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Introduction

• Basics of LES

• Implicit LES (numerical dissipation)

• High-order numerical dissipation via the 

viscous term (Incompact3d schemes)

• Calibration of numerical dissipation for 

subgrid scale modelling

• Applications

– LES of turbulent channel flow

– LES of impinging and free jets

– LES of 3D Taylor-Green flow



Basics of LES

• Principle

• General filter

• Basic assumption



Basics of LES

• Filtered momentum equations

only valid if εr=0

• Subgrid-scale tensor

• Filtered kinetic energy equation



Basics of LES

• Model calibration guidelines



Basics of LES
• Boussinesq hypothesis

• Model filtered equations

• Smagorinsky model

• Dynamic model : self-calibration of Cs

• Scale similarity model, deconvolution model, etc.

→



Basic assumptions
1. “Commutation error εr is negligible compared with subgrid 

stresses”: X (distorted filter/mesh)

2. “Discretization errors are negligible compared with subgrid 

stresses”: X (Δc=Δx)

3. “Aliasing errors are negligible compared with subgrid 

stresses”: X (Δc=Δx)

4. “Subgrid modelling is weakly sensitive to numerical errors”: X 
(Δc=Δx)

5. “LES is successful because viscous dissipation scales on large-

scale motions”: √√√√
→ General underestimation of the importance of 
numerical errors

→ Weakness of the LES formalism

Especially for Incompact3d!



Alternative: Implicit LES
“For LES, a lack of formalism could be better 

than a weak (fake?) formalism”

• Principle: large-scale dynamics is left free from modelling 
whereas small-scale dynamics (subjected to strong 
numerical errors) is damped (regularization).

o With the “help” of numerical errors

→ MILES approach (dissipative upwind schemes)

→ Explicit filtering (artificial dissipation)

Drawbacks: uncontrolled artificial dissipation, loss of 
time consistency for explicit filtering

o With an extra dissipative operator

→ Hyperviscosity (spectral methods)

→ Spectral Vanishing Viscosity (spectral methods)

Drawbacks: restricted to academic geometry, calibration



Implicit LES using Incompact3d

• Principle: introduction of targeted regularization

using a specific property of compact schemes

• Advantages:

– Numerical dissipation can be controlled

– No extra operator (via the viscous term)

– Numerical errors are the source of numerical 

dissipation (no extra error due to discretization)

– Preserves high-order accuracy

– Compatible with DNS and LES



Compact schemes for the second derivative

• Second derivative

• Modified square wave number

→ singularity at α=1/2 for k=kc

f=exp(ikx) → f”=-k” exp(ikx)

≠-k2 exp(ikx)



Compact schemes for the second derivative

• 4 parameters: a,b,c,α

• 4 order conditions

a+b+c=1+2α (Δx2 condition)

a+4b+9c=12α (Δx4 condition)

a+16b+81c=30α (Δx6 condition)

a+64b+729c=56α (Δx8 condition)

→ If Δx8 condition is sacrificed, α can be chosen freely 
while preserving the 6th order accuracy

→ If Δx6 condition is sacrificed, α and another 
coefficient can be chosen freely while preserving the 
4th order accuracy

→ The choice α→1/2 leads to k”→∞ at k≈kc



Modified square wave number

Exact

6th c=0 (conventional)

6th c≠0 (dissipative)

•The exact differentiation is given by k”=k2

•For conventional schemes, k”<k2 near the cutoff

→ sub-dissipative behaviour

•For present scheme, k”≈k2 except for k≈kc where k”>>k2

→ over-dissipative behaviour

α→1/2



Equivalence with spectral viscosity

• The over-estimation of k2 introduces a 

spectral viscosity with

• Can be used to mimic subgrid scale dissipation

– Hyperviscosity: 

– Spectral Vanishing Viscosity:



Spectral Vanishing Viscosity

Choice of ν0?
νs/ν0



LES using SVV

Turbulent channel flow

ν0/ν=3

LES : 64 x 129 x 48

DNS : 256 x 193 x 48



LES of Turbulent Impinging Jet

(ν0/ν=19)



Velocity statistics

Mean velocity TKE

Experiment

DNS

LES O4-SVV



Wall temperature statistics

→ Wrong prediction of heat transfer for νt subgrid-scale 

models (Smagorinsky, WALE) as for a low resolution DNS

→ Improvement when targeted numerical dissipation (SVV)

is used



Instantaneous Nusselt number

DNS LES 

SVV

LES 

WALE

LES 

No model



Instantaneous visualization
DNS LES SVV

LES WALE LES No model



Choice of ν0/ν? Example for free jet flow

• DNS OK at Re=10 000 using 10243 grid points

• Goal: LES at Re=700 000 using 10243 grid points

• Reference: DNS at Re=700 000 using 24 5763 grid points

Assumption

DNS/LES dissipation

Principle: find ν0/ν to obtain

Homogeneous isotropic turbulence

How to choose the spectrum shape?

DNS : ks → ∞ / LES : ks → kc



Modelling of the spectrum shape

• Lin equation

– Energy injection at ki

– Steady Kolmogorov spectrum for k>ki

Pao equation (1968) 

→ analytical solution

Pao-like equation

→ numerical solution

DNS LES



EDNS(k) ↔ ELES(k) k2EDNS(k) ↔ k”ELES(k)

DNS, Re=10 000 LES, Re=700 000

ν0/ν=1119→

Modelling of the spectrum shape



Mean velocity

+ : Exp. P’

Re=700 000

― : LES

Re=700 000



u’rms

+ : Exp. P’

Re=700 000

― : LES

Re=700 000



3D Taylor-Green flow

• Initial conditions

• 3D periodic computational domain

• Reynolds number

• Total kinetic energy   – enstrophy – dissipation



• DNS of reference : Re=1600, nx ny nz=2563

• OK with results of Van Rees et al. (2011) 

(fully spectral DNS, nx ny nz=5123)

3D Taylor Green

Animation of Q criterion



3D Taylor-Green flow

DNS 2563 LES 1283

O4 SVV

ν0/ν=34

LES 643

O4 SVV

ν0/ν=89

→ no spurious oscillations



3D Taylor-Green flow

Ek(t) εk(t)

→ good reproduction of 1) the dissipation peak 

2) the resulting decrease of Ek



3D Taylor-Green flow

→ poor reproduction of the dissipation peak if the conventional

definition of ε is used

→ subgrid scale modelling based on first derivatives should be 

avoided



Conclusion

High-order numerical dissipation

• Why?

– To control spurious oscillations (aliasing) in DNS

– To mimic subgrid-scale model without any extra 

numerical error in LES

• How?

– Via the viscous term (second derivatives)

– Using the singularity of the modified wave number at 

the cutoff for a compact scheme

– By calibration of the artificial dissipation assuming a 

Pao-like spectrum (physical subgrid-scale model)



Modified wave number k’

f=exp(ikx) → f’=ik’exp(ikx)

kcΔx (cutoff)

Compact Δx6

Explicit Δx2

Exact



• Model equation

• Exact solution

• Discrete solution using finite difference schemes

where k’ and k’’ are the modified wave numbers

Resolution properties for a linear 

convection/diffusion equation



• Dispersion error

• Dissipation error

where              is the mesh Reynolds number

Remark: k’ is complex for upwind schemes

k’=k’R+ik’i

Resolution properties for a linear 

convection/diffusion equation



Hyperviscosity



Comparison with an upwind approach

Rai & Moin (1991)

Over-dissipative 

6th scheme



Control of spurious acoustic waves

Direct computation of sound

from a mixing layer using Compact3d

Without 

extra-dissipation

With

extra-dissipation (6th)


