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1. Background 

 

In a series of experimental studies, extending over a period of some 10 years, Marusic, Mathis, Hutchins and 

their collaborators (e.g. [1]) have investigated the response of the near-wall streaks in the viscosity-affected 

sublayer to large-scale outer structures, the latter typically present at a distance of 0.1-0.2 of the boundary-

layer thickness from the wall. They show, in particular, that the outer structures affect the near-wall turbulent 

fluctuations in two ways: by “footprinting'' and “modulation'', the former being a superposition process and 

the latter being a more subtle interaction leading to amplification/attenuation of small-scale fluctuations.  

One particularly notable outcome of this work has been the proposal of an empirical relationship that permits 

the statistics of the near-wall turbulence to be “predicted'', at any Reynolds number, from a “universal” 

small-scale signal, unaffected by large-scale motions (and thus Reynolds number), and a record of the 

Reynolds-number-dependent large-scale outer fluctuations in the log-law region. Thus, if the universal signal 

is denoted 
*

u , the outer large-scale motions at location
O

y


 are denoted 
,O L S

u


, the empirical relationship for the 

actual near-wall fluctuations u


 takes the form,   

                                                   (1) 
 

in which ,  are empirical functions, derived from experimental data, and   in an angle that accounts for 

the correlation between the large-scale motions at 
O

y


 and those at y
 .  In the above equation, the latter term 

represents the superposition (footprinting) process and the former the modulating influence of the large-scale 

motions. 

 In a recent PoF paper [2], the present authors have investigated eq. (1) by reference to DNS data for 

channel flow at R e

=1020, and have shown that the symmetric response to high-speed and low-speed large-

scale fluctuations, implied by the eq. (1), is not supported by the data.  The authors separated large-scale 

from small-scale motions using a two-dimensional version of the Empirical Mode Decomposition of Huang 

et al. [3], and then extracted the joint PDFs of * *,u v (the latter assumed to be the EMD-derived small-scale 

motion) from eq.(1), subject to ,  given by the originators of eq. (1) for *u .  An example of the analysis, 

for 1 3 .5y

 , is given in Fig. 1 (a). 

 

 

   

 

 

 

 

 

 

 

Figure 1. Joint PDFs of velocity fluctuations at 1 3 .5y

  from DNS; (a) for “universal” * *,u v fluctuations 

( *u  extracted from eq. (1) and *v  from the EMD small scale) for highly positive large-scale fluctuations 

(red contours) and highly negative large-scale fluctuations (green contours); (b) for small-scale (u,w) 

fluctuations, illustrating “splatting”. 

 
The present authors are of the view that the non-universality displayed in Fig. 1(a) is a likely consequence of 
“splatting” (sweeps/ejections), implied by Fig. 1(b), and a failure of eq. (1) to take the effects of this process 
into account.  In [3] the authors presented a preliminary alternative to eq. (1), which reduced the differences 
between the PDFs  in Fig. 1(a), thus improving the universality of the * *( , )u v  field .  The authors have 
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pursued this work further, deriving additional statistical data, extracted from the DNS, and extending the 
model presented in [3].  They also examine, albeit as a minor aspect, the validity of the “Quasi-Steady” 
model of Chernyshenko et al [4], which is based on the proposition that scaling in eq. (1) should be effected 
with the local large-scale friction velocity. 
 
 
2. Research Contribution 
 
We consider ensemble-averaged statistics, conditioned on large-scale motions. Spatial (x-z) snapshots are 
obtained at various y

  levels.  In each snapshot, domains of positive and negative large-scale fluctuations are 
identified.  Only patches of extreme +/- 10% events within the PDF of the all large-scale motions are 
considered. Statistics of small-scale motions are then extracted within these patches.  This is also the 
approach underpinning Fig. 1(a).  

 

  

 

 

 

 

 

 

 

 

 

Figure 2.  Profiles of streamwise small-scale-fluctuations energy, conditioned on large-scale motions; (a) 

scaling with mean friction velocity; (b) scaling with local large-scale friction velocity.  Black line: total, 

time-averaged energy. 

 

Fig. 2 gives profiles of the streamwise small-scale intensity, scaled with the mean and local large-scale 

friction velocity, respectively.  Differences among the conditional profiles indicate effects of modulation and 

splatting only (footprinting is automatically eliminated). Clearly, neither mean scaling nor local scaling 

renders the small-scale statistics universal, Fig. 2(b) thus contradicting the “Quasi-Steady” universality 

assumption that underpins some current descriptions.   

 The phenomenological model proposed herein, in contrast to eq. (1), “predicts” the (instantaneous) 

velocity field at any y
 level from the following equation: 

1

, ,1 , 1 ,*

1 , 1 ,

su p e rp o s it io n
m o d u la tio n p la tt in g

1 1 ( )
i L S i L SL S L S

i i i

L S L S

s

u Uu u
U u y

uU U






 
    

        
   
   

     (2) 

in which <…> denotes time-mean value and ( )
i

y


, to be given in detail in a paper to follow (because of its 

complexity),  is also made to depend on the sign of * *( , )u v , i.e. on whether fluctuations are associated with 

ejections or sweeps. This model, when inverted to yield *

i
u , with all other quantities taken from the DNS 

data, gives the PDFs in Fig. 3, thus returning a good level of universality for the statistics of *

i
u . 

 
A full account of the research summarized herein is given in references below. 
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Figure 3. Joint (u-v) PDFs of the universal signal *

i
u extracted from eq. (2) at three levels of y

 . Each plot 
has two sets of contours, one (red) pertaining to regions of extreme 10% positive and the other (green) for 

regions of extreme 10% negative large-scale fluctuations. 
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