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Upscaled phase-field models for interfacial
dynamics in strongly heterogeneous domains
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We derive a new, effective macroscopic Cahn–Hilliard equation whose homogeneous free
energy is represented by fourth-order polynomials, which form the frequently applied
double-well potential. This upscaling is done for perforated/strongly heterogeneous
domains. To the best knowledge of the authors, this seems to be the first attempt
of upscaling the Cahn–Hilliard equation in such domains. The new homogenized
equation should have a broad range of applicability owing to the well-known
versatility of phase-field models. The additionally introduced feature of systematically
and reliably accounting for confined geometries by homogenization allows for new
modelling and numerical perspectives in both science and engineering. Our results are
applied to wetting dynamics in porous media and to a single channel with strongly
heterogeneous walls.

Keywords: phase-field models; Cahn–Hilliard equation; multi-scale modelling; homogenization;
porous media; wetting

1. Introduction

Consider the abstract energy density

e(f) := F(f) + l2

2
|Vf|2, (1.1)

where f is a conserved density that plays the role of an order parameter by
taking appropriate equilibrium limiting values that represent different phases.
The gradient term l2|Vf|2 penalizes the interfacial area between these phases,
and the bulk free energy F is defined as the polynomial

F(f) :=
∫f

0
f (s)ds and f (s) := a3s3 + a2s2 + a1s. (1.2)

In the Ginzburg–Landau/Cahn–Hilliard formulation, the total energy is defined
by E(f) := ∫

U
e(f)dx with density (1.1) on a bounded C 1,1-domain U ⊂ R

d with
1 ≤ d ≤ 3 denoting the spatial dimension. In general, the local minima of F
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correspond to the equilibrium limiting values of f representing different phases
separated by a diffuse interface whose spatial extension is governed by the
gradient term.

It is well accepted that thermodynamic equilibrium can be achieved by
minimizing the free energy E , here supplemented by a possible boundary
contribution

∫
vU

g(x)do(x) for g(x) ∈ H 3/2(vU), with respect to its gradient flow
over the domain U, i.e.

(homogeneous case)

⎧⎪⎪⎨
⎪⎪⎩

v

vt
f = div(M̂V(f (f) − l2Df)) in UT ,

Vnf := n · Vf = g(x) on vUT ,
VnDf = 0 on vUT ,

⎫⎪⎪⎬
⎪⎪⎭ (1.3)

where UT := U×]0, T [, vUT := vU×]0, T [, f satisfies the initial condition
f(x, 0) = j(x), and M̂ = {mij}1≤i,j≤d denotes a mobility tensor with real and
bounded elements mij > 0. Equation (1.3) is the gradient flow with respect to the
H −1-norm, here weighted by the mobility tensor M̂, and is referred to as the Cahn–
Hilliard equation. This equation is a model prototype for interfacial dynamics
(Fife 1991) and phase transformation (Cahn & Hilliard 1958) under homogeneous
Neumann boundary conditions, i.e. g = 0, and a free energy F representing
the phenomenological standard double-well potential F(s) = 1

4(s
2 − 1)2. The

polynomial f = F ′, defined in (1.2), encloses a set of free energies that allow
for the same steps in the rigorous homogenization process leading to the main
result of this paper, theorem 3.3. We emphasize that F represents a bulk free
energy that is well accepted because it allows for stable numerics and captures
phenomenologically the features of systematically derived free energies such as
the regular solution model (Cahn & Hilliard 1958) based on the free energy of
mixing, i.e.

f (f) = kT (f ln f + (1 − f) ln(1 − f)) + af(1 − f). (1.4)

The mean free energy (1.4) can be derived by a thermodynamic limit from lattice
gas models of filled and empty sites, for instance. Unfortunately, the energy (1.1)
cannot be reduced to the atomistic Lennard-Jones potential. But (1.1) is related
to the Lennard-Jones potential in the sense of the Lebowitz, Mazel and Presutti
(LMP) theory (Presutti 2009). It is well known that formally, the energy (1.1)
dissipates along solutions of the gradient flow (1.3), i.e. E(f(·, t)) ≤ E(f(·, 0)) =:
E0. This follows immediately after differentiating (1.1) with respect to time and
using (1.3) for g = 0.

Here, we study the energy density (1.1) with respect to a perforated domain
Ue ⊂ R

d instead of a homogeneous U ⊂ R
d . The dimensionless variable e > 0

defines the heterogeneity e = �/L, where � represents the characteristic pore
size and L is the characteristic length of the porous medium (figure 1). Hence,
the porous medium is characterized by a reference cell Y := [0, �1] × [0, �2] ×
· · · × [0, �d ], which represents a single, characteristic pore. For simplicity, we
set �1 = �2 = · · · = �d = 1. A well-accepted approximation is then the periodic
covering of the macroscopic porous medium by such a single reference cell eY
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reference cell Y

(a) periodic covering by cells Y (c) homogeneous approximation
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Figure 1. (a) Strongly heterogeneous/perforated material as a periodic covering of reference cells
Y := [0, �]d . (b) Definition of the reference cell Y = Y 1 ∪ Y 2 with � = 1. (c) The ‘homogenization
limit’ e := �/L → 0 scales the perforated domain such that perforations become invisible in
the macroscale.

(figure 1). The pore and the solid phase of the medium are denoted by Ue and
Be, respectively. These sets are defined by

Ue :=
⋃
z∈Zd

e(Y 1 + z) ∩ U and Be :=
⋃
z∈Zd

e(Y 2 + z) ∩ U = U \ Ue, (1.5)

where the subsets Y 1, Y 2 ⊂ Y are defined such that Ue is a connected set.
More precisely, Y 1 stands for the pore phase (e.g. liquid or gas phase in wetting
problems; figure 1).

These definitions allow us to reformulate (1.3) by the following microscopic
porous media problem:

(microporous case)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vtfe = div(M̂V(−l2Dfe + f (fe))) in Ue
T ,

Vnfe := n · Vfe = 0 on vUe
T ,

VnDfe = 0 on vUe
T ,

fe(x, 0) = j(x) on Ue.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.6)

In the next section, we motivate our main goal of deriving a homogenized upscaled
problem by passing to the limit e → 0 in (1.6).

(a) Physical motivation

There is a large amount of literature available on multi-phase flows through
porous media: e.g. the review by Sahimi (1993) on fluid flow in reservoir rocks and
references therein; the experimental works on viscous fluid imbibition processes
in a Hele–Shaw cell by Rubio et al. (1989), Hernández-Machado et al. (2001),
Geromichalos et al. (2002) and Planet et al. (2007); or the study of fluid flow
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in sheets of paper in Balankin et al. (2003), to name a few. A physically
complex problem of vapour sorption and desorption from nanoporous solids
was studied by Bazant & Bazant (2011). Adler & Brenner (1988) provided
a comprehensive review of the field of multi-phase flows and they outline in
detail some of its fundamental concepts, such as volume averaging and extending
Darcy’s law towards two-phase flows, both of which are used often. Notably,
the volume-averaging method requires a fictitious length scale defining the test
volumes. These volumes cannot be chosen to be the characteristic pore scale as in
homogenization theory in order to comply with the ergodic hypothesis required
by the method. The review also addresses the frequently questioned approach of
using phenomenological relative permeabilities (Muskat & Meres 1936).

Recently, Papatzacos (2002, 2010) applied a special type of volume averaging,
Marle’s averaging technique (Marle 1982), to a coupled system consisting of
the continuity equation, a momentum and an energy balance. The effective
model then turns via Darcy’s law into a Cahn–Hilliard-type equation for
a phenomenologically motivated transport parameter. This thermodynamic
derivation of an effective macroscopic Cahn–Hilliard equation for mass transport
starting from a microscopic continuity equation clearly demonstrates the
relevance of phase-field type approaches in heterogeneous structures. In fact,
the use of the Cahn–Hilliard equation to describe macroscopic fluid flows in
porous media has received a lot of attention over the last few years. It has
been shown that such a phase-field model adapted to imbibition reduces to
Darcy’s law in the sharp interface limit, i.e. when l → 0 (Alava et al. 2004).
Therefore, it is an ideal candidate, particularly for numerical modelling, to study,
for example, the statistical and dynamical properties of the kinetic roughening
process that the interface undergoes as the liquid invades the porous medium
(Dubé et al. 1999; Hernández-Machado et al. 2001; Laurila et al. 2005; Pradas &
Hernández-Machado 2006).

However, up to now, no effective macroscopic equations have been derived
for any microscopic porous media formulation (1.6). It should be noted that
understanding rationally and systematically how microscopic details affect global
macroscopic properties is a crucial point in a wide spectrum of multi-phase flow
applications, from traditional ones, such as oil recovery, to more recent ones,
such as micro- and nano-fluidics. The present study aims to address this issue
and, at the same time, exemplify its physical relevance for the field of multi-
phase flows by using as a paradigm the problem of wetting in heterogeneous
domains such as imbibition. As far as the Cahn–Hilliard equation is concerned,
it has a long history and enjoys a broad range of applicability, as discussed later.
This is a major motivation for the first homogenization result derived here in the
context of perforated or strongly heterogeneous domains. Moreover, the upscaled
problem should allow for efficient and systematic low-dimensional computations
in applications.

(b) On the broad applicability of the Cahn–Hilliard equation

As noted already, the Cahn–Hilliard equation has a wide applicability. The
phase-field equation (1.3) was first introduced by Cahn & Hilliard (1958), where
they suggested a free-energy formulation for non-uniform systems. Alternatively,
Cahn–Hilliard-type equations can be obtained by square-gradient approximations
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to non-local free-energy functionals like those used in the statistical mechanics of
non-homogeneous fluids (Miranville 2003; Pereira & Kalliadasis 2012). Since the
work of Cahn and Hilliard, this formalism has become a fundamental modelling
tool in both science and engineering. Cahn–Hilliard or more generally phase-field
energy functionals are for example applied in image processing such as inpainting
(Bertozzi et al. 2007). Wetting phenomena, of great interest in technological
applications, especially motivated by recent developments in micro-fluidics, enjoy
a wide-spread use of phase-field modelling (Pomeau 2001; Laurila et al. 2008;
Queralt-Martin et al. 2011). Such phenomena have some intriguing features,
including the appearance of hysteresis and non-locality, e.g. correlations between
the contact line dynamics at each surface plate of a micro-channel (Wylock et al.
2012). Additional complexities in wetting include the presence of an electric field
(electrowetting, e.g. Eck et al. (2009)). There are numerous other applications
where phase-field models provide a powerful modelling tool. For example, in
Lowengrub et al. (2009), a phase-field model is proposed to describe the dynamics
of vesicles and associated phenomena, such as spinodal decomposition, coarsening,
budding and fission. In this study, in addition to the Cahn–Hilliard equation, an
Allen–Cahn equation (L2-gradient flow of E(f)) is employed.

Clearly, there is a large amount of literature on phase-field/Cahn–Hilliard
models on a wide variety of physical settings and applications, which cannot
be fully reviewed here. That said, it is important to emphasize that the key to
the versatility of phase-field/Cahn–Hilliard formulations is precisely the fact that
many physical settings are characterized by simple energies of the form (1.1).

In §2, we introduce two relevant formulations of the Cahn–Hilliard equation.
The main theorem, which states the new macroscopic Cahn–Hilliard equation,
is given in §3, where we also provide the local equilibrium condition required
for homogenization. In §4, we demonstrate the applicability of the new effective
equation in the context of wetting and are able to connect it to physically
suggested models in imbibition. Conclusions and suggestions for further work
are presented in §5.

2. Two reformulations of the Cahn–Hilliard equation: zero mass and splitting

We present two equivalent formulations of the Cahn–Hilliard equation. The
first helps to achieve solvability for Lipschitz inhomogeneities and the second,
referred to as ‘splitting formulation’, decouples the Cahn–Hilliard equation into
two second-order problems for a feasible upscaling by the multiple-scale method.

(a) Zero mass formulation (for well-posedness)

Novick-Cohen (1990) proves well-posedness of the Cahn–Hilliard problem (1.3)
rewritten for UT := U×]0, T [ and vUT := vU×]0, T [ in the following zero mass
formulation:

(zero mass)

⎧⎪⎨
⎪⎩

vtv = div(M̂V(bv + h(v) − l2Dv)) in UT ,
Vnv = n · VDv = 0 on vUT ,
v(x, 0) = v0(x) = j(x) − f̄ in U,

⎫⎪⎬
⎪⎭ (2.1)

Proc. R. Soc. A (2012)
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where v(x, t) := f(x, t) − f̄, b := f ′(f), h(v) := f (f̄ + v) − bv, and by mass
conservation of (1.3), we define (1/|U|) ∫

U
f dx := (1/|U|) ∫

U
j dx =: f̄. These

definitions imply bv + h(v) = f (f̄ + v). For k ≥ 0, we introduce the family
of spaces

H k
E(U) = {f ∈ H k(U)|Vnf = 0 and f̄ = 0}. (2.2)

Novick-Cohen (1990) verifies local existence and uniqueness of solutions v ∈
H 2

E(U) of problem (2.1) for f ∈ C 2
Lip(R) with |f (s)| → ∞ as s → ±∞ and v(x, 0) ∈

H 2
E(U). Moreover, in Novick-Cohen (1990), one also finds necessary conditions on

h leading to global existence.

(b) Splitting (for homogenization)

The existence result summarized in §2a enables us to give the following weak
formulation of problem (1.3). There exists for all 4 ∈ H 2

E(U) a weak solution v ∈
H 2

E(U) solving the equation

d
dt

(v, 4) + l2(Dv, div(M̂V4)) = (div(M̂Vf (f̄ + v)), 4). (2.3)

By identifying v = (−D)−1w in the H 2
E(U)-sense, together with solvability of

equation (2.3), we are able to introduce the following problem:

(splitting)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vt(−D)−1w − l2div(M̂Vw) = div(M̂Vf (f̄ + v)) in UT ,
Vnw = −VnDv = 0 on vUT ,
−Dv = w in UT ,
Vnv = g(x) on vUT ,
v(x, 0) = j(x) − f̄ in U,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.4)

which is equivalent to (1.3) in the H 2
E -sense and hence, when g = 0, is well-

posed too (Novick-Cohen 1990). The advantage of (2.4) is that it allows us
to base our upscaling approach on well-known results from elliptic/parabolic
homogenization theory (Bensoussans et al. 1978; Zhikov et al. 1994; Pavliotis &
Stuart 2008). Finally, we remark that the splitting (2.4) slightly differs from
the strategy applied for computational purposes in Barrett & Blowey (1999),
for instance.

3. Main results

Before we state our main result, the subsequent homogenization of the
Cahn–Hilliard equation requires the assumption of local thermodynamic
equilibrium.

Proc. R. Soc. A (2012)
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Definition 3.1 (Local equilibrium). We say that the phase field f is in local
thermodynamic equilibrium, if and only if

dE(f)
df

= m(f) = f (f) − l2Df = const., (3.1)

for each x/e = y element of the same reference cell Y . m stands for the chemical
potential, which is only allowed to vary over the different reference cells.

The state of general conditions of equilibrium of heterogeneous substances
seems to go back to the celebrated work of Gibbs (1876). The assumption of
local thermodynamic equilibrium can be justified on physical and mathematical
grounds by the assumed separation of macroscopic (size of the porous medium)
and microscopic (characteristic pore size) length scales and the emerging
difference in the associated characteristic time scales. This kind of equilibrium
assumptions are widely applied to a variety of physical situations such as
diffusion (Nelson & Auerbach 1999), macroscale thermodynamics in porous
media (Bennethum et al. 1999) and ionic transport in porous media based on
dilute solution theory (Schmuck 2012; Schmuck & Bazant 2012; Schmuck &
Berg 2012), for instance. Local equilibrium assumptions as in definition 3.1
emerge as key requirements for the mathematical well-posedness of arising cell
problems that define effective transport coefficients in homogenized, nonlinear
(and coupled) problems.

The homogeneous free energy F in (1.2) enables upscaling under the following.

Assumption 3.2. Assume that the homogeneous free energy F satisfies for real
parameters a2 > a1 > 0, which define F as a double-well potential by F(s) = (s −
a1)2(s − a2)2, such that

25(a1 + a2)2 − 20(a2
1 + a2

2 + 3a1a2) >
(a1 + a2)2

4
. (3.2)

These considerations allow us to state the following main result of this study.

Theorem 3.3 (Upscaled Cahn–Hilliard equations). Let M̂ = {mdij}1≤i,j≤d for
m > 0. We assume that the local equilibrium condition (3.1) is satisfied. Moreover,
suppose that j(x) ∈ H 2

E(U) and let F satisfy assumption 3.2. Then, the microscopic
porous media formulation (1.6) can be effectively approximated by the following
macroscopic problem:

q1
vf0

vt
= div

([
q1f ′(f0)M̂ −

(
2
f (f0)

f0
− f ′(f0)

)
M̂v

]
Vf0

)

− f ′(f0) div(M̂vVf0) + l2

q1
div(M̂wV(div(D̂Vf0))) in UT ,

Vnf0 = n · Vf0 = 0 on vUT ,

VnDf0 = 0 on vUT

and f0(x, 0) = j(x) in U,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.3)
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where q1 := |Y 1|/|Y | is the porosity, and the porous media correction tensors D̂ :=
{dik}1≤i,k≤d , M̂v = {mv

ik}1≤i,k≤d and M̂w = {mw
ik(x)}1≤i,k≤d are defined by

dik := 1
|Y |

d∑
j=1

∫
Y 1

(
dik − dij

vxk
v

vyj

)
dy,

mv
ik := 1

|Y |
d∑

j=1

∫
Y 1

m
(

dik − dij
vxk

v

vyj

)
dy

and mw
ik(x) := 1

|Y |
d∑

j=1

∫
Y 1

m
(

dik − dij
vxk

w(x)
vyj

)
dy.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)

The corrector functions xk
v ∈ H 1

per(Y
1) and xk

w ∈ L2(U; H 1
per(Y

1)) for 1 ≤ k ≤ d solve
in the distributional sense the following reference cell problems:

xk
w :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∑d
i,j ,k=1

v

vyi

(
dik − dij

vxk
w

vyj

)

= l2∑d
k,i,j=1

v

vyi

(
mik − f (f0)

f ′(f0)f0
mij

vxk
v

vyj

)
in Y 1,

∑d
i,j ,k=1 ni

(
dij

vxk
w

vyj
− dik

)

− l2∑d
k,i,j=1

v

vyi

(
mik − f (f0)

f ′(f0)f0
mij

vxk
v

vyj

)
= 0 on vY 1,

xk
w(y) is Y -periodic and MY 1(xk

w) = 0

and xk
v :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−∑d
i,j=1

v

vyi

(
dik − dij

vxk
v

vyj

)
= 0 in Y 1,

∑d
i,j=1 ni

(
dij

vxk
w

vyj
− dik

)
= 0 on vY 1,

xk
v(y) is Y -periodic and MY 1(xk

v) = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.5)

Remark 3.4.

— The reference cell problem (3.5)1 for xk
v can be solved numerically for

example. For problem (3.5)2, there are results in the literature (Auriault &
Lewandowska 1997) in the case of straight or perturbed straight channels.

— The thermodynamic equilibrium (3.1) enables the derivation of the cell
problem (3.5)1 and assumption 3.2 is necessary for its well-posedness.

4. Applications to wetting

The freedom in defining the free energy F(f) in the phase-field equation (1.3)
enables us to apply the upscaling formalism developed in this paper to a variety of
physical problems. Taking F as in assumption 3.2 includes the phenomenological
double-well form that is generally applied for the homogeneous free energy.
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Herewith, we can immediately describe the evolution of two phases such as
liquid–gas through a porous medium, for instance. The quantity of interest in
describing wetting phenomena is the contact angle, defined as the angle between
the liquid–gas interface and the wetted area of the substrate.

In the phase-field model (1.3), it is well accepted to account for wetting
properties by a Robin boundary condition (1.3)2 (Wylock et al. 2012) with

g(x) := − g

Ch
a(x). (4.1)

The parameter Ch is the Cahn number l/L and g = 2
√

2fe/3slg, where slg denotes
the liquid–gas surface tension and fe the local equilibrium limiting values of F .
It is straightforward to extend (4.1) to several wetting properties a1, a2, . . . , aN
for a positive N ∈ N such that

g(x) := − g

Ch

N∑
i=1

ai(x)cvUi
w
(x) ∈ H 3/2(vUw). (4.2)

For notational brevity, we will work with N = 2 in subsequent sections.
In §5, we briefly relate the results obtained in this paper to the results

from Alberti & DeSimone (2005), where a formula for the effective contact angle
is derived based on G-convergence and geometric measure theory.

(a) Channel with heterogeneous wetting properties

We assume that U := [0, L] × [0, 1]d−1 ⊂ R
d is an arbitrary straight channel of

length L with walls vUw having different wetting properties. We assume that
these wetting properties repeat periodically along the channel walls. We denote
the left entrance by Gl and the right exit by Gr, such that vU = Gl ∪ vUw ∪ Gr.
In particular, we define

Ue :=
{⋃

z∈Z

ee(Y + ze1)

}
∩ U and vUe

w :=
{⋃

z∈Z

ee(Y + ze1)

}
∩ vUw , (4.3)

where ee = ee1 + e2 + · · · + ed , ei for i = 1, 2, . . . , d is the canonical basis of R
d ,

and for the definition of Y , we refer to figure 2.
To derive an effective phase-field model for highly heterogeneous walls, we

account for different surface properties on the walls vUe
w , see (4.3), by the

following multi-scale formulation:

vt(−D)−1we = div(M̂V(l2we − fe + f3
e )) in Ue

T ,

−Dfe = we in Ue
T ,

n · Je = Jl on Gl
T := Gl×]0, T [,

n · Je = 0 on Gr
T := Gr×]0, T [,

Vnfe = −eg
(x

e

)
on vUe

w×]0, T [
and fe(x, 0) = j(x) in U,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)

where Je is defined as the flux V(l2we − fe + f3
e ), and a1 and a2 are constants.
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1

1

Y : =

1

∂Y   2

∂Y   4

∂Y  
1

∂Y   3

∂Y l

∂Y r

Figure 2. Reference channel Y := [0, 1]d defined by channel entry vYl , channel exit vYr and wall
vYw :=⋃4

i=1 vYwi where vYwi := vY 1
wi

∪ vY 2
wi

with two different wetting properties vY 1
wi

and vY 2
wi

.
We point out that Y is only scaled in y1 = x1/e direction and keeps y2 and y3 fixed.

For the homogenization of heterogeneous boundary conditions such as (4.4)5,
we refer to Allaire et al. (1996). Problem (4.4) is introduced because it is a priori
not clear whether oscillations on the solid/void interface, i.e. on the walls vUe

w ,
also influence the bulk. We also need to properly define the periodic microscale
x1/e =: y1. We assume that the heterogeneities defined on the wall vUe

w are periodic
in the x1-direction with period defined via a reference cell as in figure 2. Our
averaging process consists of the usual limit e → 0. Hence, we cover the channel
U by reference cells Y , e.g. as in figure 2, which are only scaled by e in the
x1-direction. We further need the following.

Hypothesis 4.1. We assume that the boundary vUw contains finitely many flat
pieces with conormal not proportional to any z ∈ Z

d .

If the hypothesis 4.1 is violated, then the homogenization limit does not
converge towards a unique upscaled problem (Bensoussans et al. 1978).

Corollary 4.2 (Heterogeneous walls). We make the same assumptions as in
theorem 3.3, except that we do not require an isotropic mobility M̂. We additionally
suppose that (4.1) holds and that Jl , g ∈ H 3/2(vU) in (4.4).

Then, the microscopic wall description (4.4) becomes the following upscaled
system after averaging over the microscale:

vtf0 = div(M̂V(−f0 + f3
0 − l2Df0)) in UT ,

Vnf0 = Jl on vUl
T ,

Vnf0 = 0 on vUr
T ,

Vnf0 = g0 on vUw×]0, T [
and f(x, 0) = j(x) in U,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

where g0 := −(g/Ch)(1/|Y |) ∫
Y (a1cvY 1

w
(y) + a2cvY 2

w
(y))dy, where the constants a1

and a2 characterize the material’s wetting properties.

Proc. R. Soc. A (2012)

 on October 1, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Upscaled phase-field models 3715

(b) Wetting dynamics in porous media and imbibition

As in equation (1.5), we define the porous medium by the pore space Ue and
the solid material Be as a periodic covering by a single reference cell Y := [0, �1] ×
[0, �2] × · · · × [0, �d ], which defines the characteristic pore geometry (figure 1).

We denote by vY 1
w := ⋃N

i=1 vY 1
wi

the pore surface. The subsets vY 1
wi

belong
to surfaces with different wetting properties. Correspondingly, the walls vUe

wi

are defined via vY 1
wi

of the covering of U by Y (figure 2). Depending on
applications, different boundary conditions than (4.6)4 below for wetting can be
imposed.

These definitions allow us to reformulate (1.3) by the following microscopic
porous media problem:

vtfe = div(M̂V(−l2Dfe + f (fe))) in Ue
T ,

n · Je = Jl on Gl
T ,

n · Je = 0 on Gr
T

and Vnfe = −e
g

Ch

(
a1(x)cvUe

w1

(x
e

)
+ a2(x)cvUe

w2

(x
e

))
on vUe

w×]0, T [,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.6)

where a1(x) and a2(x) appear periodically with period eY and vary
macroscopically in x ∈ Ue. We complement (4.6) with arbitrary initial conditions
fe(x, 0) = j(x) ∈ H 2

E(U).
We focus here on a porous medium with walls showing only two different

wetting properties, i.e. N = 2. An extension to arbitrary 0 < N < ∞ is
straightforward. We explained the scaling by e of the wetting boundary
condition (4.6)4 already in §4a.

Corollary 4.3 (Wetting in porous media). We make the same assumptions as
in theorem 3.3.

Then, the microscopic porous media formulation (4.6) has the following leading
order asymptotic equation on the macroscale:

q1
vf0

vt
= div

([
q1f ′(f0)M̂ −

(
2
f (f0)

f0
− f ′(f0)

)
M̂v

]
Vf0

)

− f ′(f0) div(M̂vVf0) + l2

q1
div(M̂wV(div(D̂Vf0) − g̃0)) in UT ,

n · J = Jl on Gl
T ,

n · J = 0 on Gr
T ,

Vnf0 = n · Vf0 = VnDf0 = 0 on vUw×]0, T [
and f0(x, 0) = j(x) in U,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)

where q1 := |Y 1|/|Y | is the porosity, J the flux corresponding to (4.7)1, and
the porous media correction tensors D̂ := {dik}1≤i,k≤d , M̂v = {mv

ik}1≤i,k≤d and
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M̂w = {mw
ik(x)}1≤i,k≤d are defined in (3.4). The function g̃0 defines the upscaled

wetting boundary condition,

g̃0(x) := − g

Ch

∫
vY 1

w

(a1(x)cvY 1
w1

(y) + a2(x)cvY 1
w2

(y))do(y). (4.8)

5. Conclusion

We have examined the problem of upscaling the Cahn–Hilliard equation for
perforated/strongly heterogeneous domains. An effective macroscopic Cahn–
Hilliard equation by homogenization for such domains is derived rigorously for the
first time. It is often the case that averaging strategies such as volume averages
and Marle’s method are applied. However, such approaches are rather heuristic
and it is not clear how to choose the size of reference volume for the averaging
(§1a). The proof of the main result obtained here is valid for free energies
F defined by polynomials up to fourth-order satisfying assumption 3.2. Such
polynomial free energies include generically applied double-well potentials that
phenomenologically represent a large class of free energies modelling two-phase
problems (e.g. the free energy of mixing (1.4)) and that mimic the Lennard-Jones
potential via the LMP theory (Presutti 2009). However, they do not appear as
a mean field limit of an atomistic model. Moreover, the upscaling process also
provides naturally the basic algorithmic framework and analytical tools for other
choices of free energies F .

The new effective Cahn–Hilliard formulation introduces an efficient and low-
dimensional numerical alternative over its microscopic counterpart (1.6) and
serves as a promising alternative for multi-phase problems (§1a). It also provides
systematically effective transport coefficients like diffusion and mobility (or
permeability) tensors. We further apply the new effective Cahn–Hilliard equation
to wetting problems in porous media and straight channels. It turns out that the
new formulation allows for a feasible computation of effective contact angles in
channels with strongly heterogeneous walls, for instance. Interestingly, we recover
rigorously the same equation that was suggested in the studies of Ala-Nissila et al.
(2004) and Dubé et al. (1999) for imbibition but based on physical arguments,
suggesting that the new equation is consistent with known physical laws.

It should also be mentioned that corollary 4.3 allows for a formal extension
towards random porous media or random wetting properties where a1(x) and
a2(x) are spatially homogeneous and stationary ergodic random variables,
for instance. In the case of random media, one can introduce appropriate
random variables such as a random porosity q1 or random wall fractions qw1 :=
|vY 1

w1
|/|vY 1

w | and qw2 := 1 − q1. Herewith, we can redefine g0 in (4.8) by

a(x) := − g

Ch
(a1qw1(x) + a2qw2(x)), (5.1)

where qwi (x) for i = 1, 2 are homogeneous random fields characterizing the
wall fractions and the periodicity assumption can be replaced by a stationary
ergodic setting (Bensoussans et al. 1978). Equation (5.1) motivates that
homogenization theory allows us to reliably introduce and consistently define
the phenomenological variable a appearing in the equation for imbibition in
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Ala-Nissila et al. (2004) and Dubé et al. (1999). In fact, we obtain rigorously
that this variable a is connected with the wetting boundary condition g in (1.6).
However, we remark that the earlier-mentioned extensions are merely formal and
require careful analytical considerations in specific applications of interest.

The effective model (4.5) allows us to determine the averaged contact angle
via g0 in (4.5) or (4.8). We can determine via g := 2

√
2fe/3slg the parameter

aeff = g0Ch/g, and fe denotes the local equilibrium limiting values of the standard
phenomenological double-well potential F . By defining fe = +1 as the liquid phase
and fe = −1 as the gaseous phase, one imposes with aeff > 0 hydrophilic and with
aeff < 0 hydrophobic wetting conditions. After setting A = √

2gaeff , the effective
equilibrium contact angle immediately follows by

cos qe = 1
2 [(1 + A)3/2 − (1 − A)3/2]. (5.2)

We believe that herewith we can propose a convenient and feasible alternative to
Alberti & DeSimone (2005) with (5.2) for the computation of effective contact
angles. Formula (4.8), allows us to analytically compute the effective macroscopic
contact angle qe in contrast to the not easily accessible formulae in Alberti &
DeSimone (2005). The difference between their and our result relies on the fact
that they work with the interfacial energy

E := sSL|SSL| + sSV|SSV| + sLV|SLV| + a.t., (5.3)

where sAB denotes the surface tension between phases A and B, SAB the
interface between A and B (|SAB | its measure), for A, B ∈ {S, L, V}. The letters
S, L and V stand for the solid, liquid and vapour phases, respectively. In
contrast, we base our considerations on the Cahn–Hilliard model (4.4) and
hence provide an approximate effective contact angle due to a diffuse interface
approximation. Hence, it might be interesting to study the sharp interface limit
in this context. Moreover, Alberti and DeSimone connect nicely their generally
valid homogenized formulas with the classical results from Wenzel (1936) and
Cassie & Baxter (1944). In fact, they show that the Wenzel and Cassie–Baxter
laws represent upper bounds for the effective contact angle formula derived in
Alberti & DeSimone (2005).

There are of course open questions and future perspectives. A characterization
of the effective macroscopic Cahn–Hilliard equation by error estimates as
exemplified in different contexts by Bensoussans et al. (1978) and Schmuck
(2012) is of great interest. Analytically, the convergence of the microscopic
(periodic) formulation to the effective macroscopic Cahn–Hilliard problem is of
great relevance. In applications, it is very interesting to extend the porous media
formulation to fluid flow. It is well known that such an extension is rather involved
because additional physical phenomena such as diffusion–dispersion effects arise
(e.g. Taylor–Aris dispersion). It is still not entirely clear how one can reliably
account for such phenomena.

Nevertheless, even without fluid flow, the new equations enable us to gain
insights into interfacial dynamics in porous media, for instance. Two- or three-
dimensional numerical results of wetting phenomena in porous media would allow
us to track the phase interface of an arbitrary three-phase composite, i.e. the
porous medium and arbitrary two phases in pore space. This information is of
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great interest for the design of synthetic porous media, membranes and generally
micro-fluidic devices. But the new formulation also provides an interesting
alternative for simulating oil recovery from natural porous media.

We thank the anonymous referees for insightful comments and suggestions. We acknowledge
financial support from EPSRC grant no. EP/H034587, EU-FP7 ITN multiflow and ERC advanced
grant no. 247031.

Appendix A. Proof of theorem 3.3

We define the microscale x/e =: y ∈ Y such that after setting

A0 = −
d∑

i,j=1

v

vyi

(
dij

v

vyj

)
, B0 = −

d∑
i,j=1

v

vyi

(
mij

v

vyj

)
,

A1 = −
d∑

i,j=1

[
v

vxi

(
dij

v

vyj

)
+ v

vyi

(
dij

v

vxj

)]
,

B1 = −
d∑

i,j=1

[
v

vxi

(
mij

v

vyj

)
+ v

vyi

(
mij

v

vxj

)]
,

A2 = −
d∑

i,j=1

v

vxj

(
dij

v

vxj

)
and B2 = −

d∑
i,j=1

v

vxj

(
mij

v

vxj

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 1)

Ae := e−2A0 + e−1A1 + A2 and Be := e−2B0 + e−1B1 + B2, the Laplace operators
D and div(M̂V) become Due(x) = Aeu(x, y) and div(M̂V)ue(x) = Beu(x, y),
respectively, where ue(x) := u(x, y). Inserting for u ∈ {w, f} the formal asymptotic
expansions ue ≈ u0(x, y, t) + eu1(x, y, t) + e2u2(x, y, t) into (2.4) and using (A 1)
provides a sequence of three solvable perturbation problems, at O(e−2), O(e−1)
and O(e0), after equating terms of equal powers in e. For simplicity, we only give
the last one here

O(e0) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B0w2 = −l2(B2w0 + B1w1)

−B0
[ 1

2 f
′′(f0)f2

1 + f ′(f0)f2
]

−B1

[
f (f0)f1

f0

]
− B2f (f0) − vt(−D)−1w0 in Y 1,

no flux b.c.,
w2 is Y 1-periodic,

A0v2 = −A2v0 − A1v1 + w0 in Y 1,
Vnv2 = ge on vY 1

w ,
f2 is Y 1-periodic,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 2)

where in (A 2) the following relation is applied:
1
2 f

′′(f0)f2
1 + f ′(f0)f2 = a1f2 + a2(2f2f0 + f2

1) + 3a3(f2f2
0 + f0f2

1). (A 3)

The first problems at O(e−2) are classical in elliptic homogenization theory
and immediately imply that the leading order approximations w0 and v0 are
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independent of the microscale y. This fact and the linear structure of the problems
arising at O(e−1) suggest the following ansatz for w1 and f1, i.e.

w1(x, y, t) = −
d∑

k=1

xk
w(y)

vw0

vxk
(x, t) and f1(x, y, t) = −

d∑
k=1

xk
v(y)

vf0

vxk
(x, t) = v1.

(A 4)

Inserting (A 4) into the O(e−1) problems provides equations for the correctors
xk
w and xk

v. The resulting equation for xk
v is again standard in elliptic

homogenization theory and can be immediately written for 1 ≤ k ≤ d as

xf :

⎧⎪⎪⎨
⎪⎪⎩

−∑d
i,j=1

v

vyi

(
dik − dij

vxk
v

vyj

)
− div(ek − Vyxk

v) = 0 in Y 1,

n · (Vxk
v + ek) = 0 on vY 1

w ,
xk
v(y) is Y -periodic and MY 1(xk

v) = 0.

⎫⎪⎪⎬
⎪⎪⎭ (A 5)

The reference cell problem for xw is much more difficult since it depends on the
solutions of (A 5). We first write the problem at O(e−1) for xk

w in explicit terms,

d∑
k,i,j=1

v

vyi

(
mij

vxk
w

vyj

)
vw0

vxk
=

d∑
i,j=1

v

vyi

(
mij

vw0

vxj

)

− f (f0)
f0

d∑
k,i,j=1

v

vyi

(
mij

vxk
v

vyj

)
vf0

vxk
+

d∑
k,i,j=1

v

vyi

(
f ′(f0)mij

vf0

vxi

)
. (A 6)

At this point, a major obstacle is the dependence on f0 in problem (A 7).
To alleviate this difficulty, we make use of the chemical potential defined in
(3.1). In the case of thermodynamic equilibrium, the quantity m is constant.
Hence, it holds that f ′(f)(vf/vxk) = f ′(f)(vv/vxk) = l2(vw/vxk) for 1 ≤ k ≤ d. If
this identity is valid in each reference cell Y (i.e. locally) and the mobility tensor
M̂ is isotropic, i.e. M̂ = {mij}1≤i,j≤d = {mdij}1≤i,j≤d , then we can cancel vw0/vxk in
(A 6) and simplify to

xw :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
d∑

i,j ,k=1

v

vyi

(
dik − dij

vxk
w

vyj

)

= l2
d∑

k,i,j=1

v

vyi

(
mik − f (f0)

f ′(f0)f0
mij

vxk
v

vyj

)
in Y 1,

d∑
i,j ,k=1

ni

⎛
⎝(dij

vxk
w

vyj
− dik

)

− l2
d∑

k,i,j=1

v

vyi

(
mik − f (f0)

f ′(f0)f0
mij

vxk
v

vyj

)⎞⎠= 0 on vY 1
w ,

xk
w(y) is Y -periodic and MY 1(xk

w) = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 7)
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One can guarantee well-posedness of the cell problem (A 7) under the
assumption 3.2, which ensures that r(s) := f (s)/(f ′(s)s) ∈ L2([a1, a2]) and since
f0 ∈ H 2

E(U), it holds that
∫

U

r2(f0)dx ≤ |U|
∫a2

a1

r2(s)ds < ∞, (A 8)

such that xk
w ∈ L2(U; H 1

per(Y
1)).

We now come to the last problem (A 2). Again, equation (A 2)2 is much simpler
because it is standard in elliptic homogenization theory. Well-known existence and
uniqueness results (Fredholm alternative/Lax-Milgram) immediately guarantee
solvability by verifying that the right-hand side in (A 2) is zero as an integral
over Y 1. For g̃0 := −(g/Ch)

∫
vY 1(a1cvY 1

w1
+ a1cvY 1

w2
) do(y), we obtain the following

effective equation for the phase field:

−
d∑

i,k=1

⎡
⎣ d∑

j=1

∫
Y 1

(
dik − dij

vxk
v

vyj

)
dy

⎤
⎦ v2v0

vxivxk
= |Y 1|w0 + g̃0, (A 9)

which can be written more compactly by defining a porous media correction
tensor D̂ := {dik}1≤i,k≤d by

|Y |dik :=
d∑

j=1

∫
Y 1

(
dik − dij

vxk
v

vyj

)
dy. (A 10)

Equations (A 9) and (A 10) provide the final form of the upscaled equation for
f0, i.e. −DD̂v0 := −div(D̂Vv0) = q1w0 + g̃0.

The upscaled equation for w is again a result of the Fredholm alternative, i.e.
a solvability criterion on equation (A 2)1. This means that we require

∫
Y 1

{
−l2(B2w0 + B1w1) − B0

(
1
2
f ′′(f0)f2

1 + f ′(f0)f2

)

− B1

[
f (f0)

f1

f0

]
− B2f (f0) − vt(−D)−1w0

}
dy = 0. (A 11)

Let us start with the terms that are easily averaged over the reference cell Y .
The first two terms in (A 11) can be rewritten as

∫
Y 1

−(B2w0 + B1w1) dy = −
d∑

i,k=1

⎡
⎣ d∑

j=1

∫
Y 1

(
mik − mij

vxk
w

vyj

)
dy

⎤
⎦ v2w0

vxivxk

= −div(M̂wVw0), (A 12)

where the effective tensor M̂w = {mw
ik}1≤i,k≤d is defined by

mw
ik := 1

|Y |
d∑

j=1

∫
Y 1

(
mik − mij

vxk
w

vyj

)
dy. (A 13)
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The next terms in (A 11) become

−B1

[
f (f0)

f1

f0

]
− B2f (f0) =

d∑
k,i,j=1

{
− v

vxi

([
mij

f (f0)
f0

vxk
v

vyj

]
vf0

vxk

)

+ v

vyi

(
mij

f (f0)
f0

vf1

vxj

)
+ v

vyi

(
mijf1

v(f (f0)/f0)
vxj

)}

+
d∑

k,i,j=1

v

vxi

(
mij f ′(f0)

vf0

vxj

)
, (A 14)

and a subsequent integration of the right-hand side of (A 14) over the reference
cell Y gives

d∑
i,k=1

v

vxi

⎛
⎝
⎡
⎣ d∑

j=1

∫
Y 1

(
mik f ′(f0) − mij

f (f0)
f0

vxk
v

vyj

)
dy

⎤
⎦ vf0

vxj

⎞
⎠

−
d∑

k,j=1

[
d∑

i=1

∫
Y 1

(
mij

vxk
v

vyi

)
dy

]
f (f0)

f0

v2f0

vxkvxj

−
d∑

k,j=1

[
d∑

i=1

∫
Y 1

(
vxk

v

vyi
mij

)
dy

]
v(f (f0/f0)

vxj

vf0

vxk
, (A 15)

where the last two terms further simplify to

−
d∑

k,j=1

v

vxj

(
f (f0)

f0

[
d∑

i=1

∫
Y 1

(
mij

vxk
v

vyi

)
dy

]
vf0

vxk

)
. (A 16)

With (A 16), we can finally write (A 14) in the following compact way:

1
|Y |

∫
Y 1

(
−B1

[
f (f0)

f1

f0

]
− B2f (f0)

)
dy

=
d∑

i,k=1

v

vxi

⎛
⎝
⎡
⎣ 1

|Y |
d∑

j=1

∫
Y 1

(
mik f ′(f0) − 2 mij

f (f0)
f0

vxk
v

vyj

)
dy

⎤
⎦ vf0

vxj

⎞
⎠ (A 17)

= div
([

q1f ′(f0)M̂ − 2
f (f0)

f0
M̂v

]
Vf0

)
,

where the tensor M̂v = {mv
ij}1≤i,k≤d is defined by

mv
ik := 1

|Y |
d∑

j=1

∫
Y 1

(
mij

vxk
v

vyj

)
dy. (A 18)

Proc. R. Soc. A (2012)

 on October 1, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


3722 M. Schmuck et al.

It remains to elucidate the last term in (A 11). Using (A 2)2, then we have

− B0

[
1
2
f ′′(f0)f2

1 + f ′(f0)f2

]

=
d∑

i,j=1

v

vyi

(
mijf1

vf1

vyj

)
f ′′(f0) +

d∑
i,j=1

v

vyi

(
mij

vf2

vyj

)
f ′(f0)

=
d∑

i,j=1

−
[

v

vyi
(mijf1

vxk
v

vyj
)
]

f ′′(f0)
vf0

vxk
+ m (A2f0 + A1f1 − w0) . (A 19)

If we assume an isotropic mobility matrix M̂, i.e. M̂ = {mdij}1≤i,j≤d , and
use (A 5) in the term with the summation, then the following simplification of its
summands can be made:
[

v

vyi

(
mijf1

vxk
v

vyj

)]
f ′′(f0)

vf0

vxk
=
[

v

vyi
(mikf1)

]
vf ′(f0)

vxk
= −

[
mik

vxl
v

vyi

]
vf0

vxl

vf ′(f0)
vxk

= − v

vxk

(
f ′(f0)

[
mik

vxl
v

vyi

]
vf0

vxl

)

+ f ′(f0)
v

vxk

([
mik

vxl
v

vyi

]
vf0

vxl

)
. (A 20)

The last term in (A 19) vanishes by the Fredholm alternative guaranteeing
solvability of (A 2)2. Hence, (A 19) admits after integrating over Y the following
compact form:

1
|Y |

∫
Y 1

−B0

[
1
2
f ′′(f0)f2

1 + f ′(f0)f2

]
dy = div

(
f ′(f0)M̂vVf0

)

− f ′(f0) div
(
M̂vVf0

)
, (A 21)

which then sets (A 19) to zero. These considerations finally lead to the following
effective equation for f0:

q1
vf0

vt
= div

([
q1f ′(f0)M̂ −

(
2
f (f0)

f0
− f ′(f0)

)
M̂v

]
Vf0

)

− f ′(f0) div(M̂vVf0) + l2

q1
div(M̂wV(div(D̂Vf0) − g̃0)). (A 22)

The solvability of (A 22) follows along with the arguments in Novick-Cohen
(1990) since we at least assume that f ∈ C 2

Lip(I ) where I ⊂ R is a bounded interval.
In fact, one only needs to prove a local Lipschitz continuity of the first two terms
on the right-hand side of (A 22).
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