and the crack is located along the line 

Dr =)cos(θ  with normals zr ezeen ˆˆ)sin(ˆ)cos(ˆ ++= θφφ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

h 

Coordinate system 

Crack r 

ℓθ
b z 

 194



6. Low frequency SH0 mode interaction with part-thickness cracks 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

M 

L / M 
       

L 

50% 
1 mm 

M / H 
 

L  
        

400 kHz 
kSH0 ≈ 0.8 mm-1

M L 300 kHz 
kSH0 ≈ 0.6 mm-1

L L 
 

200 kHz 
kSH0 ≈ 0.4 mm-1

75% 
1.5 mm 

25% 
0.5 mm 

Crack Depth 
       Frequency 

 

Table 6.1 Cracks of different depths h studied in 6.3.1 are classified into the low (L), 

medium (M) or high (H) frequency regimes based on whether the product  is less 

than, approximately equal to or greater than unity. 

hkSH 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 195



6. Low frequency SH0 mode interaction with part-thickness cracks 

 
 

 

 

 

       

0

0.05

0.1

0 3 6
      

0

0.25

0.5

0 3 6

50% 

 R
ef

le
ct

io
n 

ra
tio

 

25% 

 R
ef

le
ct

io
n 

ra
tio

 

400 kHz 
300 kHz 400 kHz 

300 kHz 

200 kHz 200 kHz 

     Crack length (ℓ/λSH0) 
                                       (a)                                                                 (b) 

        

0

0.6

1.2

0 3 6
      

0

0.8

1.6

0 0.25 0.5 0.75 1 1.25

Crack length: 
3 λSH0   

75% 300 kHz 400 kHz 
 R

ef
le

ct
io

n 
ra

tio
 

 R
ef

le
ct

io
n 

ra
tio

 

400 kHz 

300 kHz 

200 kHz 
200 kHz 

    Crack length (ℓ/λSH0) 
                                        (c)                                                                (d)    

   Crack depth / plate thickness 

 

Figure 6.8 Estimated values of reflection ratio obtained using the approach in Section 

6.4 compared with the actual FE results of Section 6.3.1 for different incident frequencies 
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filled square, triangle and circle denote estimates at the low, medium and high frequency 

regimes respectively. (d) Shows the same information but the reflection ratio is plotted 

with the crack depth instead of length, for the case of a 3 λSH0  long crack. 
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Chapter 7 
 

Conclusions 
 
7.1 Thesis review 
 

This thesis studied the interaction of guided waves with finite planar cracks in free 

unloaded pipes and plates in the context of higher resolution guided wave inspection.  

 

Chapter 1 discussed basic concepts in guided wave inspection and the limitations on the 

resolution achievable by current methods. The high-frequency multimodal method and 

low-frequency array imaging were then introduced as two possible approaches for 

improving the resolution of guided wave inspection.  

 

Chapter 2 reviewed the basics of the theory of guided elastic wave scattering in order to 

identify methods which can be used to illuminate the physics behind the results obtained 

through the rest of the thesis. First the link between bulk and guided elastic wave 

scattering was pointed out, and this helped see how techniques in treating the latter 

originate in and developed from the former. Several among the more important methods 

in bulk wave scattering were introduced, and those which have also been extended to the 

guided wave case were highlighted. The possibilities for using some methods which have 

not yet been extended to the treatment of guided wave scattering were discussed.  
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Chapter 3 considered a simple implementation of the high-frequency multimodal 

approach in which only one fundamental mode is used in the interrogating signal, and the 

multi-mode scattered packet is assumed to permit separation into different component 

modes. Both flat plates and annular cylinders (pipes) were studied. The fundamental 

antisymmetric Lamb A0 mode was used as the input in plates with long rectangular 

cracks and the fundamental torsional mode T(0,1) was used in pipes with full-

circumference but part-depth planar cracks. The results obtained were analysed for the 

sensitivity of the reflection of individual modes to the crack depth and that of mode-

conversion patterns to different crack depth regimes.  

 

In the light of encouraging results from parallel work at the NDT Group [43, 44, 155] 

using low-frequency array methods, Chapters 4-6 focussed on the interaction of 

cylindrical crested low-frequency SH0 waves with finite cracks in thin plates. Since 

guided SH waves in thin plates correspond to torsional modes in pipes, the results 

obtained helped clarify the physics of scattering so that imaging methods may be better 

formulated and developed.  

 

Chapter 4 first set the background by introducing sample results from array imaging 

methods and presented the motivation for using cylindrical crested SH0 waves. The 

simple case of symmetric incidence where a line from the wave-source bisects the crack 

face normally was then considered. Both specular reflection from the crack face and the 

diffraction from its edges were studied and implications for guided wave inspection were 

presented.  

 

Chapter 5 continued with through-thickness cracks but the results from the symmetric 

incidence studies in Chapter 4 were used to understand the more difficult case of arbitrary 

incidence. Insights from both these chapters were then combined to draw a general 

picture of the scattering of SH0 waves from through-thickness cracks.  

 

In chapter 6, the understanding obtained about the scattering of SH0 waves by through-

thickness cracks was used to investigate that by part-thickness cracks. Only the 
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symmetric incidence case and the behaviour of the reflected field were studied, but the 

generality of the parameters considered and the results obtained helped draw conclusions 

for scattering in general. The relationship between the through- and part-thickness crack 

problems was also studied and important conclusions bearing upon guided wave 

inspection were obtained. 

 

7.2 Summary of findings 
 

7.2.1 The two approaches to higher resolution 
 

Working with current inspection frequencies but finding the solution to the resolution 

problem by means such as array imaging, and working at higher frequencies are the two 

possible approaches to improved resolution highlighted in Chapter 1. The high frequency 

approach is the immediate intuitive solution since shorter wavelengths can be achieved 

allowing better sensitivity to defect dimensions; but this approach also calls for dealing 

with multiple dispersive modes with complex mode shapes and may require development 

of new methods of transduction and post-processing of data. On the other hand, although 

it suffers from inherent low sensitivity, the low-frequency approach has the advantage of 

simple and often nondispersive modes; current transduction methods are sufficient and 

array imaging techniques from bulk or scalar wave literature are immediately applicable. 

These are the costs against which any improvement in resolution achievable by these 

methods can be assessed relative to one another.  

 

7.2.2 Theoretical methods for understanding the physics of scattering 
 

A general outlook taken at the Imperial College NDT group towards theoretical methods 

is that even if they do not yield the full solution to the scattering problem, they can often 

give useful insights into the underlying physics. Chapter 2 first highlighted the well-

known essential unity of methods dealing with scattering of both bulk and guided elastic 

waves. Of these, the integral equation formulation is simple to grasp since it gives a direct 

mathematical representation of the physical mechanism of scattering of waves as 
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envisaged by Huygens’s principle. An important route to this formulation is through the 

elastodynamic reciprocity theorem which yields integral formulas for scattering. This 

formulation also provides a convenient starting point for a number of approximate 

analytical methods: the Born, quasi-static and extended quasi-static approximations at 

low frequencies and the Geometric Theory of Diffraction (GTD), Kirchhoff and uniform 

COD approximations at high frequencies are widely used. Though the Kirchhoff 

approximation is among the simplest, it is quite accurate at high frequencies and near-

specular directions and can form the basis for an elegant analytical treatment of the 

scattering of guided waves. Examples of such treatment can be found in Chapters 3, 4 and 

6 of this thesis- as expected, with plane waves and at high frequencies the method is quite 

accurate and even at low frequencies and when multiple-diffraction is important, it can 

provide a very good first estimate. The predictions can be improved using better estimates 

for the total field induced by the incident wave on an obstacle.  

 

7.2.3 High-frequency multimodal approach  
 

The studies with long cracks in plates and pipes reveal that a simple approach of using a 

single interrogating mode can prove beneficial in practice. From the perspective of 

sensitivity to smaller defects, the reflection behaviour due to both A0 and T(0,1) mode 

incidence is beneficial, although for the A0 mode the frequency must be carefully chosen. 

Among the different reflected modes, some modes appear to be more sensitive to defect 

dimensions than others and these can be chosen as the reference ‘best modes’.  

 

The extent to which the reflections of other modes differ from those of the best modes 

provides a powerful method of distinguishing different regimes of the defect dimensions. 

We have thus suggested that the scatter between the amplitudes of different reflected 

modes can be used as a parameter to quantify mode conversion for this purpose. With the 

T(0,1) mode, mode conversion effects at higher frequencies clearly lead to better 

discrimination between shallow and deep cracks, but this is not always the case with the 

A0 mode which requires us to choose appropriate operating frequencies.  
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Information about regions of little or no mode-conversion provides an alternative method 

of distinguishing different defect dimension regimes. With torsional modes below the 

T(0,4) cut-off frequency, this can be a straightforward way to distinguish middle-sized 

cracks where all three modes are present, from shallow and very deep ones where T(0,2) 

and T(0,3) modes tend to vanish.  Similarly when the A0 mode is incident between 2 - 2.5 

MHz-mm, the reflected S0 mode vanishes at very shallow and very deep cracks and this 

can be used to separate the different crack depth regimes in a plate. 

 

7.2.4 Scattering of low frequency cylindrical-crested SH0 waves by cracks 
 

7.2.4.1 Through-thickness cracks 

 

At low frequencies, short range scattering of the SH0 mode is strongly affected by 

diffraction phenomena which leads to focusing of energy by the crack in the 

backscattered direction. The diffracted field consists of components arising from primary 

diffraction from the crack tips (or edges) and multiple reverberations of Rayleigh-like 

waves traveling along the crack length. A simple diffraction model assuming uniform 

shear sources on the insonified face can yield very good results for cracks as long as 

seven times the wavelength considered. From the guided wave imaging perspective, these 

results provide a simple estimate for the far-field values for a given operating frequency-

thickness and crack length. The strong presence of diffraction means that more 

information may be received by a transducer array than would be contributed by specular 

reflection alone. Further, there would be a pronounced difference between the scattering 

from small and very large cracks- for small cracks, it would be difficult to separate 

specular reflection from edge diffraction. 

 

The angular behaviour of reflection of the SH0 mode from planar cracks is such that it is 

strongest in the specular direction. Further, the specular reflection itself is strongest at 

symmetric incidence, but falls rapidly to vanish around the first critical angle of bulk SV 

waves and then rises to a nearly constant but low value. Because of the equivalence of the 

physics of the scattering of SH0 waves with that of bulk SV waves, this behaviour is very 
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similar to that of reflection of bulk SV waves from straight edges. This also means that 

the amplitudes of the SH0 wave primary diffraction can be estimated from known 

solutions to canonical bulk SV wave diffraction problems. For long cracks, asymptotic 

solutions in bulk wave literature can be used to estimate even the secondary diffraction.  

 

Studies with torsional modes which are being currently investigated in array imaging 

methods for pipes suggest that they can be decomposed into SH0-like waves travelling in 

helical paths along the pipe length, with each mode corresponding to a different starting 

angle [155, 184]. This is shown in Figure 7.1. The highly specular and directional nature 

of SH0 wave reflection from flat cracks, with only little energy reflected at angles above 

450 means that only the first few torsional modes will be generated by the reflection 

process. Thus the nature of flat cracks inherently prevents us from fully exploiting the 

advantages offered by imaging methods which rely on making use of information from all 

reflected modes. This imposes a limitation on the extent to which the resolution of 

inspection can be improved by low-frequency methods.    

 

7.2.4.2 Part-thickness cracks 

 

The trend of the scattering from part-thickness cracks results is identical to that from 

through-thickness cracks of the same length and the actual values differ only by a 

frequency dependent scale factor. SH0 mode scattering from part-cracks can thus be 

thought of as an appropriately scaled field of an ideal shear transducer placed on the 

crack’s insonified face. Theoretical analysis reveals that the physical basis for such 

behaviour comes from the uncoupling of the effects of the length and depth of cracks at 

low frequencies and when cracks are small compared to the radius of the incident 

wavefront. It is possible to arrive at estimates for these scale factors, exactly derived for 

the high-frequency scattering regime, and empirical for the medium and low-frequency 

regimes.  

 

From the perspective of guided wave imaging this kind of uncoupling means that the 

understanding obtained for scattering of the SH0 mode from through-thickness cracks is 
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sufficient to deal with the part-thickness case as well. This is significant because the 

through-thickness case can often be modeled in simple two-dimensional domains and the 

results are related to bulk SV wave problems. Moreover, with knowledge or an idea of the 

appropriate frequency regime, a measured reflection value and an estimate of the crack 

length, we can immediately work out an estimate of the crack depth with the help of the 

scale factors.   

 

The part-thickness crack studies also highlighted again, the difference between scattering 

from notches and cracks and the frequency-related limit when they would be equivalent. 

Often the reflection from notch-like defects with a finite width would be much stronger 

than that from a crack of corresponding length.  

 

7.3 Future work 
 

7.3.1 High frequencies  
 

The suggested next step at higher frequencies is to understand the reflection behaviour 

with smaller, fully three-dimensional cracks. Unlike the low-frequency SH0 studies, the 

effects of the length and the depth of the cracks on the scattering will not fully uncouple 

at higher frequencies: this is because at such frequencies the stress mode shapes will be 

depth-dependent and a reduction such as that between equations (6.3) to (6.4) cannot be 

achieved. But the effect of finiteness of the crack can be expected to be similar to that at 

low frequencies- it would induce a directivity pattern into the reflection behaviour. 

Whether the reflection amplitudes of different modes individually and relative to each 

other retain a high degree of sensitivity to defect dimensions as with long cracks in such a 

situation, needs to be seen.  

 

Moreover in practice, the effects of dispersion and that of similar velocities for multiple 

modes could mean that the different modes cannot be separated and a 2D FFT may not be 

feasible Strategies for extracting different component modes from such mixed signals 

need to be studied and doing so using appropriate transduction could be an important area.  
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The work on high-frequency guided waves in this thesis has assumed incident plane 

waves: in practice often finite sources are employed and therefore the reflection 

behaviour due to such sources is a further area to be investigated. The general approach 

adopted in understanding low-frequency SH0 wave scattering can be followed to reduce 

the number of parameters in such studies.  

 

7.3.2 Low frequencies  
 

The next steps towards aiding the development of the low frequency array imaging 

methods would be to understand the scattering of circular-crested SH0 waves by defects 

approaching other geometries of practical interest such as corrosion patches. Finite 

rectangular holes and notch-like part-thickness defects such as those shown in Figure 7.2 

could be a first starting point for such studies. Although the overall behaviour is likely to 

be similar to that predicted for reflection of the plane SH0 waves from a notch [19], the 

low frequencies of interest and cylindrical incident waves mean that diffraction from the 

sides of the notch could have an important influence on the scattered field. Surface waves 

are likely to be generated on the base of the notch and will reverberate along its length.  

 

Studying the scattering from circular part- and through-thickness holes represented in 

Figure 7.3 would be the logical next step. From what we already know about the 

scattering of SH0 waves from straight edges and cracks, the behaviour from such circular 

defects can be predicted. When the hole is very small compared to the incident 

wavelength, it will tend towards a point scatterer in a solid. But when the hole diameter is 

comparable to or greater than the incident wavelength, interesting results can be expected: 

at any angle of incidence, a line joining the wave source to the centre of the hole will be a 

normal to the hole and along this direction, there will be a strong reflection. Thus a peak 

reflection would be obtained in the backscatter direction along this line, for any source 

position. This in general, is likely to set a limit on improving the resolution limits with 

low-frequency array imaging methods.  
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Figure 7.1 Torsional modes can be decomposed into SH0-like waves travelling in helical 

paths along the pipe length, with each mode corresponding to different starting angles 

[155, 184]. 
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Figure 7.2 Rectangular holes and notch-like part-thickness defects in flat plates. 
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Figure 7.3 Scattering from circular part- and through-thickness holes: top view. Any line 

from the wave-source to the centre of the hole would represent a normal along which 

there would be a strong backscattered reflection.  
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